Double+reverse+flotation+process+of+collophanite+and+regulating+froth+action[1]

SciencePress

Availableonlineatwww.sciencedirect.com

…E一。E@。…cT?

Tram.NonferrousMet.Soc.China18(2008)449—453

Transactionsof

NonferrousMetals

SocietyofChina

;;;;;ii;;;;;;;;;

WWW.CSl2.edu.cn/ysxb/

Doublereverseflotationprocessofcollophaniteandregulatingfrothaction

GEYing-yong(葛英勇),GANShun-peng(甘顺鹏),ZENGXiao-bo(曾d'波),YUYong—fu(余永富)SchoolofResourcesandEnvironmentalEngineering,WuhanUniversityofTechnology,Wuhan430070,China

Received16July2007;accepted8November2007

Abstract:AnewdoublereverseflotationprocesswasusedtobeneficiatetheYichangregioncollophaniteofHubeiProvince,China.Itsfinalconcentrateyieldis67.37%。P20sgradeis32.17%,P205recoveryis87.80%,andthemainimpuritiesMgO,Fe203andAI,01are0.95%,1.04%,1.36%。respectively.ThedifficultproblemwassuccessfullysolvedthatplentifulfrothsaleboughtbythecationiccollectorreverseflotationincollophanitebeneficiationbyaddinginorganicfrothregulatorCAtothepulp.ThedefrothingmechanismwasstudiedthroughmensuratingsurfacetensionandZetapotentialofthepulpafteraddingCA.Itisfoundthatthecllangingofsurfacetension

andhoistingofZetapotentialmaybethemainreasonsthatfrothsbecomefriableandbreakup.

Keywords:collophaniteore;reverseflotation;defrothing

1Introduction

1.1Beneficiationmethodsofphosphateore

111ephosphatedepositsarequiteabundantinChina.whichmainlydistributeinYunnan,Guizhou,Sichuan,

Chongqing,HubeiandHunanetc.However,theirqualityisverypoor,becausetheaveragegradeofP205isonly

l6.75%.over75%phosphaterockismediumorlowgradecollophanite[1].andMgOcontentisbetween2%and6%.withexcessivesilicaandmagnesiumcontents.Thesephosphatesaredifficulttobeneficiate.

Flotationisoneofthemostimportantbeneficiation

methods.Today。morethanhalfoftheworld’smarketablephosphateisupgradedbytheflotationmethod[2].Theflotationmethodsofphosphateoreincludedirectflotation,reverseflotation,direct-reverseflotation,reverse.directflotationandsoon[3].Siliceousphosphateoresaregenerallybeneficiatedby

twostageflotationtechniquesusingamineandfattyacidsforsilicabasedgangueandphosphaterespectively【4】.1kbeneflciatingeffectofthiskindofdirect-reverseorreverse-directflotationisgood,butthepulprequireshi曲temperature,generallyabove25℃,andsomephosphatesevenreach40℃.Fattyacidsandtheirsaltsarecommonlyusedascollectorsinflotationofphosphateores.However,theirusesuffersfromsensitivitytoslimesanddissolvedions.highertemperaturerequirement,andrelativelyhighconsumption[5].

Asforthisphenomenon,wetrytouseanewdoublereverseflotationprocessforcollophanite.Ithassomemerits,forexample,itneedn’theatthepulp,thedosageconsumptionissmall.concentrateiseasilyfiltrated,deleteriousimpuritiesarethoroughremoved.Throughsystematicexperiment,weapplythisdoublereverseflotationtofloatcollophaniteofYichangregion,andobtainverygoodbeneficiationindex:finalconcentrateyield67.37%,P205grade32.17%,P20srecovery87.80%.andmainimpurityMgO0.95%.

1.2Existentproblemofeationiccollectorusedinreversefloatationofcollophaniteore

Cationiccollectorhasgoodselectivity,

low-temperatureresistance,strongcollectingstrengthandsimplereagentsystem.Buttherearesomeproblems

suchasstickyfroths,bigtenacity,badfluidity,beingdifficulttodefrothifthefeedorescontainlargeamountsofclaysandworkersdonotadddefrotherintothepulpordeslimefeed,whichwilllcadtoabadflotationindex。andtheback—sequentprocesssuchasscavengingtailingscannotcarryon.Ifitistooserious.beneficiationplantproductionwillbestopped.Forinstance,dodecylaminereverselyfloatssilicaoftheironore,siliceousfrothsareunfruitfulandsticky,theselectivityisbad,andthe

Foundationitem:Project(2006AAl07A01)supportedbySciencemadTechnologyKeyProgramofHubeiProvince,ChinaCorrespondingauthor:GEYing-yong;Tel:+86-27-62506493;E?mail:g自JY@mail.whut.edu.cn

 

450GEYing—yong,etal/Trans.NonferrousMet.Soc.China18(2008)

dosageisinconvenient[6—71.TheFloridaInstituteofPhosphateResearch(FIPR)appliedcationiccollectordoublereverseflotationprocesstofloatsiliceousandmagnesiaphosphateore,andfoundoutthatifthepulphasn’tbeendeslimedbeforebeneficiation,theconsumptionofreagentdramaticallyascendedandselectivitybecameworse[8].

1.3IntroductionofflotafiondefrothingresearchThereisnotmuchaboutflotationdefrothingresearch.Germanscientistsfirstputforwardthattheyusedchemicalmethodtodefroth[9].JapaneseandAmericanchemistssinglyresearcheddefrothingproblemduringtheSecondWoridWar.In1950s.ChinabegantostudythedefoameroffermentandPaDermakingindustry『101.

Phosphateoresbeforebeneficiationaresubjectedtodifferentprocessessuchasdesliming,screeningor

classification,andtheclaydepressantisaddedtoreducethenegativeinfluenceofflotationprocessbyclayorslimes,sothecationiccollectorreverseflotationprocesshasgainedextensivelyapplication[11】.Whenusingcationiccollectortoreverselyfloatphosphateore,becauseamineionsareverysensitivetoclayandmud,deslimes,addingpolymertotheflotationfeedand/orwater,andaddingaminestagewise,arenecessaryinorderthatreverseflotationprocessisnotinfluencedbyclay[8].Actually.10tsofcationicreverseflotationofphosphateandhematitearealladdedintheprocessofdeslimesbeforebeneficiation[12-14].GITERHOFF[151indicatedthatcationiccollectorreverselyfloatingmineralsneededsomeorganicdepressanttomakethesurfaceofthewallrock(clay)becomehydrophilic,sot11atclayCallnotadsorbthecollectorions.TherelationbetweenthestabilityofflotationfrothsandrecoverywasrevealedviameasuringthethicknessofflotationfrothswithandwithoutCaz+ionsandnonionpolymer[16].Asfortheproblemoffrothswhicharegeneratedbycationiccollectorflotation,scholarsinChinachieflystudythedeslimesoforeandaddingchemicalreagent【17-20].Atpresent,practicalandfeasibledefrothingmethodmainlyconsistsofaddingirthomogeneous

defrother,changingpHvalue,changingthesolubilityoffrotherwithconjunctionfunctionandsaltingoutaction.addingthesubstancewhichreactswithfrother,addingoppositesurfactantandso

on.ThetypesofdefrotherisdemonstratedinTablel『211.

2Resultsanddiscussion

2.1Collophaniteore

Experimentalphosphateores,camefromYichangregionofHubeiProvince,China,areofsedimentaryphosphate

rock.Thiscollophaniteoreistheaccreteorewithquartz,feldspar,dolomite,calciteandsoon.Theusefulmineralisphosphate.andthemainimpuritymineralsareSiP2,MgO,A1203,Fe203,CaC03etc.Phosphoritedistributesinooliteandclitellumtubercularshape,orformsparticlewithimpuritymineralsmutually,withdisseminatedgrainsizeofabout0.10mm.Calcicolousandmagnesianaccreteoreexistindolomite【CaP‘MgO‘(C02)2]andcalcite【CaC03],silicaandaluminumexistincalcicolousfeldspar【CaAl2SiOs]andsheetmica,andFe203existsintheconcomitantore.The

chemicalmulti—elementanalysisresulBofcrude

orearedemonstratedinTable2.

2.2Dpubicreverseflotationprocess

Fig.1showsthedoublereverseflotationprocessofnlisexperiment.Rougherflotationwasusedtowipeofrmagnesium

minerals.Theroughtailingisscavenged

onetimeandconcentrateIIisattained.TheroughconcentrateiscleanedonetimetowipeofrsilicaandconcentrateIisattained.Thecleanertailingisalsoscavengedonetime,thenthisscavengingconcentratereturnstothecleanerflotation.

Table3liststheclosedcircuitresultsofthisdouble

reverseflotationprocess.Itisshownthattheindexoffinalconcentrateissatisfactory.Itsyieldis67.37%,P205gradeis32.17%andrecoveryis

87.80%.Thecontentof

Table1Typesofdefrother/defoamer

TypeofdefrotherChemicalcomposition

Oil.based

PBresilicaoil,silicaoildissolvedinhydrocarbonandothermenstruum,fattyacid,

fattyalcoholasdissolvedoil

Plaster-basedSaturatedfattyacidester,olefin,mineraloil,fattyacidsoap,emulsifier,stabilizer

Dispersoid?based

Dispersedphase:SiP2,talcum,clay,fattyamine,heavymetalsoapspecies,

highmeltingpointpolymer;

Dispersed

medium:mineraloil,kerosene,plantoil,fattyalcohol,organicsilica

liquid

Latex-based

Fattyacidester,naphthylsulfonicsalt,fattyacidglyceride,sorbsugaralcoholfattyacidester,

fattyacidsoap,etc

Solidorpowder-basedWax,fattyalcohol,estertypes,soaptypes,etc

 

GEYing-yong,ctalffrans.NonferrousMet.Soc.China18(2008)

ConcentrateofFeed

Fig.1Flowsheetofdoublereverseflotationprocess

45l

Table2Chemicalmulti—elementanalysisresultsofcrudeore(massfraction.%1

12Q§里璺Q些鲤呈12Q≥垒12Q2璺!Q2里坠Q型!!Q23.5237.923.832.064.5l18.120.111.620.45

ThbIe3Closedcircuitresults

型墅丛垒垒型堑丛堡至蔓!丝丛坚基!≥丝叁塑:垒2丝』!坠蔓垡造

67.3732.1787.800.951.041.36

deleteriousimpurityintheconcentrateislow,andthe

ratioofthetotalcontentofMgO,Fe203andA1203to

P205contentis10.40%,whichcompletelysatisfiesthe

need(12%)ofproducingphosphaticaciddeammonium.

2.3Defrothing

AlthoughthefrothperformanceofGE.609isbetter

thandodecylamine,ithash’tthoroughlyresolvedthe

obstacleaboutflotationfrothofcationiccollector.

Throughlong—termtentativeexperimentinthelaboratory,

wefinallyfindouttwokindsofdefrotherswhichare

effectiveandcheap:oneisorganicfrothregulatorDF,

andtheotherisinorganicfrothregulatorCA.DFisal(indofmetamorphicstarch.andCAisakindofmetaloxide.Tllreeparallelexperimentswerecurriedoutwithoutaddingdefrother,onlyaddingDFandonlyaddingCA.respectively.TheindexofevaluatingdefrothingeffectiStheresidualamountoffroth.Theresidualamountoffrothistheamountoffrothwhichdoesn’tbreakupinthevesselafterfinishingflotation.Volumesofmeasuredvesselsare5Land2L,respectively.Fig.2showstheresultsofdefrothingexperiment.

WefindoutthatDFhaslittledefrothingeffectfrom

Time/min

Fig.2Residual

volumeoffrothfordifferentdefrothingexperiments

Fig.2,buttheeffectofCAiSmore

obvious.孔efrothofCAalmostvanishesat10millafterflotation.Actually,theamountoffrothisgreatlydecreasedforonlyaddingCA.ButaddingDFatthesametimeCallremarkablyimprovethefluidityoffroth,SOCAandDFareusedinexperiment.

TheclosedcircuitresultofdoublereverseflotationwithandwithoutCAiSlistedin亿出le4.

,】【/【|

 

452GEYing-yong,etal/Trans.NonferrousMet.Soe.China18(20081

Table4showsthattheyield,P205grade,recovery,

chiefimpuritycontentofconcentratewithandwithout

CAhavenoobviousdifferences.P20Egradeand

recoveryofaddingCAarelialelessthallthosewithoutaddingCA.Thefrothproblemhasbeensolved.whichalsoprovesthatCAisakindoffavorablefoamadjustorofcationiccollector.

3Defrothingmechanism

3.1Surfacetension

Inexperiment,wemeasuredthesurfacetensionofsolution(gotfromupperclearliquorofpulpwhichhadgroundandhadnotbeenaddedwithanyreagent)indifferentdosageofCAinordertodiscussthedefrothingmechanismofCA,asshowninFig.3.

DosageofCA/(g?t-1)

Fig.3SurfacetensionofsolutionindifferentdosageofCA

Fromequations7sc=YsL+Yim’cos0and一△G7sG+na1,sL-%L,weCallspeculatethewettingfunctionWSL=YlX3(1+COS0).AfteraddingdefrotherCA,)协minishes,服Ifollowstominish,whichmakesthesolid/liquidinterfacecombinationforcediminish,sotheconcentrationofcollectoronthefilmofbubblesisdecreased,thehydrophobicityofmineralparticleisweakened,andthestabilityofbubblesgoesdown.

3.2Zetapotential

ZetapotentialofpurequartzandquartzwithaddingCAindifferentpHvaluesisshowninFig.4.

Fig.4showsthatthezeropointofchargeofquartzturnsfrompH2.1to2.5becauseofaddingCA.UnderthesalilepHvalue,theZetapotentialofquartzwithaddingCArisesalittle.ThisisbecauseCAformsM,andM(OH)(n-I卜ionsinwater.Thesetwokindsofions

.壁

pH

Fig.4ComparisonofzetapotentialofpurequartzandquartzwithaddingCA(180m#-0

adsorbontothesurfaceofquartz.Theycounteractthenegativechargeofthesurfaceofquartzpartially.TherebytheZetapotentialofquartzrises.thezeropointofchargeofquartzmovesaliRle.

Furthermore,100mg/LofGE.609,180mg/tofCAand100meA,ofGE.609wererespectivelyaddedintodistilledwaterofquartz.thentheZetapotentialofquartzunderdifferentpHwasmeasured.

Fig.5showsthattheZetapotentialofquartzdeclinesatfirstandclimbslaterafteraddingGE一609.Itpresentsdegressive仃endbelowpH=4.5andclimbingtrendabovepH--4.5.WhenpHvalueisabout8.theZetapotentialofquartzbecomespositive.Thisisbecausethe

surfaceofquartzchargesnegativechargeoriginally.黝theconcentrationofpositiveamineionsincreasins。

moreandmoreamineionsareadsorbedontothesurfaceofquartz.consequentlyZetapotentialofthesurfaceofquartzcontinuouslyrises.GE.609moleculeformsI卜一NH3+inwaterthroughionization。一NH3+ionsareadsorbedontothesurfaceofquartz.andR——easilyadherestotheairbubblesbecauseofitshydrophobicity,whichmakesthequartzparticlestipatwithbubbles.AsCAandGE.609aresuccessivelyaddedintothesamedistilledwaterofquartz。CAformsMn-I-andM(OH)妒1rinwaterbyionization.Theycompetetoadsorbonthesurfaceofquartzwithamineions,sotheZetapotentialofquartzbecomeshigherandhi曲er,asdescribedinFig.5.Becausethethreekinds

ofionsallchargepositivecharge,thecompetitiveadsorptiononthesurfaceofquartz

takesplace.Andthesamechargesexcludeeachother,andM斤+andM(OH)旷1rmakethe

amountofamineionsonthesurfaceofquartzdecreasealiule。consequentlythehydrophobicitygeneratedbyquartz

 

GEYing—yong,etal/Trans.NonferrousMet.Soc.China18(2008)453adsorbingcollector

functiongroupR—NH3+slows

down,andtheintensitythatquartzparticlesadsorbedon

bubblesdiminishesalittle,thatistosay,theflotation

舶thbecomesfriable,andthedefrothingismoreeasily.

Fig.5CurvesofZetapotentialofquartzforadsorbingdifferent

reagents

4Conclusions

1)ThecollophanitewithP20sgradeofcrudeoreof

23.52%wasbeneficiatedby(10ublereverseflotation.

AddinginorganicdefoamingadjustorCAcanattainthe

excellentconcentrate.Theyieldis67.37%.P205gradeis

32.17%andrecoveryis87.80%.andtheimpurity

contentsofMgO,Fe203,A1203are0.95%,1.04%,

1.36%.respectively.

21ThroughaddingorganicdefrothingregulatorDF

andinorganicdefrothingCA.thesurfacetensionofthe

pulpisreducedandZetapotentialisincreased.The

superpositionofallkindsoffactorsmakesthefroths

becomefriableandevanesce,whicheffectivelysolves

thedi伍cultproblemofcationiccollectorGE-609.Itis

possibletoapplythecationiccollectortotheindustrial

beneficiationofcollophanite.

31Flotationreagentspecialcollectoristhekeyof

thedoublereverseflotation.TheSRcollectorfor

wiping

offmagnesiamineralsandGE.609forwipingofrsilica

possessgoodselectivityandstrongcollectingforce.111isdoublereverseflotationcanbeappliedtothebeneficiationindustryofcollophaniteaftertheindustrialexperiment.Thebeneficiatedproblemofmediumandlowgradecollophanitewillbesolved.

References

【2】

LIUYi-hua.Mycountryandtheworldphosphaten络oufces&

exploitationactuality(continuation)叨.Phosphate&Compound

Fertilizer.2005,20(6):9-12.(inChinese)

SISAH,CHANDERS.Reagentsusedinthe

flotationof

phosphate

ores:Acriticalreview【J】.MineralsEngineering,2003,16(7):

577—585.

【3]LUOZhao-jun,QIANXin,WANGWen-qian.Progressofphosphate

oreprocessing【J】.ChinaMiningMagazine,1999,8(4):50-53.(ha

Chinese)

14】ZAFARIQBALZAFA心ANWARMM,PRITCHARDDW.A

newrouteforthebeneficiationoflowgradecalcareousphosphate

rocks【J】.FertilizerR韶earch,1996,44:133—142.

【5】SISAH,CHANDERS.Improvingfrothcharacteristicsaadflotation

recovery

ofphosphateoreswithnonionicsurfactants【刀.Minerals

Engineering,2003,16(7):587—595.

【6】ZHANGHong-ru.Studyonreverseflotationcollectorforremoving

silicate【J】.IndustrialMinerals&Processing,1998(4):lO—11.(ha

Chinese)

【7】LIUJing,ZHANGJian-qiang,L1UJiong—fiamStatusof

iron渊

flotationreagent【J】.ChinaMiningMagazine,2007,l“2):106-108.

【8】8ZHANGP,YUY,BOGANM.Challengingthe“Crago'’double

floatprocessIIamine-fattyacidflotationofsiliceousphosphate【J】-

MineralsEngineering,1997,10(9):983-'994.

【9】YANGJun—ling.Foamanddefoamingtechnology田.Textile

Quxiliaries,1995(4):29—32.(inChinese)

【10】FENGQi—ming,MUXiao,ZHANGGuo—fan.Foamingand

defoamingtechnologyinflotationprocesses【J】.Conservationand

UtilizationofMineralResources,2005(4):31-35.(inChinese).

【Il】ZAFARIz,ANWARMM.PRITCHARDDW.Innovationsin

benefieiationtechnologyforlowgradephosphaterocks【J】.Nutrient

CyclinginAgroecosystems,1996,46:135—151.

【12】HERNAINZF,CALEROM,BLAZQUEZGFlotationoflow—grade

phosphateore[J】.AdvancedPowderTechnology,2004,15(4):

421-433.

【13]AWADALLAHRM,MOHAMEDAE,ELHAZEKNT,

HASSANMY.BeneficiationofwestSibaiyaphosphateoresby

flotationinalkalinemedia【J】.MetallurgicalaadMaterials

TransactionsB,1998,29B:1149一l156.

【14】ARUJIOMAC.Flotationreagentofironore【J】.MetallicOre

DressingAbroad,2006(2):4—7.(inChinese)

【15】GITHOFFS.Thestudyofactivationoffrotherandorganic

depressantincationflotationprocessm.MetallicOreDressing

Abroad,2004(8):19-23.(inChinese).

【16】LUS,SUNICDevelopmentofphosphateflotationreagentsinChina

[c]//ZHANGP,E1一SHALLH,WlEGELILBeneflciationof

Phosphates:AdvancesinResearchandPractice.Littleton:SMEInc,

1999:21-26.

【17】QrdGuan-zhou,WUXi-qing,WANGYu-hna,FENGQi-ming,HU

Yue-hua.Advanceinflotationjnrecentyears【J】.MetalMine,

2006(1):41—52.(haChinese).

【18】GAOLin-zhang,WANGVi-da,MAHou-hui.Re-:uarchofimproving

irongradeandreducingSi02contentofconcentrate【J】.MetalMine,

2004(3):17—19.(inChinese)

【19】GEYing-yong,YUY0ng-fIl’CHENDa,ZHANGMing.Flotation

performanceoflow-temperature-resistantcationic

collectorGE一609

usinginseparatingSi02【J】JournalofWuhanUniversityof

Technology,2005,27(8):17—19.(haChinese)

【20]FENGQi-ming,MUXiao,ZHANGGuo-fan,LUYi-ping,OU

Le-ming。SHAOY抽一hai,CHENYun.Investigationonantifoaming

offlotationbauxite【J】.JournalofCentralSouthUniversityof

Technology(NaturalScience),2005,35(6):956-'959.(inChinese)

【21】ZENGXiao-hn.Studyontwo-stagergveTseflotationforglue

phosphorousoresand

foambehavior嘲.Wuhan:WuhanUniversity

ofTechnology,2007.

(EditedbyYANGBing) 

Double reverse flotation process of collophanite and

regulating froth action

作者:GE Ying-yong, GAN Shun-peng, ZENG Xiao-bo, YU Yong-fu

作者单位:School of Resources and Environmental Engineering, Wuhan University of

Technology, Wuhan 430070, China

刊名:

中国有色金属学会会刊(英文版)

英文刊名:TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA

年,卷(期):2008,18(2)

被引用次数:1次

参考文献(21条)

1.LIU Yi-hua My country and the world phosphate resources & exploitation actuality (continuation) 2005(06)

2.SIS A H.CHANDER S Reagents used in the flotation of phosphate ores:A critical review 2003(07)

3.LUO Zhao-jun.QIAN Xin.WANG Wen-qian Progress of phosphate ore processing 1999(04)

4.ZAFAR IQBAL ZAFAR.ANWAR M M.PRITCHARD D W A new route for the beneficiation of low grade calcareous phosphate rocks 1996

5.SIS A H.CHANDER S Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants 2003(07)

6.ZHANG Hong-ru Study on reverse flotation collector for removing silicate 1998(04)

7.LIU Jing.ZHANG Jian-qiang.LIU Jiong-tian Status of iron ores flotation reagent[期刊论文]-China Mining Magazine 2007(02)

8.ZHANG P.YU Y.BOGAN M Challenging the "Crago" double float process II amine-fatty acid flotation of siliceous phosphate 1997(09)

9.YANG Jun-ling Foam and defoaming technology 1995(04)

10.FENG Qi-ming.MU Xiao.ZHANG Guo-fan Foaming and defoaming technology in flotation processes[期刊论文]-Conservation and Utilization of Mineral Resources 2005(04)

11.ZAFAR I Z.ANWAR M M.PRITCHARD D W Innovations in beneficiation technology for low grade phosphate rocks 1996

12.HERNAINZ F.CALERO M.BLAZQUEZ G Flotation of low-grade phosphate ore 2004(04)

13.AWADALLAH R M.MOHAMED A E.EL HAZEK N T.HASSAN M Y Beneficiation of west Sibaiya phosphate ores by flotation in alkaline media 1998

14.ARUJIOM A C Flotation reagent of iron ore 2006(02)

15.GITHOFF S The study of activation of frother and organic depressant in cation flotation process 2004(08)

16.LU S.SUN K Development of phosphate flotation reagents in China 1999

17.QIU Guan-zhou.WU Xi-qing.WANG Yu-hua.FENG Qi-ming,HU Yue-hua Advance in flotation in recent years [期刊论文]-Metal Mine 2006(01)

18.GAO Lin-zhang.WANG Yi-da.MA Hou-hui Research of improving iron grade and reducing SiO2 content of concentrate[期刊论文]-Metal Mine 2004(03)

cationic collector GE-609 using in separating SiO2[期刊论文]-武汉工业大学学报 2005(08)

20.FENG Qi-ming.MU Xiao.ZHANG Guo-fan.LU Yi-ping OU Le-ming SHAO Yan-hai CHEN Yun Investigation on antifoaming of flotation bauxite[期刊论文]-Journal of Central South University of Technology(Natural Science) 2005(06)

21.ZENG Xiao-bo Study on two-stage reverse flotation for glue phosphorous ores and foam behavior 2007

相似文献(2条)

1.期刊论文葛英勇.王凯金.甘顺鹏.GE Ying-yong.WANG Kai-jin.GAN Shun-peng低品位难选胶磷矿的正-反浮选

工艺研究-矿冶工程2007,27(5)

辽宁某磷矿原矿P2O5品位19.41%,MgO含量高、嵌布粒度细.针对该矿石性质,采用正-反浮选工艺,以新型药剂MG和SR分别作正、反浮选的捕收剂,取得了混合精矿P2O5品位32.07%、回收率89.63%的闭路试验指标,实现了目的矿物与脉石的有效分离.

2.期刊论文葛英勇.曾小波.甘顺鹏.郝骞中、低品位胶磷矿双反浮浮选研究-矿产保护与利用2006,""(3)

通过研究矿石性质,采用新药剂以及双反浮工艺处理胶磷矿,获得了满意的指标:原矿P2O5品位24.36%,MgO含量4.21%,综合精矿P2O5品位32.96%、回收率91.80%,含MgO0.87%、R2O3 2.37%.

本文链接:https://www.360docs.net/doc/f517444009.html,/Periodical_zgysjsxb-e200802039.aspx

授权使用:辽宁科技大学图书馆(lnkjtsg),授权号:eb5ae033-5f4f-4005-bc3f-9e3200c59f89

下载时间:2010年11月18日

相关主题
相关文档
最新文档