椭圆偏振光的检验与偏振光的干涉

椭圆偏振光的检验与偏振光的干涉
椭圆偏振光的检验与偏振光的干涉

偏振光的观测与研究~~实验报告

偏振光的观测与研究 光的干涉与衍射实验证明了光的波动性质。本实验将进一步说明光就是横波而不就是纵波,即其E与H的振动方向就是垂直于光的传播方向的。光的偏振性证明了光就是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律与光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生与检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光与圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就就是电磁波,它的电矢量E与磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉与感光材料的特性上瞧,引起视觉与化学反应的就是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E与光的传播方向所构成的平面称为光振动面。 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光就是由大量原子或分子辐射构成的。由于热运动与辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率就是相同的。一般说,在10-6s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其她方向,即在较长时间内电矢量在某一方向较强,这就就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向与电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射与折射时,反射光与折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图3所示,这时入射角称为布儒斯特角,也称为起偏角。

实验报告_偏振光的产生和检验 (2)

【实验题目】 偏振光的产生和检验 【实验记录与数据处理】 1.线偏振光的获得与检验 1)器件光路示意图(2分): 2)测量记录(1分) 光电流强度 光电流强度夹角光电流强度 3)贴图(3分): ~I 曲线(直角坐标)

2.椭圆偏振光的获得与检验 1)器件光路示意图(2分): ? ? ? ? ? ? 3)贴图(5分):15°和45°的θ~I 曲线图(极坐标) 光强与检偏器角度的关系(Φ=15?)

光强与检偏器角度的关系(Φ=45?) 3. 1/2波片的研究 1)器件光路示意图(2分): 3)结论(2分):θ??Φ~关系; 根据数据可得,在误差允许的范围内,△θ=2△Φ。

【结论与讨论】 实验结论: 1.在实验一中,由θ~I 曲线可得,在振动方向与透视轴夹角从0°至90°过程中,透视光强度逐渐由零增至最大值,在90°至180°逐渐减小至最小值;经过两个周期,图像大致与马吕斯定律I=I o cos θ相符合。 2.在实验二中,当入射光与玻片夹角β= 0°,透过检偏器的光强最小,可知透过1/4玻片得到的是沿玻片慢轴的线偏振光;当β=15°,旋转检偏器一周后,得到的光强呈周期性变化,且最小值与最大值差值较大,光强最大值小于实验一中线偏振光的光强,再根据θ~I 曲线图即可知透过1/4玻片得到的是椭圆偏振光;当β=45°,旋转检偏器一周后,发现得到的光强变化不大,且光强大小界于β=15°时椭圆偏振光的光强最大值和最小值之间,再根据θ~I 曲线图即可知透过1/4玻片得到的是圆偏振光。 3.在实验三中,可以得出△θ随着ΔΦ的变化呈线性关系,满足△θ=2△Φ。 实验讨论: 【课后问题】(5分) 讨论:如何利用波片与偏振光片判别圆偏振光与自然光? 答:1.已知圆偏振光经过1/4玻片后形成线偏振光,而自然光经过1/4玻片后仍为自然光,故可以用1/4玻片进行区分。 2.让光束透过1/4玻片+偏振片,旋转偏振片,透射光发生变化的为圆偏振光,透射光不发生变化的为自然光。故可用玻片+偏振片进行区分。 报告成绩(满分30分):??????????? 指导教师签名:???????????????? 日期:?????????????????

大学物理实验- 光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 偏振片 P 1P 2 I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。 θ是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强I 有变化,且转动到某位置时 I =0,则表明入射 光为线偏振光,此时θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 22212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

偏振光干涉中的相位

偏振光干涉中o 光和e 光的相位 以课件上的问题为例: 设单色平面光波沿z 方向传播,即k //z : 1. 在偏振片P 1之后,晶片C 之前的光场是: )2cos(11z t e A E P λ πω?=r r 现在事先把它分解为o 光和e 光: )2cos( )()2cos()(11e e 1o o 1z t e e e A z t e e e A E P P λ πωλπω??+??=r r r r r r r (1) 这里1P e r 是沿偏振片P 1的偏振方向的单位矢量,o e r 和e e r 是o 光和e 光偏振方向的单位矢量,。上图表示出了所有的单位矢量,它们都在x -y 平面内。原则上讲,这些单位矢量的方向是可任意规定的,影响的只是它们之间点积的正负,但为了保证现在的o 光和e 光没有相位差,即cos 函数内不出现π(如果o e r 沿图中的反方向定义, 就会引起这个π),则o e r 、e e r 与1P e r 应保持上图所示关系。在上图的规定中,αcos )(1e =?P e e r r ,αsin )(1o =?P e e r r 。 2. 在晶片C 之后,偏振片P 2之前的光场是: )2cos()()2cos()(11e e 1o o 1z t e e e A z t e e e A E P P λ πωδλπω??++??=r r r r r r r (2) 与(1)式不同的是,(2)式中的o 光和e 光有了相位差δ,这是由晶片引起的。这时一般 y z k x

合成为椭圆偏振光。 3. 在偏振片P 2之后的光场是(对o 光和e 光,只有沿P 2方向的分量可通过): ) 2cos())(()2cos())((212212e e 1o o 1z t e e e e e A z t e e e e e A E P P P P P P λπωδλπω???++???=r r r r r r r r r r r 这时的情况是:振动都沿同方向-2P e r 方向的、相差恒定的两个波叠加,故可产生干涉。 具体分析相位,除了由晶片引起的δ,还存在可能由光矢量分解引起的π,表现在)(2o P e e r r ?和)(2e P e e r r ?差负号。在上面的情形中,的确引入了π的相位差。

偏振光的研究实验报告doc

偏振光的研究实验报告 篇一:偏振光的观测与研究~~实验报告 偏振光的观测与研究 光的干涉和衍射实验证明了光的波动性质。本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生和检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就是电磁波,它的电矢量E和

磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光是由大量原子或分子辐射构成的。由于热运动和辐射的随机性,大量原 - 子或分子发射的光的振动面出现在各个方向的几率是相同的。一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射和折射时,反射光和折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入

大学物理实验《偏振光的观测与研究》

实验3.8 偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面。 图3-26 自然光

实验报告_偏振光的产生和检验

【实验题目】偏振光的产生和检验【实验记录与数据处理】 1.线偏振光的获得与检验 1)器件光路示意图(2分): 3)贴图(3分):曲线(直角坐标)

2.椭圆偏振光的获得与检验 1)器件光路示意图(2分): 3)贴图(5分):15°和45°的曲线图(极坐标) 光强与检偏器角度的关系(Φ=15?)

光强与检偏器角度的关系(Φ=45?)3. 1/2波片的研究 1)器件光路示意图(2分): 3)结论(2分):关系: 根据数据可得,在误差允许的范围内,△θ=2△Φ。 4.玻璃起偏与Brewster角的测定 1)器件光路示意图(2分):

2)Brewster 角p i 的测量记录(1分) 3)玻璃的折射率(3分)。 ==p i n n tan 0 1.000277*?8.51tan 玻璃折射率为=n 1.271125 【结论与讨论】 1.由实验一可得,在振动方向与透视轴夹角从90°减少至0°过程中,透视光强度逐渐由零增至最大值,与马吕斯定律I=I o cos θ相符合。 2.由实验二可得,当入射光与玻片夹角β= 0°,透过检偏器的光强最小,可知透过1/4玻片得到的是沿玻片慢轴的线偏振光;当β=15°,旋转检偏器一周后,得到的光强呈周期性变化,且最小值与最大值差值较大,光强最大值小于实验一中线偏振光的光强,再根据θ~I 曲线图即可知透过1/4玻片得到的是椭圆偏振光;当β=45°,旋转检偏器一周后,发现得到的光强变化不大,且光强大小界于β=15°时椭圆偏振光的光强最大值和最小值之间,再根据θ~I 曲线图即可知透过1/4玻片得到的是圆偏振光。 3.由实验三可得,线偏振光经过1/2玻片后仍为线偏振光,振动方向旋转了2θ(θ为入射光的偏振方向与玻片慢轴方向的夹角)。 4.实验四产生较大误差,误差原因为由于光线变化较小,且很难做到消光。故人为判断的影响较大。 前三个实验误差产生的原因主要来源于调节玻片和检偏器时对旋转角度的读数不能十分精准。 【课后问题】(5分) 讨论:如何利用波片与偏振光片判别圆偏振光与自然光? 答:1.已知圆偏振光经过1/4玻片后形成线偏振光,而自然光经过1/4玻片后仍为自然光,故可以用1/4玻片进行区分。 2.让光束透过1/4玻片+偏振片,旋转偏振片,透射光发生变化的为圆偏振光,透射光不发生变化的为自然光。故可用玻片+偏振片进行区分。 报告成绩(满分30分):??????????? 指导教师签名:???????????????? 日期:?????????????????

预习思考题_偏振光的产生与检测

北京师范大学物理实验教学中心基础物理实验预习思考题 【实验题目】偏振光的产生与检测 1.光的偏振现象揭示了光波的什么性质?列举几个偏振光的应用? 答:光的偏振揭示了光的波动性。 应用:1. 在摄影镜头前加上偏振镜消除反光。在拍摄表面光滑的物体,在拍摄时加用偏振镜,借以消除或减弱这些光滑物体表面的反光或亮斑。2. 使用偏振镜看立体电影。3. 汽车使用偏振片防止夜晚对面车灯晃眼。4、生物的生理机能与偏振光。沙漠中有一种蚂蚁,它能利用天空中的紫外偏光导航,因而不会迷路。: 2.光有几种宏观偏振态?自然界中的光都是“自然光”吗? 答:光的宏观偏振态主要有五种,线偏振光、圆偏振光、椭圆偏振光、自然光和部分偏振光,而线偏振光和圆偏振光又可认为是椭圆偏振光的特例。自然界中的光不都是“自然光”。在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。自然光源一般情况下认为是非偏振光,自然光源一般情况下认为是非偏振光,但是经过水面反射和折射过后没,就能产生偏振光。 3.列举几种由自然光产生线偏振光的方法。 1、在透明媒质界面上的折射和反射。让自然光以偏化角入射在二种不同透明媒质的界 面时,可得完全偏振的反射光与部分偏振的透射光。 2、通过双折射晶体,如尼科耳棱镜 3、通过双色性(又名二向色性)晶体,如偏振片。 4.写出偏振光马吕斯定律的光强公式。 答:强度为Io的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为I=Io(cosa)^2 式中α是线偏振光的光振动方向与检偏器透振方向间的夹角。 5.如何由实验判断两偏振片达到正交? 用光垂直照射一个偏振片并固定,把另一个放在后面,转动后一个偏振片观察没有光透过时两偏振片就正交了。此时看到的透射光最暗,再继续旋转检偏振片,则逐渐变亮,说明该方向达到正交。 成绩(满分20 分):

实验六 相位干涉仪测向技术

学 院 通信工程学院 专 业 信息对抗技术 指导教师 沈雷老师/孙闽红老师 学生姓名 邓斌 学 号 11073115 实验日期 2014.05. 实验六 相位干涉仪测向技术 一、实验目的 无线电测向和定位就是确定通信辐射源的来波方向和位置。对通信信号的测向和定位是通信侦察对抗领域的一个重要且相对独立的技术领域。干涉仪测向又称为相位法测向。本实验主要目的为通过实验,了解并掌握通信测向中相位法测向的基本原理和方法。 二、实验原理 1、相位干涉仪测向原理 图 1 以单基线干涉仪测向为例,其电波到达相邻天线阵元形成的波程差如上图所示。图中测向天线阵由两个阵元组成,假设辐射源与阵元相距很远,所以可认为辐射源发射到阵元1和2的信号平行。假设阵元1和阵元2之间的间距为d ,来波方向与阵列法线方向的夹角为θ。测向的实质是测量夹角θ。 阵元1和阵元2接收到的信号传播存在波程差,因而也存在相位差。设阵元1接收信号为 20()()cos(2)r t s t E f t π== 则阵元2的接收信号为 102sin ()()cos(2)d r t s t E f t πθ τπλ =-=- 其中0/c f λ=为信号波长。 从上可以看出,信号传播距离差为θsin ?=?d l ,则相位差为:

λθπ?/sin 2??=?d 实际中d 、λ均已知,所以只要得到阵元1和2接收信号的相位差,便可以求出θ。需要注意的是,为了避免相位模糊问题,常需要满足条件π?

大学物理实验《偏振光的观测与研究》

实验偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直 于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面内。 图3-26 自然光

相位干涉仪测向

相位干涉仪测向 07083115 07083119 一、 题目要求 使用Simulink 模拟构建一个相位测向系统, 构造两个有时延的到来信号,对其进行捕获,分别在时域和频域上对接收的信号进行方向估计,并评估侧向效果。 二、 实验方案及公式推导 A. 公式推导 图 1 信号为0()cos(2)s t E f t π=,则如图 1所示天线长为d,信号方向与参考方向夹角为θ 设2点的接收信号为20()()cos(2)r t s t E f t π== (1) 则1点的接收信号为102sin ()()cos(2) d r t s t E f t πθ τπλ =-=- (2) 其中0 c f λ= 为信号波长 ①时域测向 将12(),()r t r t 改写为复数形式得 022()j f t r t Ee π= (3) 21()j f t r t Ee π?-= (4) 其中2sin d πθ ?λ =- 对(3)式取共轭得, 0 2*2()j f t r t Ee π-= (5) (4)式与(5)式相乘得, *212()()j r t r t E e ?-= (6)

对(6)式求相角,乘以2d λ π-得, sin 2d ?λ θ π= (7) 取反正弦,乘以0 180 π ,求出 θ ②频域测向 将(3)、(4)作FFT 得, 20()()R w E f f δ=- (8) 10()()j R w E f f e ? δ-=- (9) 由公式 ()arctan () I Q R k R k θ= 求出 2121()()arctan arctan () () I I Q Q R k R k R k R k ?=- (10) 同① ,可求出 θ B.方案论述 一、伯努利二进制码流经BPSK 产生2()r t 二、产生12()()j r t r t e ?-= 三、①时域法:*12()()r t r t 取出? ②频域法:对12(),()r t r t 作FFT,求出相位差? 四、根据?的值对应求出θ 三、Simulink 框图说明及参数设计: 依据方案的设计,建立Simulink 仿真模型 A.框图模块说明 : 相乘器 相加器 二进制数据流 高斯白噪声信道

偏振光实验报告范文

偏振光实验报告范文 实验报告 姓名:高阳班级:F0703028 学号:5070309013 同组姓名:王雪峰 实验日期:xx-3-3 指导老师:助教10 实验成绩:批阅日期: 偏振光学实验 【实验目的】 1. 观察光的偏振现象,验证马吕斯定律 2. 了解1/2波片,1/4波片的作用 3. 掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】

1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。 2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用 的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使

自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为A0, 则透过检偏器的线偏振光的振幅为A,A=A0cosɑ,强度 I=A ,I=A0cosɑ= I 20 22 2 cosɑ=cosɑ式中I0为进入检偏器前(检偏器无吸收时)线偏振光的强度。 22

特殊偏振光产生原理

特殊偏振光产生原理 简介:方位角偏振光(Azimuthally Polarized Light)和径向偏振光(Radially Polarized Light)是一种非均匀偏振光。方位角偏振光的电场振动方向在光束横截面上具有轴对称性,始终沿着方位角方向;径向偏振光的电场振动方向在光束横截面上具有轴对称性,始终沿着径向方向。它们统称为柱矢量偏振光。在理论上,柱矢量偏振光通常由激光器两列正交的线偏振TEM01和TEM10模按照一定的方式叠加而成。这就需要进行选模,使激光器谐振器输出TEM01或者TEM10模,同时抑制基模和其它高阶模。在这里,介绍了一种新颖的柱矢量偏振光产生机理。 特殊偏振光功能:可以实现任意柱对称偏振的矢量光束,包括柱矢量偏振光。 工作原理:圆偏振入射光束沿对称光轴O1O2射向第一外反射式圆锥面反射镜1;被第一外反射式圆锥面反射镜反射后,由于第一外反射式圆锥面反射镜反射锥面与对称光轴O1O2成45度夹角,光束转化为径向传播光束;径向传播光束经过圆柱筒形曲面偏振器2后光束偏振态发生改变,而后经过第一内反射式锥面反射镜3反射形成矢量光束,由于第一外反射式圆锥面反射镜的反射锥面和第一内反射式圆锥面反射镜的反射锥面平行,矢量光束与对称光轴O1O2平行,沿着对称光轴O1O2传播依次经过入射二分之一波片4、出射二分之一波片5;调节入射二分之一波片和出射二分之一波片的波片光轴夹角,可以调节矢量圆环形光束偏振态;出射二分之一波片出射的矢量光束经过第二内反射式圆锥面反射镜6转化为径向向内传播的光束,再经过第二外反射式圆锥面反射镜7反射,形成对称光轴O1O2方向传播的矢量光束。

一 偏振光的产生和检验

实验十一 偏振光的产生和检验 光的干涉和衍射实验证明了光的波动性质。本实验将进一步说明光是横波而不是纵波,即其E 和H 的振动方向是垂直于光的传播方向的。光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 一、实验目的 1、观察光的偏振现象,加深对光波传播规律的认识。 2、掌握产生和检验偏振光的原理和方法。 二、实验原理 1、偏振光的概念 光的波动的形式在空间传播属于电磁波,它的电矢量E 与磁矢量H 相互垂直。E 和H 均垂直于光的传播方向,故光波是横波。 实验证明光效应主要由电场引起,所以电矢量E 的方向定为光的振动方向。 自然光源(如日光,各种照明灯等)发射的光是由构成这个光源的大量分子或原子发出的光波的合成。这些分子或原子的热运动和辐射是随机的,它们所发射的光振动,出现在各个方向的几率相等,这样的光叫做自然光。 自然光经过媒质的反射、折射或者吸收后,在某一方向上振动比另外方向上强,这种光称为部分偏振光。如果光振动始终被限制在某一确定的平面内,则称为平面偏振光,也称为线偏振光或完全偏振光。偏振光电矢量E 的端点在垂直于传播方向的平面内运动轨迹是一圆周的,称为圆偏振光,是一椭圆的则称为椭圆偏振光。 2、获得线偏振光的方法 自然光变成偏振光称作起偏,可以起偏的器件分为透射和反射2种形式。 (1) 反透射式起偏器 自然光在两种媒质的界面处反射和折射,当入射角b φ满足12tan /b n n φ=时, 反射光成为振动 方向垂直于入射面的线偏振光,这个规律称布儒斯特定律,b φ

偏振光干涉实验报告

偏振光干涉实验报告 偏振光实验报告 实验1. 验证马吕斯定律 实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o光,通过e光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。具有二向色性的晶体叫做偏振片。偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图 P1、图2所示: P1 P2 图1 图2 θ A 0 图1中靠近光源的偏振片P1为起偏器,设经过P1后线偏振光振幅为A0(图2所示),光强为I0。P2与P1夹角为?,因此经P2后的线偏振光振幅为A?A0cos?, 2光强为I?A0cos2??I0cos2?,此式为马吕斯定律。 实验数据及图形:

从图形中可以看出符合余弦定理,数据正确。 实验2.半波片,1/4波片作用 实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o光)和非常光(e光)。它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。 分振动面的干涉装置如图3所示,M和N是两个偏振片,C是波片,单色自然光通过M变成线偏振光,线偏振光在波片C中分解为o光和e光,最后投影在N上,形成干涉。 偏振片波片偏振片 图3 分振动面干涉装置 考虑特殊情况,当M⊥N时,即两个偏振片的透振方向垂直时,出射光强为:I0(sin22?)(1?cos?);当M∥N时,即两个偏振片的透振方向平行时,出射4

I0(1?2sin2?cos2??2sin2?cos2?cos?)。其中θ为波片光轴与M2I??光强为:I//? 透振方向的夹角,δ为o光和e光的总相位差(同波晶片的厚度成正比)。改变θ、δ中的任何一个都可以改变屏幕上的光强。 当δ=(2k+1)π(1/2波片)时,cosδ=-1,I?? 强最大,I//?02sin22?,出射光I0(1?sin2?)2,出射光强最小;当δ=[(2k+1)π]/2(1/4 波片)时,cosδ=0,I??I0I(sin22?),I//?0(2?sin22?)。 44 特别地,利用1/4波片我们还可以得到圆偏振光和椭圆偏振光。当θ=45度时,得到圆偏振光,此时让偏振片N旋转一周,屏幕上光强不变。一般情况下,得到的是椭圆偏振光,让偏振片N旋转一周,屏幕上的光斑“两明两暗”。 实验结果: 半波片实验数据表:

大学物理实验报告系列之偏振光的分析

【实验名称】偏振光的分析 【实验目的】 1.观察光的偏振现象,巩固理论知识,加深对光的偏振现象的认识。 2.学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生和定性检验方法。 【实验仪器】 He-Ne激光器、光具座、偏振片(两块)、的1/4波片(两块)、玻璃平板及刻度盘、白屏等。 【实验原理】 1.光的偏振状态 偏振是指振动方向相对于波的传播方向的一种空间取向作用。它是横波的重要特性。光在传播过程中,若电矢量的振动只局限在某一确定平面内,这种光称为直线偏振光,又叫平面偏振光(因其电矢量的振动在同一平面内);若光波电矢量的振动随时间作有规律的改变,即电矢量的末端在垂直于光传播方向的平面上的轨迹是圆或椭圆,这样的光称为圆偏振光和椭圆偏振光;若光波电矢量的振动只在某一确定的方向上占优势,而在和它正交的方向上最弱,各方向的振动无固定的位相关系,这种光称为部分偏振光。2.直线光,圆偏光,椭圆偏振光的产生。直线偏振光垂直通过波片的偏振状态 3. 鉴别各种偏振光的方法和步骤

【实验内容】 1. 测定玻璃对激光波长的折射率 2. 产生并检验圆偏振光 3.产生并检验椭圆偏振光 【数据表格与数据记录】 οοο58308250211=-=-=??p i οοο57307250212=-=-=??p i οοο57307250213=-=-=??p i οοο56306250214=-=-=??p i οοο58308250215=-=-=??p i οοο57307250216=-=-=??p i οοο56306250217=-=-=??p i ο577 7 1=+????+= p p p i i i 5399.157tan tan ===οn i p 波长为时玻璃对于空气的相对折射率为。 现象:两次最亮,两次消光。结论:圆偏振光 如果使检偏器的透振方向与暗方向平行,1/4波片与检偏器透振方向垂直或平行。

偏振光的观测与研究~~实验报告

偏振光得观测与研究 光得干涉与衍射实验证明了光得波动性质。本实验将进一步说明光就是横波而不就是纵波,即其E与H得振动方向就是垂直于光得传播方向得。光得偏振性证明了光就是横波,人们通过对光得偏振性质得研究,更深刻地认识了光得传播规律与光与物质得相互作用规律。目前偏振光得应用已遍及于工农业、医学、国防等部门。利用偏振光装置得各种精密仪器,已为科研、工程设计、生产技术得检验等,提供了极有价值得方法。 【实验目得】 1.观察光得偏振现象,加深偏振得基本概念。 2.了解偏振光得产生与检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光与圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1实验仪器实物图 【实验原理】 1.偏振光得基本概念 按照光得电磁理论,光波就就是电磁波,它得电矢量E与磁矢量H相互垂直。两者均垂直于光得传播方向。从视觉与感光材料得特性上瞧,引起视觉与化学反应得就是光得电矢量,通常用电矢量E代表光得振动方向,并将电矢量E与光得传播方向所构成得平面称为光振动面。在传播过程中,光得振动方向始终在某一确定方位得光称为平面偏振光或线偏振光,如图2(a)。光源发射得光就是由大量原子或分子辐射构成得。由于热运动与辐射得随机性,大量原子或分子发射得光得振动面出现在各个方向得几率就是相同得。一般说,在10-6s内各个方向电矢量得时间平均值相等,故出现如图2(b)所示得所谓自然光。有些光得振动面在某个特定方向出现得几率大于其她方向,即在较长时间内电矢量在某一方向较强,这就就是如图2(c)所示得所谓部分偏振光。还有一些光,其振动面得取向与电矢量得大小随时间作有规则得变化,其电矢量末端在垂直于传播方向得平面上得移动轨迹呈椭圆(或圆形),这样得光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振得分类 2.获得偏振光得常用方法 (1)非金属镜面得反射。 通常自然光在两种媒质得界面上反射与折射时,反射光与折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图3所示,这时入射角称为布儒斯特角,也称为起偏角。

偏振光的杨氏干涉

收稿日期:2006-11-16 基金项目:国家自然科学基金资助项目(60177002,60477005);教育部高校博士点基金(20020422047)资助项目;国家精品课程( 光学 )建设资助项目(2006) 作者简介:蔡履中(1945!),男,河南封丘人,山东大学光学工程系教授,博士生导师,主要从事信息光学研究与教学工作. 教学研究 偏振光的杨氏干涉 蔡履中 (山东大学光学工程系,济南 250100) 摘要:在基础光学框架内,通过杨氏双孔干涉实验中线偏振光的干涉及线偏振光经过两任意厚度晶片的干涉等几个实例,说明了基于矢量波叠加概念的电磁干涉的基本思想、基本分析方法和基本现象.偏振光干涉时,观测平面上可以出现或不出现光强的周期性空间调制,但一般都产生光场偏振态的周期调制.它表明了光的矢量性对干涉的重要影响,并可揭示只分析强度条纹时被掩盖的一些物理效应. 关键词:杨氏实验;电磁干涉;矢量波叠加;偏振光;衬比度 中图分类号:O 436.1;O 436.3 文献标识码:A 文章编号:1000 0712(2007)06 0001 04 杨氏双孔干涉是光学中的经典实验.它不但在光学计量中有着广泛应用,而且是建立和发展光的相干理论的重要基础[1-4] .一般光学教材对杨氏实验的讨论均基于标量波理论,是以强度变化条纹作为干涉产生的表征,并以其衬比度作为相干性的度量.但是,众所周知,电磁场是矢量场,电磁波的矢量性在其叠加过程中必然发挥着重要作用.近年来,E.Wolf 等研究者从矢量波叠加的角度对杨氏干涉进行了更为深入的分析和探讨,得到了一系列很有意义的结论[5-8] .为与传统干涉内容相区别,此类文献中常把考虑了电磁场的矢量性的干涉称为电磁干涉(electrom agnetic interference ).这些分析中用到了谱密度(spectral density )、广义(两点)Stokes 参量等概念,已超出了大学物理范畴.不过,我们完全可以在基础光学的框架内对矢量波干涉的基本思想及现象给出简单明晰的解释.本文将通过几个实例说明此类问题的基本分析方法及物理诠释,它将表明矢量波干涉的特点,揭示只分析强度条纹时被掩盖的一些物理现象.这对拓展学习者的思路和视野,培养其思维及创新能力是极为有益的. 1 两线偏振光的干涉 作为一个最简单的例子,考察如图1所示的双孔干涉.图1(a)中S 为单色自然光点源,S 1、S 2为双孔,在S 、S 1S 2后分别放置偏振片P 、P 1、P 2,其中P 的 透振方向与P 1、P 2的透振方向均成 角,如图1(b)所示.设双孔等大,在傍轴条件下,可认为通过每孔的光波单独在观测屏 上某点Q 产生的光强是相同的,并可设其为单位强度.在图1坐标系中,孔S 1、S 2在Q 点产生的光场可分别表示为 图1 E 1=cos sin ex p i kr 1, E 2= cos -sin exp i kr 2 (1) 式中r 1和r 2分别是S 1和S 2到Q 点的距离,k =2 /!,!为光波波长.Q 点合光场为E =E 1+E 2=2exp i ! r 1+r 2cos c os !r 1-r 2 isin sin ! r 1-r 2 (2) 第26卷第6期大 学 物 理Vol.26N o.62007年6月COL L EGE PHYSICS June 2007

偏振光现象的观察和分析

偏振光现象的观察和分析 引言: 光的偏振现象有法国工程师马吕斯首先发现。对光偏振现象的研究清楚地显示了光的横波性,加深了人们对光传播规律的认识。近年来光的偏振特性在光调制器、光开关、光学计量、应力分析、光信息处理、光通信、激光、光电子器件中都有广泛应用。 本实验利用偏振片和1/4波片观察光的偏振现象,并分析和研究各种偏振光。从而了解1/4波片和1/2波片的作用及应用,加深对光偏振性质的认识。 实验原理 1、 偏振光的种类。 光可按光适量的不同振动状态分为五类: (1)线偏振光 (2)自然光 (3)部分偏振光 (4)园偏振光 (5)椭圆偏振光 使自然光变成偏振光的装置称为起偏器,用来检验偏振光的装置称为检偏器。 2、 线偏振光的产生。 (1)反射和折射产生偏振 自然光以 i B =arc tan n 的入射角从空气入射至折射率为n 的介质表面上时,反射光 为线偏振光。以 i B 入射到一叠平行玻璃堆上的自然光,透射出来后也为线偏振光。 (2)偏振片。 利用某些晶体的二向色性可使通过他的自然光变成线偏振光。 (3)双折射产生偏振。 自然光入射到双折射晶体后,出射的o 光和e 光都为线偏振光。 3、 波晶片 4、 线偏振光通过各种波片后偏振态的改变。 在光波的波面中取一直角坐标系,将电矢量E 分解为两个分量E X 和E y ,他们频率相同都为ω,设E y 相对E X 的相位差为?φ,即有 E X =A x cos ωt (2) E y =A y cos(ωt +?φ) (3) 由(2)、(3)两式得,对于一般情况,两垂直振动的合成为: e 轴 O 轴 θ 光 轴 图 1

相关文档
最新文档