北师大版必修一课后作业:第二章 函数 3(一) (1)
2020-2021学年高中新教材北师大版数学必修第一册习题:第二章 §3 第1课时 函数的单调性 W

第二章函数§3函数的单调性和最值第1课时函数的单调性课后篇巩固提升基础达标练1.(多选题)下列函数在区间(0,+∞)上单调递增的是()A.y=2x+1B.y=x2+1C.y=3-xD.y=x2+2x+1y=3-x在区间(0,+∞)上单调递减.2.函数f(x)=-x2+2x+3的单调递减区间是()A.(-∞,1)B.(1,+∞)C.(-∞,2)D.(2,+∞)f(x)=-x2+2x+3是图象开口向下的二次函数,其对称轴为x=1,所以其单调递减区间是(1,+∞).3.若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有>0成立,则()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)是先增后减D.函数f(x)是先减后增>0知f(a)-f(b)与a-b同号,即当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),所以f(x)在R上是增函数.4.已知函数f(x)在区间(-∞,+∞)上是减函数,若a∈R,则()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)D中,因为a2+1>a,f(x)在区间(-∞,+∞)上是减函数,所以f(a2+1)<f(a).而在其他选项中,当a=0时,自变量均是0,应取等号.故选D.5.若函数f(x)=x2-2(a-1)x+1在区间(2,3)上为单调函数,则实数a的取值范围是()A.(-∞,3]∪[4,+∞)B.(-∞,3)∪(4,+∞)C.(-∞,3]D.[4,+∞)f(x)图象开口向上,对称轴为直线x=a-1,因为函数在区间(2,3)上为单调函数,所以a-1≤2,或a-1≥3,相应解得a≤3,或a≥4,故选A.6.函数f(x)=|x|与g(x)=x(2-x)的单调递增区间分别为()A.(-∞,0],[1,+∞)B.(-∞,0],(-∞,1]C.[0,+∞),[1,+∞)D.[0,+∞),(-∞,1](图略)可知选D.7.(多选题)下列命题是假命题的有()A.定义在区间(a,b)上的函数f(x),如果有无数个x1,x2∈(a,b),当x1<x2时,有f(x1)<f(x2),那么f(x)在区间(a,b)上为增函数B.如果函数f(x)在区间I1上为减函数,在区间I2上也为减函数,那么f(x)在区间I1∪I2上就一定是减函数C.任取x1,x2∈(a,b),且x1≠x2,当<0时,f(x)在区间(a,b)上单调递减D.任取x1,x2∈(a,b),且x1≠x2,当(x1-x2)[f(x1)-f(x2)]>0时,f(x)在区间(a,b)上单调递增是假命题,“无数个”不能代表“所有”“任意”;以f(x)=为例,知B是假命题;∵<0(x1≠x2)等价于[f(x1)-f(x2)]·(x1-x2)<0,而此式又等价于即∴f(x)在区间(a,b)上是减函数,C是真命题,同理可得D也是真命题.8.若函数y=ax与y=-在区间(0,+∞)上都是单调递减,则函数y=ax2+bx在区间(0,+∞)上是()A.单调递增B.单调递减C.先增后减D.先减后增y=ax与y=-在区间(0,+∞)上都是单调递减,所以a<0,-b>0,即a<0,b<0.因为抛物线y=ax2+bx的对称轴为x=-<0,且抛物线开口向下,所以函数y=ax2+bx在区间(0,+∞)上单调递减.9.已知函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)单调递增,当x∈(-∞,-2]时,f(x)单调递减,则m=,f(1)=.函数f(x)在区间(-∞,-2]上单调递减,在区间[-2,+∞)上单调递增,∴x=-=-2,∴m=-8,即f(x)=2x2+8x+3.∴f(1)=13.81310.证明函数f(x)=-在定义域上为减函数.f(x)=-的定义域为[0,+∞).任取x1,x2∈[0,+∞),且x1<x2,则x2-x1>0,f(x2)-f(x1)=(-)-(-)==.∵x1-x2<0,>0,∴f(x2)-f(x1)<0,即f(x2)<f(x1).∴函数f(x)=-在定义域[0,+∞)上单调递减.能力提升练1.若f(x)=-x2+2ax与g(x)=在区间[1,2]上都是单调递减,则a的取值范围是()A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1](x)=-x2+2ax=-(x-a)2+a2,∵f(x)在区间[1,2]上单调递减,∴a≤1.∵g(x)=在区间[1,2]上单调递减,∴a>0,∴0<a≤1.2.若定义在R上的一元二次函数f(x)=ax2-4ax+b在区间[0,2]上单调递增,且f(m)≥f(0),则实数m的取值范围是()A.0≤m≤4B.0≤m≤2C.m≤0D.m≤0或m≥4f(x)在区间[0,2]上单调递增,所以f(2)>f(0),解得a<0.又因为f(x)的图象的对称轴为x=-=2,所以f(x)在区间[0,2]上的值域与在区间[2,4]上的值域相同.所以满足f(m)≥f(0)的m的取值范围是0≤m≤4.3.给出下列三个结论:①若函数y=f(x)的定义域为(0,+∞),且满足f(1)<f(2)<f(3),则函数y=f(x)在区间(0,+∞)上是增函数;②若函数y=f(x)在区间(-∞,+∞)上是减函数,则f(a2+1)<f(a2);③函数f(x)=在其定义域上是减函数.其中正确的结论有()A.0个B.1个C.2个D.3个在函数单调性的定义中,x1,x2具有任意性,不能仅凭区间内有限个函数值的大小关系判断函数单调性,①错误;②∵a2+1>a2,又y=f(x)在区间(-∞,+∞)上是减函数,∴f(a2+1)<f(a2),②正确;③取x1=-1,x2=1,∵f(-1)=-1,f(1)=1,∴f(-1)<f(1),故f(x)=不是其定义域上的减函数,③错误.4.设函数f(x)在(-∞,+∞)上是减函数,a,b∈R且a+b≤0,则下列选项正确的是()A.f(a)+f(b)≤-[f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b)C.f(a)+f(b)≥-[f(a)+f(b)]D.f(a)+f(b)≥f(-a)+f(-b)a+b≤0,所以a≤-b,b≤-a,又函数f(x)在区间(-∞,+∞)上是减函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+f(-b).5.若函数f(x)=是定义域上的减函数,则实数a的取值范围为.-3≤a≤-1,则实数a的取值范围是[-3,-1].-3,-1]6.已知函数f(x)=,若x1>x2>-2,则f(x1)>f(x2),则实数a的取值范围是.(用区间来表示)“若x1>x2>-2,则f(x1)>f(x2)”可知函数f(x)在区间(-2,+∞)上单调递增.而f(x)==a+,故有1-2a<0,解得a>,即a的取值范围为.7.(2020浙江金华高一检测)函数f(x)=的定义域为;单调递减区间为.f(x)=,∴(x-1)(x-2)>0,解得x<1或x>2,函数f(x)的定义域为(-∞,1)∪(2,+∞);又t=(x-1)(x-2)在区间(-∞,1)上单调递减,在区间(2,+∞)上单调递增,∴函数f(x)在区间(-∞,1)上单调递增,在区间(2,+∞)上单调递减,∴函数f(x)的单调递减区间为(2,+∞).-∞,1)∪(2,+∞)(2,+∞)8.已知函数f(x)=mx+(m,n是常数),且f(1)=2,f(2)=.(1)求m,n的值;(2)当x∈[1,+∞)时,判断f(x)的单调性并证明;(3)若不等式f(1+2x2)>f(x2-2x+4)成立,求实数x的取值范围.f(1)=m+=2,f(2)=2m+,∴1≤x1<x2,则f(x1)-f(x2)=x1+=(x1-x2)·=(x1-x2).∵1≤x1<x2,∴x1-x2<0,x1x2>1.∴2x1x2-1>1.∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)在区间[1,+∞)上单调递增.1+2x2≥1,x2-2x+4=(x-1)2+3≥3,∴只需1+2x2>x2-2x+4.∴x2+2x-3>0.∴x<-3或x>1.素养培优练1.(2019江苏南通期中)已知函数f(x)=x2+(x≠0,a∈R),若函数f(x)在区间[2,+∞)上单调递增,则a的取值范围为.x1,x2∈[2,+∞),且x1<x2,则x2-x1>0,f(x2)-f(x1)=[x1x2(x1+x2)-a].要使函数f(x)在区间[2,+∞)上单调递增,需满足f(x2)-f(x1)>0在[2,+∞)上恒成立.∵x2-x1>0,x1x2>4>0,∴a<x1x2(x1+x2)恒成立.又x1+x2>4,∴x1x2(x1+x2)>16,∴a≤16,即a的取值范围是(-∞,16].-∞,16]2.设f(x)是定义在R上的函数,对m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且当x>0时,0<f(x)<1.(1)求证:f(0)=1;(2)求证:当x∈R时,恒有f(x)>0;(3)求证:f(x)在R上是减函数.根据题意,令m=0,可得f(0+n)=f(0)·f(n),∵f(n)≠0,∴f(0)=1.(2)由题意知,当x>0时,0<f(x)<1;当x=0时,f(0)=1>0;当x<0时,-x>0,∴0<f(-x)<1.∵f(x+(-x))=f(x)·f(-x),∴f(x)·f(-x)=1.∴f(x)=>0.故x∈R时,恒有f(x)>0.(3)设任意的x1,x2∈R,且x1>x2,则f(x1)=f(x2+(x1-x2)).∴f(x1)-f(x2)=f(x2+(x1-x2))-f(x2)=f(x2)·f(x1-x2)-f(x2)=f(x2)[f(x1-x2)-1].由(2)知,f(x2)>0.∵x1-x2>0,∴0<f(x1-x2)<1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),故f(x)在R上是减函数.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
2018版北师大版必修一课后作业:第二章 函数 3一 含答

学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一函数的单调性思考画出函数f(x)=x、f(x)=x2的图像,并指出f(x)=x、f(x)=x2的图像的升降情况如何?答案两函数的图像如下:函数f(x)=x的图像由左到右是上升的;函数f(x)=x2的图像在y轴左侧是下降的,在y轴右侧是上升的.梳理单调性是相对于区间来说的,函数图像在某区间上上升,则函数在该区间上为增函数.反之则为减函数.很多时候我们不知道函数图像是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:一般地,在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的.在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y=f(x)在区间A 上是递减的.如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,就称函数y=f(x)在该子集上具有单调性;如果函数y=f(x)在整个定义域内是增加的或是减少的,我们分别称这个函数是增函数或减函数,统称为单调函数.知识点二 函数的单调区间思考 我们已经知道f (x )=x 2在(-∞,0]上是减少的,f (x )=1x 在区间(-∞,0)上是减少的,这两个区间能不能交换?答案 f (x )=x 2的减区间可以写成(-∞,0),而f (x )=1x 的减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x 的定义域.梳理 一般地,有下列常识:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大.类型一 求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图像说出函数的单调区间,以及在每一单调区间上,它是增加的还是减少的?解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是减少的,在区间[-2,1],[3,5]上是增加的.反思与感悟 函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D 上函数要么是增加的,要么是减少的,不能二者兼有. 跟踪训练1 写出函数y =|x 2-2x -3|的单调区间,并指出单调性.解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图像,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中递减区间是 (-∞,-1],[1,3];递增区间是[-1,1],[3,+∞). 类型二 证明单调性命题角度1 证明具体函数的单调性 例2 证明f (x )=x 在其定义域上是增函数. 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=x 1-x 2=(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )=x 在定义域[0,+∞)上是增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x在[1,+∞)上是增函数.证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2).∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0,即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )=x +1x 在区间[1,+∞)上是增函数.命题角度2 证明抽象函数的单调性例3 已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.求证:函数f (x )在R 上是增函数.证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2.令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1.∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴函数f (x )在R 上是增函数. 方法二 设x 1>x 2,则x 1-x 2>0, 从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.反思与感悟 因为抽象函数不知道解析式,所以不能代入求f (x 1)-f (x 2),但可以借助题目提供的函数性质来确定f (x 1)-f (x 2)的大小,这时就需要根据解题需要对抽象函数进行赋值. 跟踪训练3 已知函数f (x )的定义域是R ,对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.求证:f (x )在R 上是减函数.证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0), ∵当x >0时,0<f (x )<1,∴f (1)≠0,∴f (0)=1.令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1, 又∵-x >0时,0<f (-x )<1,∴f (x )=1f (-x )>1.∴对任意实数x ,f (x )恒大于0. 设任意x 1<x 2,则x 2-x 1>0, ∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0, ∴f (x )在R 上是减少的. 类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为( )A .[18,13)B .(0,13)C .[18,+∞)D .(-∞,18]∪[13,+∞)答案 A解析 要使f (x )在R 上是减函数,需满足: ⎩⎪⎨⎪⎧3a -1<0,-a <0,(3a -1)·1+4a ≥-a ·1.解得18≤a <13.反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超.另外,函数在单调区间上的图像不一定是连续不断的.跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________. 答案 a ≤1或a ≥2解析 由于二次函数开口向上,故其增区间为[a ,+∞),减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2. 命题角度2 用单调性解不等式例5 已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围. 解 f (1-a )<f (2a -1)等价于 ⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23.反思与感悟 若已知函数f (x )的单调性,则由x 1,x 2的大小,可得f (x 1),f (x 2)的大小;由f (x 1),f (x 2)的大小,可得x 1,x 2的大小.跟踪训练5 在例5中若函数y =f (x )的定义域为R ,且为增函数,f (1-a )<f (2a -1),则a 的取值范围又是什么?解 ∵y =f (x )的定义域为R ,且为增函数, f (1-a )<f (2a -1),∴1-a <2a -1,即a >23,∴所求a 的取值范围是(23,+∞).1.函数y =f (x )在区间[-2,2]上的图像如图所示,则此函数的增区间是( )A .[-2,0]B .[0,1]C .[-2,1]D .[-1,1]答案 C2.函数y =6x 的减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0),(0,+∞)D .(-∞,0)∪(0,+∞) 答案 C3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ) A .f (x )=x 2 B .f (x )=1xC .f (x )=|x |D .f (x )=2x +1 答案 B4.已知函数y =f (x )满足:f (-2)>f (-1),f (-1)<f (0),则下列结论正确的是( ) A .函数y =f (x )在区间[-2,-1]上递减,在区间[-1,0]上递增 B .函数y =f (x )在区间[-2,-1]上递增,在区间[-1,0]上递减 C .函数y =f (x )在区间[-2,0]上的最小值是f (-1) D .以上的三个结论都不正确 答案 D5.若函数f (x )在R 上是减函数,且f (|x |)>f (1),则x 的取值范围是( ) A .x <1 B .x >-1 C .-1<x <1 D .x <-1或x >1 答案 C1.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都递减,未必有f (x )在A ∪B 上递减. 2.对增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0.对减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0.3.熟悉常见的一些单调性结论,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是增函数,h (x )是减函数,则:①在定义域的交集(非空)上,f (x )+g (x )递增,f (x )-h (x )递增,②-f (x )递减,③1f (x )递减(f (x )≠0). 5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f (x 1)f (x 2)与1比较.课时作业一、选择题1.函数y =1x -1的单调区间是( )A .(-∞,1),(1,+∞)B .(-∞,1)∪(1,+∞)C .{x ∈R |x ≠1}D .R答案 A解析 单调区间不能写成单调集合,也不能超出定义域,故C ,D 不对,B 表达不当.故选A.2.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f (x 1)-f (x 2)x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f (x 1)-f (x 2)>0 答案 C解析 因为f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),x 1-x 2与f (x 1)-f (x 2)的符号相同,故A ,B ,D 都正确,而C 中应为若x 1<x 2,则f (a )≤f (x 1)<f (x 2)≤f (b ). 3.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图像上的两点,那么-1<f (x )<1的解集是( ) A .(-3,0) B .(0,3)C .(-∞,-1]∪[3,+∞)D .(-∞,0]∪[1,+∞)解析 由已知f (0)=-1,f (3)=1, ∴-1<f (x )<1,即f (0)<f (x )<f (3), ∵f (x )在R 上递增, ∴0<x <3,∴-1<f (x )<1的解集为(0,3).4.已知函数f (x )在R 上是增函数,则下列说法正确的是( ) A .y =-f (x )在R 上是减函数 B .y =1f (x )在R 上是减函数C .y =[f (x )]2在R 上是增函数D .y =af (x )(a 为实数)在R 上是增函数 答案 A解析 设x 1<x 2,因为函数f (x )在R 上是增函数,故必有f (x 1)<f (x 2). 所以-f (x 1)>-f (x 2),A 选项一定成立.其余三项不一定成立,如当f (x )=x 时,B 、C 不成立,当a <0时,D 不成立. 5.已知函数f (x )在(-∞,+∞)上是增函数,若a ,b ∈R 且a +b >0,则有( ) A .f (a )+f (b )>-f (a )-f (b ) B .f (a )+f (b )<-f (a )-f (b ) C .f (a )+f (b )>f (-a )+f (-b ) D .f (a )+f (b )<f (-a )+f (-b ) 答案 C解析 ∵a +b >0,∴a >-b ,b >-a , ∵f (x )在R 上是增函数, ∴f (a )>f (-b ),f (b )>f (-a ), ∴f (a )+f (b )>f (-a )+f (-b ).6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,若f (4-a )>f (a ),则实数a 的取值范围是( ) A .(-∞,2) B .(2,+∞) C .(-∞,-2) D .(-2,+∞)答案 A解析 画出f (x )的图像(图略)可判断f (x )在R 上递增, 故f (4-a )>f (a )⇔4-a >a ,解得a <2.7.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x ≥0,x 2-ax +1,x <0是(-∞,+∞)上的减函数,则实数a 的取值范围是________. 答案 [0,13]解析 当x <0时,函数f (x )=x 2-ax +1是减函数,解得a ≥0,当x ≥0时,函数f (x )=-x +3a 是减函数,分段点0处的值应满足1≥3a ,解得a ≤13,∴0≤a ≤13.8.已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围是________. 答案 [1,32)解析 由题意,得⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32,故满足条件的x 的取值范围是1≤x <32.9.函数f (x +1)=x 2-2x +1的定义域是[-2,0],则f (x )的递减区间是________. 答案 [-1,1]解析 f (x +1)=x 2-2x +1=(x -1)2=(x +1-2)2, ∴f (x )=(x -2)2,x ∈[-1,1], ∴f (x )在定义域[-1,1]上递减.10.已知一次函数y =(k +1)x +k 在R 上是增函数,且其图像与x 轴的正半轴相交,则k 的取值范围是________. 答案 (-1,0)解析 依题意⎩⎪⎨⎪⎧k +1>0,-k k +1>0,解得-1<k <0.三、解答题11.求函数y =-x 2+2|x |+3的递增区间.解 ∵y =-x 2+2|x |+3=⎩⎪⎨⎪⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0. 函数图像如图所示:∴函数y =-x 2+2|x |+3的递增区间是(-∞,-1]和[0,1]. 12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内递增; (2)若a >0且f (x )在(1,+∞)内递减,求a 的取值范围. (1)证明 设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内递增. (2)解 设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述0<a ≤1.13.已知函数f (x )在(0,+∞)上为增函数,且f (x )<0(x >0),试判断F (x )=1f (x )在(0,+∞)上的单调性并给出证明过程. 解 F (x )在(0,+∞)上为减函数. 证明:任取x 1,x 2∈(0,+∞),且x 1<x 2, ∴F (x 2)-F (x 1)=1f (x 2)-1f (x 1)=f (x 1)-f (x 2)f (x 2)f (x 1).∵y =f (x )在(0,+∞)上为增函数,且x 1<x 2, ∴f (x 1)<f (x 2),∴f (x 1)-f (x 2)<0. 而f (x 1)<0,f (x 2)<0,∴f (x 1)f (x 2)>0. ∴F (x 2)-F (x 1)<0,即F (x 1)>F (x 2). ∴F (x )在(0,+∞)上为减函数. 四、探究与拓展14.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是____________.答案 (0,1]解析 由f (x )=-x 2+2ax 在[1,2]上是减函数可得a ≤1,由g (x )=a x +1在[1,2]上是减函数可得a >0.∴0<a ≤1.15.设函数f (x )的定义域是(0,+∞),且对任意正实数x ,y 都有f (xy )=f (x )+f (y )恒成立,已知f (2)=1,且x >1时,f (x )>0.(1)求f (12)的值; (2)判断y =f (x )在(0,+∞)上的单调性并给出证明;(3)解不等式f (2x )>f (8x -6)-1.解 (1)对于任意x ,y ∈R 都有f (xy )=f (x )+f (y ),∴当x =y =1时,有f (1)=f (1)+f (1),∴f (1)=0.当x =2,y =12时,有f (2×12)=f (2)+f (12), 即f (2)+f (12)=0, 又f (2)=1,∴f (12)=-1. (2)y =f (x )在(0,+∞)上为增函数,证明如下:设0<x 1<x 2,则f (x 1)+f (x 2x 1)=f (x 2), 即f (x 2)-f (x 1)=f (x 2x 1). ∵x 2x 1>1,故f (x 2x 1)>0, 即f (x 2)>f (x 1),故f (x )在(0,+∞)上为增函数.(3)由(1)知,f (12)=-1, ∴f (8x -6)-1=f (8x -6)+f (12) =f (12(8x -6))=f (4x -3) ∴f (2x )>f (4x -3),∵f (x )在定义域(0,+∞)上为增函数,∴⎩⎪⎨⎪⎧2x >4x -3,4x -3>0. 解得解集为{x |34<x <32}.。
2018版北师大版必修一课后作业:第二章 函数 3二 含答

学习目标 1.理解函数的最大(小)值的概念及其几何意义.2.会借助单调性求最值.3.掌握求二次函数在闭区间上的最值.知识点一函数的最大(小)值思考在下图表示的函数中,最大的函数值和最小的函数值分别是多少?1为什么不是最小值?答案最大的函数值为4,最小的函数值为2.1没有A中的元素与之对应,不是函数值.梳理对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).知识点二函数的最大(小)值的几何意义思考函数y=x2,x∈[-1,1]的图像如图所示:试指出函数的最大值、最小值和相应的x的值.答案x=±1时,y有最大值1,对应的点是图像中的最高点,x=0时,y有最小值0,对应的点为图像中的最低点.梳理一般地,函数最大值对应图像中的最高点,最小值对应图像中的最低点,它们不一定只有一个.类型一 借助单调性求最值例1 已知函数f (x )=xx 2+1(x >0),求函数的最大值和最小值.解 设x 1,x 2是区间(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=(x 2-x 1)(x 2x 1-1)(x 21+1)(x 22+1). 当x 1<x 2≤1时,x 2-x 1>0,x 1x 2-1<0,f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )在(0,1]上递增;当1≤x 1<x 2时,x 2-x 1>0,x 1x 2-1>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2), ∴f (x )在[1,+∞)上递减. ∴f (x )max =f (1)=12,无最小值.反思与感悟 (1)若函数y =f (x )在区间[a ,b ]上递增,则f (x )的最大值为f (b ),最小值为f (a ). (2)若函数y =f (x )在区间[a ,b ]上递减,则f (x )的最大值为f (a ),最小值为f (b ).(3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决出最大(小).函数的最大(小)值是整个值域范围内最大(小)的.(4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势. 跟踪训练1 已知函数f (x )=2x -1(x ∈[2,6]),求函数的最大值和最小值. 解 设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=2x 1-1-2x 2-1=2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1).由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0, 于是f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以函数y =2x -1在区间[2,6]上是减函数.因此,函数y =2x -1在区间[2,6]的两个端点上分别取得最大值与最小值,即在x =2时取得最大值,最大值是2, 在x =6时取得最小值,最小值是25.类型二 求二次函数的最值例2 (1)已知函数f (x )=x 2-2x -3,若x ∈[0,2],求函数f (x )的最值; (2)已知函数f (x )=x 2-2x -3,若x ∈[t ,t +2],求函数f (x )的最值; (3)已知函数f (x )=x -2x -3,求函数f (x )的最值;(4)“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h m 与时间t s 之间的关系为h (t )=-4.9t 2+14.7t +18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确到1m) 解 (1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1, ∴f (x )在[0,1]上递减,在[1,2]上递增,且f (0)=f (2). ∴f (x )max =f (0)=f (2)=-3, f (x )min =f (1)=-4. (2)∵对称轴x =1, ①当1≥t +2即t ≤-1时, f (x )max =f (t )=t 2-2t -3, f (x )min =f (t +2)=t 2+2t -3.②当t +t +22≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3, f (x )min =f (1)=-4.③当t ≤1<t +t +22,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (1)=-4. ④当1<t ,即t >1时, f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (t )=t 2-2t -3.设函数最大值为g (t ),最小值为φ(t ),则有g (t )=⎩⎪⎨⎪⎧t 2-2t -3(t ≤0),t 2+2t -3(t >0),φ(t )=⎩⎪⎨⎪⎧t 2+2t -3(t ≤-1),-4(-1<t ≤1),t 2-2t -3(t >1).(3)设x =t (t ≥0),则x -2x -3=t 2-2t -3.由(1)知y =t 2-2t -3(t ≥0)在[0,1]上递减,在[1,+∞)上递增. ∴当t =1即x =1时,f (x )min =-4,无最大值.(4)作出函数h (t )=-4.9t 2+14.7t +18的图像(如图).显然,函数图像的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t )=-4.9t 2+14.7t +18,我们有:当t =-14.72×(-4.9)=1.5时,函数有最大值h =4×(-4.9)×18-14.724×(-4.9)≈29.于是,烟花冲出后1.5s 是它爆裂的最佳时刻,这时距地面的高度约为29m.反思与感悟 (1)二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素.(2)图像直观,便于分析、理解;配方法说理更严谨,一般用于解答题. 跟踪训练2 (1)已知函数f (x )=x 4-2x 2-3,求函数f (x )的最值; (2)求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值;(3)如图,某地要修建一个圆形的喷水池,水流在各个方向上以相同的抛物线路径落下,以水池的中央为坐标原点,水平方向为x 轴、竖直方向为y 轴建立平面直角坐标系.那么水流喷出的高度h (单位:m)与水平距离x (单位:m)之间的函数关系式为h =-x 2+2x +54,x ∈[0,52].求水流喷出的高度h 的最大值是多少?解 (1)设x 2=t (t ≥0),则x 4-2x 2-3=t 2-2t -3. y =t 2-2t -3(t ≥0)在[0,1]上递减,在[1,+∞)上递增. ∴当t =1即x =±1时,f (x )min =-4,无最大值. (2)∵函数图像的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.(3)由函数h =-x 2+2x +54,x ∈[0,52]的图像可知,函数图像的顶点就是水流喷出的最高点.此时函数取得最大值.对于函数h =-x 2+2x +54,x ∈[0,52],当x =1时,函数有最大值h max =-12+2×1+54=94.于是水流喷出的最高高度是94m.类型三 函数最值的应用例3 已知x 2-x +a >0对任意x ∈(0,+∞)恒成立,求实数a 的取值范围. 解 方法一 令y =x 2-x +a ,要使x 2-x +a >0对任意x ∈(0,+∞)恒成立,只需y min =4a -14>0,解得a >14. ∴实数a 的取值范围是(14,+∞).方法二 x 2-x +a >0可化为a >-x 2+x . 要使a >-x 2+x 对任意x ∈(0,+∞)恒成立, 只需a >(-x 2+x )max , 又(-x 2+x )max =14,∴a >14.∴实数a 的取值范围是(14,+∞).引申探究把例3中“x ∈(0,+∞)”改为“x ∈(12,+∞)”,再求a 的取值范围.解 f (x )=-x 2+x 在(12,+∞)上为减函数,∴f (x )的值域为(-∞,14),要使a >-x 2+x 对任意x ∈(12,+∞)恒成立,只需a ≥14,∴a 的取值范围是[14,+∞).反思与感悟 恒成立的不等式问题,任意x ∈D ,f (x )>a 恒成立,一般转化为最值问题:f (x )min >a来解决.任意x ∈D ,f (x )<a 恒成立⇔f (x )max <a .跟踪训练3 已知ax 2+x ≤1对任意x ∈(0,1]恒成立,求实数a 的取值范围. 解 ∵x >0,∴ax 2+x ≤1可化为a ≤1x 2-1x .要使a ≤1x 2-1x 对任意x ∈(0,1]恒成立,只需a ≤(1x 2-1x)min .设t =1x ,∵x ∈(0,1],∴t ≥1.1x 2-1x =t 2-t =(t -12)2-14. 当t =1时,(t 2-t )min =0,即x =1时,(1x 2-1x )min =0,∴a ≤0.∴a 的取值范围是(-∞,0].1.函数y =-x +1在区间[12,2]上的最大值是( )A .-12B .-1C.12D .3答案 C2.函数f (x )=1x 在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值 答案 A3.函数f (x )=x 2,x ∈[-2,1]的最大值,最小值分别为( ) A .4,1 B .4,0 C .1,0 D .以上都不对答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值,最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对答案 A5.若不等式-x +a +1≥0对一切x ∈(0,12]成立,则a 的最小值为( )A .0B .-2C .-52D .-12答案 D1.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1x .如果有最值,则最值一定是值域中的一个元素.(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得.即最大值是f (a )或f (b ),最小值是f (b )或f (a ). 2.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图像的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.课时作业一、选择题1.函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0的值域是( )A .RB .[-1,1]C .{-1,1}D .{-1,0,1}答案 D解析 该函数的函数值只有三个.2.函数g (x )=x 2-4x +3在区间(1,4]上的值域是( ) A .[-1,+∞) B .[0,3] C .(-1,3] D .[-1,3]答案 D解析 g (x )=(x -2)2-1,当x =2时,g (x )min =-1; 当x =4时,g (x )max =3,∴g (x )在(1,4]上的值域为[-1,3]. 3.下列说法正确的是( )A .若函数f (x )的值域为[a ,b ],则f (x )min =a ,f (x )max =bB .若f (x )min =a ,f (x )max =b ,则函数f (x )的值域为[a ,b ]C .若f (x )min =a ,直线y =a 不一定与f (x )的图像有交点D .若f (x )min =a ,直线y =a 一定与f (x )的图像有且仅有一个交点 答案 A解析 函数的值域为[a ,b ],则最小的函数值即f (x )min =a ,最大的函数值即f (x )max =b ,A 对;f (x )min =a ,f (x )max =b ,区间[a ,b ]上的某些元素可能不是函数值,因而[a ,b ]不一定是值域,B 错;若f (x )min =a ,由定义一定存在x 0使f (x 0)=a ,即f (x )与直线y =a 一定有交点,但不一定唯一,C ,D 都错. 4.函数y =x +2x -1( ) A .有最小值12,无最大值B .有最大值12,无最小值C .有最小值12,有最大值2D .无最大值,也无最小值 答案 A解析 ∵y =x +2x -1在定义域[12,+∞)上是增函数,∴y ≥f (12)=12,即函数最小值为12,无最大值,故选A.5.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )的最小值为-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2答案 C解析 因为f (x )=-(x -2)2+4+a ,由x ∈[0,1]可知当x =0时,f (x )取得最小值,即-4+4+a =-2,所以a =-2,所以f (x )=-(x -2)2+2,当x =1时,f (x )取得最大值为-1+2=1.故选C.6.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( ) A .[160,+∞) B .(-∞,40]C .(-∞,40]∪[160,+∞)D .(-∞,20]∪[80,+∞)答案 C解析 由于二次函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,因此函数f (x )=4x 2-kx -8在区间(5,20)上是单调函数.二次函数f (x )=4x 2-kx -8图像的对称轴方程为x =k 8,因此k 8≤5或k8≥20,所以k ≤40或k ≥160.二、填空题7.若x 2-x +1>2x +m 在[-1,1]上恒成立,则实数m 的取值范围是________. 答案 (-∞,-1)解析 由题意得x 2-3x +1-m >0在[-1,1]上恒成立. 令g (x )=x 2-3x +1-m =(x -32)2-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数,∴g (x )min =g (1)=1-3+1-m >0,∴m <-1.8.若函数y =ax +1(a >0)在区间[1,3]上的最大值为4,则a =________. 答案 1解析 ∵a >0,∴函数y =ax +1在区间[1,3]上是增函数,∵y max =3a +1=4,解得a =1. 9.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________. 答案 (1,3]解析 f (x )的对称轴为x =3, 当且仅当1<a ≤3时,f (x )min =f (a ). 10.下列函数:①y =x +|x |;②y =x -|x |;③y =x |x |;④y =x|x |.其中有最小值的函数有________个.答案 2解析 y =x +|x |=⎩⎪⎨⎪⎧0,x <0,2x ,x ≥0,y min =0.y =x -|x |=⎩⎪⎨⎪⎧0,x >0,2x ,x ≤0,无最小值.y =x |x |=⎩⎪⎨⎪⎧x 2,x >0,-x 2,x ≤0,无最小值.y =x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,y min =-1. 三、解答题11.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为多少万元?解 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,设两地销售的利润之和为y ,则 y =-x 2+21x +2(15-x )=-x 2+19x +30.由题意知⎩⎪⎨⎪⎧x ≥0,15-x ≥0.∴0≤x ≤15,且x ∈Z .当x =-192×(-1)=9.5时y 值最大,∵x ∈Z ,∴取x =9或10.当x =9时,y =120,当x =10时,y =120. 综上可知,公司获得的最大利润为120万元.12.求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值. 解 f (x )=(x -a )2-1-a 2,对称轴为x =a .(1)当a <0时,由图①可知,f (x )在区间[0,2]上是增函数,所以f (x )min =f (0)=-1,f (x )max =f (2)=3-4a .(2)当0≤a ≤1时,由图②可知,对称轴在区间[0,2]内,所以f (x )min =f (a )=-1-a 2,f (x )max =f (2)=3-4a .(3)当1<a ≤2时,由图③可知,对称轴在区间[0,2]内,所以f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1.(4)当a >2时,由图④可知,f (x )在[0,2]上为减函数,所以f (x )min =f (2)=3-4a ,f (x )max =f (0)=-1.13.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.∵x ∈[-5,5],故当x =1时,f (x )取得最小值为1,当x =-5时,f (x )取得最大值为37.(2)函数f (x )=(x +a )2+2-a 2图像的对称轴为x =-a .∵f (x )在[-5,5]上是单调的,故-a ≤-5或-a ≥5.即实数a 的取值范围是a ≤-5或a ≥5.四、探究与拓展14.若函数f (x )=⎩⎪⎨⎪⎧ (x -m )2,x ≤0,x +1x +m ,x >0的最小值为f(0),则实数m 的取值范围是() A .[-1,2] B .[-1,0]C .[1,2]D .[0,2]答案 D解析 当x ≤0时,f (x )=(x -m )2,f (x )min =f (0)=m 2,所以对称轴x =m ≥0.当x >0时,f (x )=x +1x +m ≥2x ·1x +m =2+m , 当且仅当x =1x ,即x =1时取等号,所以f (x )min =2+m .因为f (x )的最小值为m 2,所以m 2≤2+m ,所以0≤m ≤2.15.已知函数f (x )=1+x +1-x .(1)求函数f (x )的定义域和值域;(2)设F (x )=m 1-x 2+f (x ),求函数F (x )的最大值的表达式g (m ). 解 (1)要使函数f (x )有意义,需满足⎩⎪⎨⎪⎧1+x ≥0,1-x ≥0,得-1≤x ≤1. 故函数f (x )的定义域是{x |-1≤x ≤1}.∵[f (x )]2=2+21-x 2,且0≤1-x 2≤1,∴2≤[f (x )]2≤4,又∵f (x )≥0,∴2≤f (x )≤2,即函数f (x )的值域为[2,2].(2)令f (x )=t ,则t 2=2+21-x 2, 则1-x 2=12t 2-1, 故F (x )=m (12t 2-1)+t =12mt 2+t -m ,t ∈[2,2], 令h (t )=12mt 2+t -m , 则函数h (t )的图像的对称轴方程为t =-1m. ①当m >0时,-1m<0,函数y =h (t )在区间[2,2]上递增, ∴g (m )=h (2)=m +2.②当m =0时,h (t )=t ,g (m )=2;③当m <0时,-1m >0,若0<-1m ≤2, 即m ≤-22时,函数y =h (t )在区间[2,2]上递减, ∴g (m )=h (2)=2,若2<-1m ≤2,即-22<m ≤-12时, g (m )=h (-1m )=-m -12m; 若-1m >2,即-12<m <0时, 函数y =h (t )在区间[2,2]上递增,∴g (m )=h (2)=m +2.综上,g (m )=⎩⎪⎨⎪⎧ m +2,m >-12,-m -12m ,-22<m ≤-12,2,m ≤-22.。
最新北师大版高中数学必修一第二单元《函数》测试(有答案解析)(1)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R3.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为1x =-,给出下面四个结论:①24b ac >;②21a b -=;③0a b c -+=;④若0y >,则()3,1x ∈-.其中正确的是( ) A .①④B .②④C .①③D .①②③4.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .1()()2xf x =B .()lg f x x =C .()f x x =-D .1()f x x=5.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞6.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<7.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .38.已知定义在R 上的函数()f x 的图像关于y 轴对称,且当0x >时()f x 单调递减,若()()()1.360.5log 3,0.5,0.7,a f b f c f -===则,,a b c 的大小关系( )A .c a b >>B .b a c >>C .a c b >>D .c b a >>9.已知函数()f x 的定义域为R ,对任意的 12,x x <都有1212()(),f x f x x x -<-且(3)4,f =则(21)2f x x ->的解集为( )A .(2,)+∞B .(1,)+∞C .(0,)+∞D .(1,)-+∞10.函数2log xy x x=的大致图象是( ) A . B . C . D .11.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3812.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.函数()()02f x x =-的定义域为______.15.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________16.已知二次函数f (x )=ax 2﹣2x +1在区间[1,3]上是单调函数,那么实数a 的取值范围是_____.17.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.若233()1x x f x x -+=-,()2g x x =+,求函数()()y f g x =的值域________.20.对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423xx f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是______三、解答题21.已知二次函数()2f x ax bx c =++.(1)若集合(){}{}|12A x f x x ===,,且()02f =. ①求函数()f x 的解析式; ②画出函数()y f x =的图象,并讨论函数y a =和函数()y f x =的图象的公共点个数;(2)若a =1,c =0,求函数()f x 在区间[]22-,上的最小值. 22.已知函数()2h x x bx c =++是偶函数,且()20h -=,()()h x f x x=. (1)当[]1,2x ∈时,求函数()f x 的值域; (2)设()221642F x x a x x x ⎛⎫=+-- ⎪⎝⎭,[]1,2x ∈,a ∈R ,求函数()F x 的最小值()g a ;(3)对(2)中的()g a ,若不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立,求实数t 的取值范围.23.二次函数()f x 满足()01f =,且()()12f x f x x +-=.(1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求a 的取值范围. 24.已知函数1()1f x x =-,()1g x x x =+-.(1)判断当()1,x ∈+∞时函数()f x 的单调性,并用定义证明; (2)用分段函数的形式表示()g x 函数,并画出函数()g x 的图像. 25.已知函数()()kf x x x R x=+∈,且()()12f f =. (1)求k ;(2)用定义证明()f x 在区间)2,+∞上单调递增.26.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由; (3)若对任意的[]1,1x ∈-,不等式()()22333310xxxx f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.A解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.3.A解析:A 【分析】由抛物线与x 轴有两个交点,可判定①正确;由对称轴方程为12bx a=-=-,可判定②不正确;由()10f ->,可判定③不正确;由根据函数的对称性和(3)0f -=,可判定④正确. 【详解】由函数2y ax bx c =++的图象,可得函数的图象开口向下,与x 轴有两个交点,所以0a <,240b ac ∆=->,所以①正确; 由对称轴方程为12bx a=-=-,可得2a b =,所以20a b -=,所以②不正确; 由()10f ->,可得0a b c -+>,所以③不正确; 由图象可得(3)0f -=,根据函数的对称性,可得()10f =, 所以0y >,可得31x -<<,所以④正确. 故选:A. 【点睛】识别二次函数的图象应用学会“三看”:一看符号:看二次项系数的符号,它确定二次函数图象的开口方向; 二看对称轴:看对称轴和最值,它确定二次函数图象的具体位置;三看特殊点:看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点、函数图象的最高点或最低点等.4.C解析:C 【分析】根据函数的单调性和奇偶性,排除选项得到答案. 【详解】A. 1()()2xf x =,非奇非偶函数,排除;B. ()lg ||lg ||()f x x x f x -=-==,函数为偶函数,排除;C. ()()f x x f x -==-,函数为奇函数,且单调递减,正确;D. 1()()f x f x x-=-=-,函数为奇函数,在[1,0)-和(0,1] 单调递减,排除. 故选:C 【点睛】熟悉函数的单调性和奇偶性是解题关键.5.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.6.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221xf x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.7.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.8.A解析:A 【分析】函数()f x 是偶函数,判断出自变量的大小,利用函数的单调性比较大小得出答案. 【详解】函数()f x 的图像关于y 轴对称, ∴函数()f x 为偶函数, ∵0.50.5log 3log 10<=,∴()()120.52log 3log 3log 3f f f ⎛⎫== ⎪⎝⎭,∴2221log 2log 3log 42=<<=, 1.3 1.30.522-=>,600.71<<. ∵当0x >时,()f x 单调递减,∴c a b >>, 故选:A 【点睛】本题考查函数性质的综合应用,考查函数的单调性和奇偶性,考查指数和对数的单调性,属于中档题.9.A解析:A 【分析】由题可得[][]1122()()0f x x f x x ---<,可构造函数()()F x f x x =-是R 上的增函数,原不等式可转化为()()213F x F ->,再结合增函数的性质可求出答案. 【详解】 由题意,[][]121211221122()()()()()()0f x f x x x f x x f x x f x x f x x -<-⇔-<-⇔---<, 因为12,R x x ∈且12,x x <所以函数()()F x f x x =-是R 上的增函数.()3(3)31F f =-=,因为(21)2(21)(21)1f x x f x x ->⇔--->,所以()()213F x F ->, 则213x ->,解得2x >. 故选:A. 【点睛】本题考查了函数的单调性的应用,构造函数()()F x f x x =-是解决本题的关键,属于中档题.10.D解析:D 【解析】()222log ,0log log ,0x x x y x x x x >⎧==⎨--<⎩,所以当0x >时,函数22log log x y x x x ==为增函数,当0x <时,函数()22log log xy x x x==--也为增函数,故选D. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.A解析:A【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果. 【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩, ∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.14.且【分析】由中根式内部的代数式大于等于00指数幂的底数不为0联立不等式组求解【详解】由解得且x≠2∴函数的定义域是】且即答案为】且【点睛】本题考查函数的定义域及其求法是基础题解析:{|1x x ≥-且}2x ≠ 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】 由1020x x +≥⎧⎨-≠⎩ ,解得1x ≥-且x≠2.∴函数()()02f x x =-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠ 【点睛】本题考查函数的定义域及其求法,是基础题.15.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩ 【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩. 故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩.【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.16.【分析】根据二次函数的性质列不等式解不等式求得的取值范围【详解】由于为二次函数所以其对称轴为要使在区间上是单调函数则需其对称轴在区间两侧即或解得或或所以的取值范围是故答案为:【点睛】本小题主要考查二解析:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦【分析】根据二次函数的性质列不等式,解不等式求得a 的取值范围. 【详解】由于()f x 为二次函数,所以0a ≠,其对称轴为1x a=, 要使()f x 在区间[]1,3上是单调函数,则需其对称轴1x a=在区间[]1,3两侧, 即11a≤或13a ≥,解得0a <,或1a ≥,或103a <≤, 所以a 的取值范围是()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦故答案为:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦.【点睛】本小题主要考查二次函数的单调性,属于中档题.17.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解. 【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值,此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==,所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩, 所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭. 故答案为:198. 【点睛】本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.18.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域. 【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-. 【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.19.【分析】将代入得到的解析式然后利用换元法求出值域【详解】要使函数成立则即将函数代入得:令则所以又或故函数的值域为故答案为:【点睛】求解复合函数的值域的一般方法如下:(1)若函数的形式比较简单可先将的 解析:(][),31,-∞-+∞【分析】将()2g x x =+代入,得到()()y f g x =的解析式,然后利用换元法求出值域. 【详解】要使函数()()y f g x =成立,则21x +≠,即1x ≠-,将函数()2g x x =+代入233()1x x f x x -+=-得: ()()()()222323111x x x x y f g x x x +-++++===++,令1x t ,则1x t =-,所以22(1)111t t t t y t t t t-+-+===-+,又111t t -+≥或113t t -+≤-,故函数()()f g x 的值域为(][),31,-∞-+∞.故答案为:(][),31,-∞-+∞.【点睛】求解复合函数()()f g x 的值域的一般方法如下:(1)若函数()g x 的形式比较简单,可先将()()f g x 的解析式表示出来,然后设法求出其值域,解答时注意定义域;(2)采用换元法,令()g x t =,计算()g x 的值域即t 的取值范围,然后计算()f t 的值域.20.【解析】∵局部奇函数∴存在实数满足即令则即在上有解再令则在上有解函数的对称轴为分类讨论:①当时∴解得;②当时解得综合①②可知点睛:新定义主要是指即时定义新概念新公式新定理新法则新运算五种然后根据此新解析:1m ≤【解析】∵()f x “局部奇函数”,∴存在实数x 满足()()f x f x -=-,即2242234223x x x x m m m m ---⨯+-=-+⨯-+,令2(0)xt t =>, 则222112()260t m t m t t +-++-=, 即2211()2()280t m t m tt+-++-=在(0,)t ∈+∞上有解,再令1(2)h t h t=+≥,则22()2280g h h mh m =-+-=在[2,)h ∈+∞上有解,函数的对称轴为h m =,分类讨论:①当2m ≥时,()()g h g m ≥,∴222()2280g m m m m =-+-≤,解得2m ≤≤ ②当2m <时,()()2g h g ≥,2(2)44280g m m ∴=-+-≤,解得12m -≤<. 综合①②,可知1m ≤点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、解答题21.(1)①2()22f x x x =-+,②见解析;(2)2min42,4(),44442,4b b bf x b b b -≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩. 【分析】(1)①先求得2c =;{1A =,2}说明()0f x x -=两根为1,2.利用韦达定理求a ,b ,从而可得解析式;②写成分段函数形式,再利用二次函数图象与性质求解.(2)根据对称轴位置,分三种情况讨论,分别利用二次函数的性质求解即可. 【详解】(1)①(0)2f =,2c ∴={1A =,2},2(1)20ax b x ∴+-+=有两根为1,2.由韦达定理得,212112 aba⎧=⨯⎪⎪⎨-⎪=+⎪⎩,∴12ab=⎧⎨=-⎩2()22f x x x∴=-+②函数()2222,022,0x x xy f xx x x⎧-+≥==⎨-+<⎩,函数()y f x=的图象如图,同一坐标系内画出函数y a=的图象,由图可知,当1a<时,函数y a=和函数()y f x=的图象的公共点个数为0;当1a=或2a>时,函数y a=和函数()y f x=的图象的公共点个数为2;当12a<<时,函数y a=和函数()y f x=的图象的公共点个数为4;当2a=时,函数y a=和函数()y f x=的图象的公共点个数为3;(2)a=1,c=0,函数2()f x x bx=+,当2,42bb-≤-≥时,()min()242f x f b=-=-;当22,442bb-<-<-<<时,2min()24b bf x f⎛⎫=-=-⎪⎝⎭;当2,42bb-≥≤-时,()min()242f x f b==+;综上,2min42,4(),44442,4b bbf x bb b-≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩【点睛】方法点睛:二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.22.(1)[]3,0-;(2)()()2617,(3)8,308,(0)a a g a a a a +<-⎧⎪=--≤≤⎨⎪>⎩;(3)(4,)-+∞.【分析】(1)函数()2h x x bx c =++是偶函数,则0b = ,由()20h -=得出答案.(2)()24428F x x a x x x ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭,设4t x x =-,当[]1,2x ∈时,由(1)可知,3,0t ,即求228y t at =-+ ,在3,0t上的最小值,由对称轴和区间的位置关系进行分类讨论得出答案.(3)当()3,0a ∈-时,()28g a a =-,则22824a a at ->-++对于任意的()3,0a ∈-恒成立,即24a at +>对于任意的()3,0a ∈-恒成立,所以4a t a+<对于任意的()3,0a ∈-恒成立,从而可得出答案. 【详解】(1)函数()2h x x bx c =++是偶函数,则0b =()240h c -=+=,4c =- ,所以()24h x x =-则()244x f x x x x-==-当[]1,2x ∈时,()4f x x x=-单调递增. 所以()()()3120f f x f -==≤≤=所以当[]1,2x ∈时,函数()f x 的值域为[]3,0-(2)()22216444228F x x a x x a x x x x x ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 设4t x x=-,当[]1,2x ∈时,由(1)可知,3,0t228y t at =-+ ,3,0t,其对称轴方程为t a =当3a <-时,228y t at =-+在3,0t 上单调递增,则其最小值为176a +当0a >时,228y t at =-+在3,0t上单调递减,则其最小值为8当30a -≤≤时,228y t at =-+在[]3,a -上单减,在[],0a 上单增, 所以当x a =时,则其函数的最小值为28a -+所以2617(3)()8,(30)8(0)a a g a a a a +<-⎧⎪=--≤≤⎨⎪>⎩,,(3)若不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立当()3,0a ∈-时,()28g a a =-,则22824a a at ->-++对于任意的()3,0a ∈-恒成立即24a at +>对于任意的()3,0a ∈-恒成立 所以4a t a+<对于任意的()3,0a ∈-恒成立,由函数4y a a =+在()3,2--上单调递增,在()2,0-上单调递减. 所以当2x =-时,4y a a=+有最大值4- ,所以4t >- 不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立,实数t 的取值范围是()4+-∞,【点睛】关键点睛:本题考查求二次函数的解析式和分类讨论求二次函数的最小值以及分离参数求差参数的范围,解答本题的关键是由二次函数的对称轴方程与区间的相对位置关系讨论求函数的最小值,和分离参数法求参数的范围,即24a at +>对于任意的()3,0a ∈-恒成立 所以4a t a+<对于任意的()3,0a ∈-恒成立,属于中档题. 23.(1)()21f x x x =-+;(2)11,24⎛⎫- ⎪⎝⎭. 【分析】(1)设()2f x mx bx c =++,由()01f =可求得c 的值,由()()12f x f x x +-=可得出关于实数m 、b 的方程组,由此可解得函数()f x 的解析式; (2)求得函数()f x 的对称轴为直线12x =,根据题意可得出()12,12a a ∈+,进而可求得实数a 的取值范围. 【详解】(1)假设()2f x mx bx c =++,()01f =,则1c =,()2f x mx bx c =++,又()()12f x f x x +-=,22mx m b x ∴++=,220m m b =⎧∴⎨+=⎩,11m b =⎧∴⎨=-⎩,因此,()21f x x x =-+; (2)二次函数()f x 的图象开口向上,对称轴为直线12x =,由于函数()f x 在区间[]2,1a a +上 不单调,则()12,12a a ∈+,即1212a a <<+,解得1124a -<<. 因此,实数a 的取值范围是11,24⎛⎫- ⎪⎝⎭. 【点睛】易错点点睛:在利用函数在区间上的单调性求参数的取值范围时,不要忽略了区间的左端点值比右端点值小这一隐含条件.24.(1)函数()f x 在()1,+∞为单调递减,证明见解析;(2)21,0()1,0x x g x x -≥⎧=⎨-<⎩,图象答案见解析. 【分析】(1)利用函数单调性定义:任意()12121,()f x x f x x <><成立,即可判定()f x 在()1,+∞是单调递减;(2)讨论0,0x x ><,去掉x 的绝对值即可得到函数()g x 的解析式. 【详解】解:(1)函数()f x 在()1,+∞为单调递减. 证明如下:任取121x x <<, 则()()()()21121212111111x x f x f x x x x x --=-=----, ∵121x x <<,110x ,210x ,210x x ->.()()120f x f x ->即()()12f x f x >,所以()f x 在()1,+∞上单调递减. (2)()1g x x x =+-所以当0x <时,()111g x x x x x =+-=--=-; 所以当0x ≥时,()1121g x x x x x x =+-=+-=-;21,0()1,0x x g x x -≥⎧∴=⎨-<⎩.函数()y g x =图形如下:【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 25.(1)2;(2)证明见解析. 【分析】(1)由题得122kk +=+,解方程即得解; (2)利用定义法证明函数在区间)2,+∞上单调递增. 【详解】(1)由()()12f f =得122k k +=+, 解得2k =,所以()2f x x x=+ (2)212x x ∀>>()()21212122f x f x x x x x ⎛⎫⎛⎫-=+-+ ⎪ ⎪⎝⎭⎝⎭()()()1221212112222x x x x x x x x x x -⎛⎫=-+-=-+ ⎪⎝⎭()()1221122x x x x x x -=-,∵212x x >>,∴210x x ->,212x x >,∴()()210f x f x ->,即()()21f x f x >,所以函数()f x在区间)+∞上单调递增. 【点睛】方法点睛:用定义法判断函数的单调性的一般步骤:①取值,设12,x x D ∈,且12x x <;②作差,求12()()f x f x -;③变形(合并同类项、通分、分解因式、配方等);④判断12()()f x f x -的正负符号;⑤根据函数单调性的定义下结论.26.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100x x x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围.【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >.(3)由(2)得()223333100x x x x m --+≥+->恒成立, 令10332,3x x t -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-, 原不等式可化为:22100t mt -≥->,由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8t t +≥=8t t=,即t =时等号成立,所以m ≤. 由100mt ->恒成立可得:max 10m t ⎛⎫> ⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤.【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值.。
数学(北师大版)必修一教学设计:第二章 函数 复习 Word版含答案

教学设计本章复习整体设计教学分析本节课是对第二章的基本知识和方法的总结和归纳,从整体上来把握本章,使学生的基本知识系统化和网络化,基本方法条理化.本章内容,用集合定义函数,将函数拓展为映射,层层深入,环环相扣,组成了一个完整的整体.三维目标通过总结和归纳函数的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.重点难点教学重点:①函数的基本知识.②含有字母问题的研究.③抽象函数的理解.教学难点:①分类讨论的标准划分.②抽象函数的理解.课时安排1课时教学过程导入新课函数的概念和性质以及二次函数是高考的必考内容之一,为了系统掌握本章知识,教师直接点出课题.推进新课新知探究提出问题①本章内容分为几部分?②画出本章的知识结构图.讨论结果:①第1~3节是函数的概念和性质;第4,5节是基本初等函数的性质,可以分为两部分.(答案不唯一)②本章的知识结构图,如图1所示.(答案不唯一)图1应用示例思路1例1 求函数y =3xx 2+4的最大值和最小值.分析:把变量y 看成常数,则函数的解析式可以整理成必有实数根的关于x 的方程,利用判别式的符号得关于y 的不等式,解不等式得y 的取值范围,从而得函数的最值.解:(判别式法)由y =3xx 2+4得yx 2-3x +4y =0,∵x ∈R ,∴关于x 的方程yx 2-3x +4y =0必有实数根. 当y =0时,则x =0,故y =0是一个函数值;当y ≠0时,则关于x 的方程yx 2-3x +4y =0是一元二次方程, 则有Δ=(-3)2-4×4y 2≥0,∴0<y 2≤916.∴-34≤y <0或0<y ≤34,综上所得,-34≤y ≤34.∴函数y =3x x 2+4的最小值是-34,最大值是34.点评:形如函数y =ax 2+bx +cdx 2+ex +f (d ≠0),当函数的定义域是R (此时e 2-4df <0)时,常用判别式法求最值,其步骤是:①把y 看成常数,将函数解析式整理为关于x 的方程的形式mx 2+nx +k =0;②分类讨论m =0是否符合题意;③当m ≠0时,关于x 的方程mx 2+nx +k=0中有x ∈R ,则此一元二次方程必有实数根,得n 2-4mk ≥0即关于y 的不等式,解不等式组⎩⎨⎧n 2-4mk ≥0,m ≠0.此不等式组的解集与②中y 的值取并集得函数的值域,从而得函数的最大值和最小值.例2 函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( ).A .有最小值B .有最大值C .是减函数D .是增函数解析:函数f (x )=x 2-2ax +a 的对称轴是直线x =a ,由于函数f (x )在开区间(-∞,1)上有最小值,所以直线x =a 位于区间(-∞,1)内,即a <1.g (x )=f (x )x =x +ax -2,下面用定义法判断函数g (x )在区间(1,+∞)上的单调性.设1<x 1<x 2,则 g (x 1)-g (x 2)=⎝⎛⎭⎫x 1+a x 1-2-⎝⎛⎭⎫x 2+ax 2-2 =(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2=(x 1-x 2)x 1x 2-a x 1x 2,∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1>0. 又∵a <1,∴x 1x 2>a .∴x 1x 2-a >0. ∴g (x 1)-g (x 2)<0.∴g (x 1)<g (x 2).∴函数g (x )在区间(1,+∞)上是增函数,函数g (x )在区间(1,+∞)上没有最值.故选D.答案:D点评:定义法判断函数f (x )的单调性步骤是:①在所给区间上任取两个变量x 1、x 2;②比较f (x 1)与f (x 2)的大小,通常利用作差比较它们的大小,先作差,后将差变形,变形的手段是通分、分解因式,变形的结果常是完全平方加上一个常数或因式的积(商)等;③由②中差的符号确定函数的单调性.注意:函数f(x)在开区间D上是单调函数,则f(x)在开区间D上没有最大值,也没有最小值.例3 求函数f(x)=x2-1的单调区间.分析:函数f(x)是复合函数,利用口诀“同增异减”来求单调区间.解:函数的定义域是(-∞,-1]∪[1,+∞).设y=u,u=x2-1,当x≥0时,u=x2-1是增函数,y=u也是增函数,又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f (x)=x2-1在[1,+∞)上是增函数.当x≤0时,u=x2-1是减函数,y=u也是增函数,又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f(x)=x2-1在(-∞,-1]上是减函数.即函数f(x)的单调递增区间是[1,+∞),单调递减区间是(-∞,-1].点评:复合函数是指由若干个函数复合而成的函数,它的单调性与构成它的函数的单调性有密切联系,其单调性的规律为:“同增异减”,即复合函数y=f[g(x)],如果y=f(u),u =g(x)有相同的单调性时,函数y=f[g(x)]为增函数,如果具有相异(即相反)的单调性,则函数y=f这[g(x)]为减函数.讨论复合函数单调性的步骤是:①求复合函数的定义域;②把复合函数分解成若干个常见的基本初等函数并分别判断其单调性;③依据复合函数的单调性规律口诀:“同增异减”,判断出复合函数的单调性或写出其单调区间.注意:本题如果忽视函数的定义域,会错误地得到单调递增区间是[0,+∞),单调递减区间是(-∞,0].其避免方法是讨论函数的性质要遵守定义域优先的原则.思路2例1 某商场以100元/件的价格购进一批衬衣,以高于进价的价格出售,销售有淡季与旺季之分,通过市场调查发现:①销售量r(x)(件)与衬衣标价x(元/件)在销售旺季近似地符合函数关系:r(x)=kx+b1;在销售淡季近似地符合函数关系:r(x)=kx+b2,其中k<0,b1>0,b2>0且k、b1、b2为常数;②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中r(x)=0时的标价x为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题: (1)填写表格中空格的内容:(2)在销售淡季,该商场要获得最大销售利润,衬衣标价应定为多少元才合适? 分析:(1)销售总利润y =销售量r (x )×每件利润,每件利润=标价-进价;(2)转化为求二次函数y =f (x )的最大值,由条件②③求出b 2与k 的关系,应用二次函数的知识求解.解:(1)在销售旺季,y =(kx +b 1) (x -100)=kx 2-(100k -b 1)x -100b 1; 在销售淡季,y =(kx +b 2)(x -100)=kx 2-(100k -b 2)x -100b 2, 故表格为:如下表所示.(2)∵k <0,b 1>0,b 2>0, ∴-b 12k >0,-b 22k >0.∴50-b 12k >0,50-b 22k>0.则在销售旺季,y =kx 2-(100k -b 1)x -100b 1,∴当x =100k -b 12k =50-b 12k时,利润y 取最大值;在销售淡季,y =kx 2-(100k -b 2)x -100b 2,∴当x =100k -b 22k =50-b 22k 时,利润y 取最大值.由②知,在销售旺季,商场以140元/件价格出售时,能获得最大利润. 因此在销售旺季,当标价x =50-b 12k =140时,利润y 取最大值.∴b 1=180k .∴此时销售量为r (x )=kx -180k .令kx -180k =0,得x =180, 即在销售旺季,衬衣的“临界价格”为180元/件.∴由③知,在销售淡季,衬衣的“临界价格”为180×23=120元/件.可见在销售淡季,当标价x =120元/件时,销售量为r (x )=kx +b 2=0. ∴120k +b 2=0. ∴b 2k=-120.∴在销售淡季,当标价x =50-b 22k =50+60=110元/件时,利润y 取得最大值.即在销售淡季,商场要获得最大利润,应将衬衣的标价定为110元/件合适.点评:在应用问题中,需解决利润最大、成本最少、费用最少等问题时,常常通过建立数学模型,转化为求函数最值的问题.其步骤是:①阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题;②引进数学符号,建立数学模型.如果条件中没有设未知数,那么要设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据问题已知条件,运用已掌握的数学知识及其他相关知识建立关系式,在此基础上将实际问题转化为求函数最值问题,即所谓建立数学模型;③利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果;④将所得结果再转译成具体问题的答案.例2 求函数y =|x +2|-|x -2|的最小值.分析:思路1:画出函数的图像,利用函数最小值的几何意义,写出函数的最小值;思路2:利用绝对值的几何意义,转化为数轴上的几何问题:数轴上到±2两点的距离和的最小值.解:方法1(图像法):y =|x +2|-|x -2|=⎩⎪⎨⎪⎧ -4,2x ,4,x ≤-2,-2<x <2,x ≥2.其图像如图2所示.图2由图像得,函数的最小值是-4,最大值是4.方法2(数形结合):函数的解析式y =|x +2|-|x -2|的几何意义是:y 是数轴上任意一点P 到±2的对应点A 、B 的距离的差,即y =|P A |-|PB |,如图3所示,图3观察数轴可得-|AB |≤|P A |-|PB |≤|AB |, 即函数y =|x +2|-|x -2|有最小值-4,最大值4. 点评:求函数最值的方法:图像法:如果能够画出函数的图像,那么可以依据函数最值的几何意义,借助图像写出最值.其步骤是:①画函数的图像;②观察函数的图像,找出图像的最高点和最低点,并确定它们的纵坐标;③由最高点和最低点的纵坐标写出函数的最值.数形结合:如果函数的解析式含有绝对值或根号,那么能将函数的解析式赋予几何意义,结合图形利用其几何意义求最值.其步骤是:①对函数的解析式赋予几何意义;②将函数的最值转化为几何问题;③应用几何知识求最值.例3 定义在(-1,1)上的函数f (x )满足:对任意x ,y ∈(-1,1),都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy .(1)求证:函数f (x )是奇函数;(2)若当x ∈(-1,0)时,有f (x )>0,求证:f (x )在(-1,1)上是减函数.分析:(1)定义法证明,利用赋值法获得f (0)的值进而取x =-y 是解题关键;(2)定义法证明,其中判定x 2-x 11-x 1x 2的范围是关键.证明:(1)函数f (x )定义域是(-1,1), 由f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,令x =y =0,得f (0)+f (0)=f ⎝ ⎛⎭⎪⎫0+01+0,∴f (0)=0.令y =-x ,得f (x )+f (-x )=f ⎝ ⎛⎭⎪⎫x -x 1-x 2=f (0)=0,∴f (-x )=-f (x ). ∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减,令0<x 1<x 2<1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f ⎝ ⎛⎭⎪⎫x 1-x 21-x 1x 2=f ⎝ ⎛⎭⎪⎫-x 2-x 11-x 1x 2,∵0<x 1<x 2<1, ∴x 2-x 1>0,1-x 1x 2>0. ∴x 2-x 11-x 1x 2>0.又(x 2-x 1)-(1-x 1x 2)=(x 2-1)(x 1+1)<0, ∴0<x 2-x 1<1-x 1x 2.∴-1<-x 2-x 11-x 1x 2<0,由题意知f ⎝ ⎛⎭⎪⎫-x 2-x 11-x 1x 2>0,∴f (x 1)>f (x 2).∴f (x )在(0,1)上为减函数. 又f (x )为奇函数,∴f (x )在(-1,1)上也是减函数.点评:对于抽象函数的单调性和奇偶性问题,必用单调性和奇偶性的定义来解决,即定义法是解决抽象函数单调性和奇偶性问题的通法;判断抽象函数的奇偶性与单调性时,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.知能训练1.已知二次函数f (x )满足条件f (0)=1和f (x +1)-f (x )=2x . (1)求f (x );(2)求f (x )在区间[-1,1]上的最大值和最小值.分析:(1)由于已知f (x )是二次函数,用待定系数法求f (x );(2)结合二次函数的图像,写出最值.解:(1)设f (x )=ax 2+bx +c , 由f (0)=1,可知c =1.而f (x +1)-f (x )=[a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +a +b . 由f (x +1)-f (x )=2x ,可得2a =2,a +b =0. 因而a =1,b =-1.故f (x )=x 2-x +1. (2)∵f (x )=x 2-x +1=⎝⎛⎭⎫x -122+34, ∴当x ∈[-1,1]时,f (x )的最小值是f ⎝⎛⎭⎫12=34,f (x )的最大值是f (-1)=3.2.已知函数f (x )对任意x 、y ∈R 都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2.(1)判断函数f (x )的奇偶性.(2)当x ∈[-3,3]时,函数f (x )是否有最值?如果有,求出最值;如果没有,请说明理由. 分析:本题中的函数f (x )是抽象函数,则用定义法判断f (x )的奇偶性和单调性.(1)首先利用赋值法求得f (0),再利用定义法判断f (x )的奇偶性;(2)利用定义法判断函数f (x )在[-3,3]内的单调性,利用单调法求出最值.解:(1)∵f (x +y )=f (x )+f (y ), ∴f (0)=f (0)+f (0).∴f (0)=0.而0=x-x,因此0=f(0)=f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0⇒f(-x)=-f(x).所以函数f(x)为奇函数.(2)设x1<x2,由f(x+y)=f(x)+f(y),知f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1),∵x1<x2,∴x2-x1>0.又当x>0时,f(x)<0,∴f(x2-x1)=f(x2)-f(x1)<0.∴f(x2)<f(x1).∴f(x1)>f(x2).函数f(x)是定义域上的减函数,当x∈[-3,3]时,函数f(x)有最值.当x=-3时,函数有最大值f(-3);当x=3时,函数有最小值f(3).f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.∴当x=-3时,函数有最大值6;当x=3时,函数有最小值-6.拓展提升问题:某人定制了一批地砖.每块地砖(如图4所示)是边长为0.4米的正方形ABCD,点E,F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格之比依次为3∶2∶1.若将此种地砖按图5所示的形式铺设,能使中间的深色阴影部分成四边形EFGH.(1)求证:四边形EFGH是正方形;(2)E,F在什么位置时,定制这批地砖所需的材料费用最省?图4 图5分析:(1)由于四块地砖拼出了四边形EFGH,只需证明△CFE,△CFG,△CGH,△CEH 为等腰直角三角形即可;(2)建立数学模型,转化为数学问题.设CE=x,每块地砖的费用为W,求出函数W=f(x)的解析式,转化为讨论求函数的最小值问题.解:(1)图5可以看成是由四块图4所示地砖绕点C按顺时针旋转90°后得到,则有CE =CF,∠ECF=90°,∴△CFE为等腰直角三角形.同理可得△CFG 、△CGH 、△CEH 为等腰直角三角形, ∴四边形EFGH 是正方形.(2)设CE =x ,则BE =0.4-x ,每块地砖的费用为W ,设制成△CFE 、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a,2a ,a (元),W =12x 2·3a +12×0.4×(0.4-x )×2a +[0.16-12x 2-12×0.4×(0.4-x )]a=a (x 2-0.2x +0.24)=a [(x -0.1)2+0.23](0<x <0.4).由于a >0,则当x =0.1时,W 有最小值,即总费用为最省, 即当CE =CF =0.1米时,总费用最省.课堂小结本节课总结了第二章的基本知识并形成知识网络,归纳了常见的解题方法.作业已知函数y =f (x )的定义域是R ,且对任意a 、b ∈R ,都有f (a +b )=f (a )+f (b ),并且当x >0时,f (x )<0恒成立,f (1)=-1.(1)证明函数y =f (x )是R 上的减函数; (2)证明函数y =f (x )是奇函数;(3)求函数y =f (x )在[m ,n ](m ,n ∈Z ,m <n )的值域.分析:(1)利用定义法证明函数的单调性;(2)定义法证明函数的奇偶性,只需证明f (-x )=-f (x );(3)利用单调法求函数的的值域.解:(1)设x 1,x 2∈R ,且x 1<x 2,由题意得f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1). ∴f (x 1)-f (x 2)=-f (x 2-x 1). ∵x 1<x 2,∴x 2-x 1>0.又∵当x >0时,f (x )<0恒成立, ∴f (x 2-x 1)<0.∴f (x 1)-f (x 2)>0. ∴函数y =f (x )是R 上的减函数.(2)令a =x ,b =-x ,得f (x -x )=f (x )+f (-x ),即f (x )+f (-x )=f (0). 令a =b =0,得f (0)=f (0)+f (0), ∴f (0)=0.∴f (x )+f (-x )=0. ∴函数y =f (x )是奇函数.(3)由(1)得函数y =f (x )在[m ,n ]上是减函数,则有f (n )≤f (x )≤f (m ). ∵对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),∴f (m )=f [(m -1)+1]=f (m -1)+f (1)=f (m -2)+2f (1)=…=mf (1)=-m ,同理有f(n)=-n.∴函数y=f(x)在[m,n](m,n∈Z,m<n)上的值域是[-n,-m].设计感想本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是为了满足高考的要求,对教材内容适当拓展,例如关于函数值域的求法,教材中没有专题学习,本节课对此进行了归纳和总结.备课资料知识点总结——函数概念及性质1.函数的概念:设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫作自变量,x的取值范围A叫作函数的定义域;与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的值域.如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:分式的分母不等于零;偶次方根的被开方数不小于零;对数式的真数必须大于零;如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;实际问题中的函数的定义域还要保证实际问题有意义.求出不等式组的解集即为函数的定义域.2.构成函数的三要素:定义域、对应关系和值域构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备).函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域;应熟练掌握一次函数、二次函数,它是求解复杂函数值域的基础;求函数值域的常用方法有:直接法、换元法、配方法、判别式法、单调性法等.3.函数图像知识归纳定义:在平面直角坐标系中,以函数y=f(x)(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫作函数y=f(x)(x∈A)的图像.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x,y为坐标的点(x,y),均在C 上.即记为C={P(x,y)|y=f(x),x∈A}.图像C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行于y轴的直线最多只有一个交点的若干条曲线或离散点组成.画法:①描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.②图像变换法:常用变换方法有三种,即平移变换、伸缩变换和对称变换作用:直观地看出函数的性质;利用数形结合的方法分析解题的思路;提高解题的速度;发现解题中的错误.4.区间的概念区间的分类:开区间、闭区间、半开半闭区间;无穷区间;区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射,记作“f:A→B”.给定一个集合A到B的映射,如果a ∈A,b∈B,且元素a和元素b对应,那么,我们把元素b叫作元素a的像,元素a叫作元素b的原像.说明:函数是一种特殊的映射,映射是一种特殊的对应,(1)集合A、B及对应法则f是确定的;(2)对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;(3)对于映射f:A→B来说,则应满足:①集合A中的每一个元素,在集合B中都有像,并且像是唯一的;②集合A中不同的元素,在集合B中对应的像可以是同一个;③不要求集合B中的每一个元素在集合A中都有原像.6.函数表示法函数图像既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图像的依据;解析法:必须注明函数的定义域;图像法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.解析法便于算出函数值;列表法便于查出函数值;图像法便于量出函数值.分段函数:在定义域的不同部分上有不同的解析表达式的函数,在不同的范围里求函数值时必须把自变量代入相应的表达式.分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集.复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f,g的复合函数.7.函数单调性增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D 称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2).图像的特点:如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图像从左到右是上升的,减函数的图像从左到右是下降的.函数单调区间与单调性的判定方法:定义法,任取x1,x2∈D,且x1<x2;作差f(x1)-f(x2);变形(通常是因式分解和配方);定号〔即判断差f(x1)-f(x2)的正负〕;下结论〔指出函数f(x)在给定的区间D上的单调性〕.图像法(从图像上看升降);复合函数的单调性,复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫作偶函数.奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫作奇函数.注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).具有奇偶性的函数的图像的特征:偶函数的图像关于y轴对称;奇函数的图像关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称再根据定义判定;有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)=±1来判定,利用定理,或借助函数的图像判定.f(-x)9.函数的解析表达式函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x).10.函数最大(小)值方法利用二次函数的性质(配方法);利用图像;利用函数单调性;如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减,则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增,则函数y=f(x)在x=b处有最小值f(b).(设计者:张新军)。
高中数学 第二章 函数 2.3 函数的单调性课时作业 北师大版必修1(2021年最新整理)

2016-2017学年高中数学第二章函数2.3 函数的单调性课时作业北师大版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章函数2.3 函数的单调性课时作业北师大版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章函数2.3 函数的单调性课时作业北师大版必修1的全部内容。
3 函数的单调性时间:45分钟满分:80分班级________ 姓名________ 分数________一、选择题:(每小题5分,共5×6=30分)1.下列函数中,在区间(0,2)上为增函数的是( )A.y=3-x B.y=x2+1C.y=-x2 D.y=x2-2x-3答案:B解析:(排除法)选项A,y=3-x在R上是减函数;选项C,y=-x2在(0,+∞)上是减函数,选项D,y=x2-2x-3=(x-1)2-4,当x≤1时y是x的减函数,当x≥1时,y是x的增函数,而在(0,2)上并不严格单调.故选B。
2.如图是函数y=f(x)的图象,则此函数的单调递减区间的个数是( )A.1 B.2C.3 D.4答案:B解析:由图象,可知函数y=f(x)的单调递减区间有2个.故选B。
3.下列函数中,在区间(0,k)(k∈(0,+∞))上单调递增的是( )A.y=4-3x B.y=2x2+1C.y=-5x2 D.y=x2-2x+2答案:B解析:因为y=4-3x在(0,k)上单调递减,故A不满足题意;y=2x2+1在(0,+∞)上单调递增,则在区间(0,k)(k∈(0,+∞))上也单调递增,故B满足题意;y=-5x2在(0,k)上单调递减,故C不满足题意;y=x2-2x+2=(x-1)2+1在(0,1)上单调递减,在(1,+∞)上单调递增,故D不满足题意.故选B。
北师大版高中数学必修一第二章《函数》word同步试卷.doc

第二章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A、B都是坐标平面内的点集{(x,y)|x∈R,y∈R},映射f:A→B使集合A中的元素(x,y)映射成集合B中的元素(x+3y,xy),则在f下,像(2,4)的原像为()3113A.(3,1)B.(2,2)或(2,2)3113C.(2,-2)或(-2,2D.(1,3)132.(2011·陕西文)函数y=x的图像是()3.(2012·广州高一检测)在下列四组函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x-1,g(x)=x-1x-1⎧⎪x+1,x≥-1B.f(x)=|x+1|,g(x)=⎨⎪⎩-x-1,x<-1C.f(x)=x+2,x∈R,g(x)=x+2,x∈ZD.f(x)=x2,g(x)=x|x|x2+1x2-14.函数f(x)= ,则1 2等于( )A .1B .-13 3C.5 D .-55.(2012· 桂林高一检测)若对于任意实数x 总有f(-x)=f(x),且f(x)在区间 (-∞,-1]上是增函数,则()3A .f(-2)<f(-1)<f(2)3B .f(-1)<f(-2)<f(2)3C .f(2)<f(-1)<f(-2)3D .f(2)<f(-2)<f(-1)6.函数f(x)=x 2+2ax +a 2-2a 在区间(-∞,3]上单调递减,则实数a 的取值范围是()A .(-∞,-3]B .[-3,+∞)C .(-∞,3]D .[3,+∞)7.若函数f(x)=2x +1,则f[f(x)]等于()A .4x +3B .4x +4C .(2x +1)2D .2x 2+28.如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是()A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5A .-150<a<2⎪的定义域为________.9.(2012· 济南高一检测)若函数y =kx +5kx2+4kx +3的定义域为R ,则实数k 的取值范围为()3 3A .(0,4)B .(4,+∞)3C .(-∞,0)D .[0,4)10.已知f(x)=-4x 2+4ax -4a -a 2(a<0)在区间[0,1]上有最大值-5,则实数a 等于()B .-45C .-2D .-5第Ⅱ卷(非选择题 共 100 分)二、填空题(本大题共 5 个小题,每小题 5 分,共 25 分,把答案填在题中横线上)11.函数f(x)的定义域为[0,1],则函数g (x)=f(x -a)+f(x +a)⎛⎝1⎫ ⎭12.(2011·浙江理)若函数f(x)=x 2-|x +a|为偶函数,则实数a =________.13.f(x)是(-∞,+∞)上的奇函数,f(x +3)=f(x),当0≤x ≤1时,f(x)=x 2,则f(8)=____________.14.已知函数f(x),g (x)分别由下表给出xf(x)12 23 31x123g(x)321则f[g(1)]的值为________;当g[f(x)]=2时,x=________.15.(2012·太原高一检测)已知函数f(x)满足f(x+y)=f(x)+f(y)(x ,y∈R),则下列各式恒成立的是______.①f(0)=0;②f(3)=3f(1);11③f(2)=2f(1);④f(-x)f(x)<0.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2-2x.(1)画出偶函数f(x)的图像;(2)根据图像,写出f(x)的单调区间;同时写出函数的值域.17.(本小题满分12分)已知函数f(x)=x2-2ax+2,x∈[-3,3].(1)当a=-5时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-3,3]上是单调函数.18.(本小题满分12分)已知f(x)是定义在[-1,1]上的增函数,且f(xy=4,⎪2⎩2⎪1⎩2x-2)<f(1-x),求x的取值范围.19.(本小题满分12分)(2012·石家庄模拟)设f(x)=x2-4x-4,x ∈[t,t+1](t∈R),求函数f(x)的最小值g(t)的解析式.20.(本小题满分13分)设函数f(x)=x2-2|x|-1(-3≤x≤3).(1)证明f(x)是偶函数;(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;(3)求函数的值域.21.(本小题满分14分)已知函数f(x)=x+x3,x∈R.(1)判断函数f(x)的单调性,并证明你的结论;(2)若a,b∈R,且a+b>0,试比较f(a)+f(b)与0的大小.1[答案]B[解析]⎧x+y=2,由题意得⎨3⎩⎧x=3,解得⎨⎪y=1,⎧x=2,或⎨⎪y=3.2[答案]B[解析]本题考查幂函数图像.11当x>1时x33<x,排除C、D,当0<x<1时x>x,排除A.3[答案]B[解析]若两个函数表示同一函数,则它们的解析式、定义域必须相同,A中g(x)要求x≠1.C选项定义域不同,D选项对应法则不[解析] f(2)=53,f(1 3,∴ 又∵1<3<2,∴f(1)>f(3)>f(2),即 f(2)<f(-3)<f(-1),故选 D.同.故选 B.4[答案] B2)=-51 =-1.25[答案] D[解析] ∵f(-x)=f(x),∴f(x)为偶函数.且 f(x)在[1,+∞)为减函数,2 226[答案] A[解析] 结合 f(x)的图像可知,当 f(x)在区间(-∞,3]上单调递减时,有-a ≥3,即 a ≤-3.7[答案] A[解析] f[f(x)]=2f(x)+1=2(2x +1)+1=4x +3. 8[答案] B5[解析] 可借助特殊函数图像求解,如取 f(x)=3x ,图像如图:3∴0≤k < .1-4(x+ )2+4 在[0,1]上是减函数,最小值是-5,不合题意排除 A ; ⎫2⎛解法二:f(x)=-4 x - ⎪ -4a ,易知选 B.9[答案] D[解析] ∵函数的定义域为 R ,∴kx 2+4kx +3 恒不为零,则 k =0 时,成立;k ≠0 时,Δ<0,也成立.410[答案] D[解析] 解法一:检验法:当 a =-1 时,f(x)=-4x 2-4x +3=2同理可排除 B 、C.a ⎝ 2⎭∵a <0,∴f(x)在[0,1]上是减函数,∴f(0)=-5,即:-a 2-4a =-5,⎪⎪ ⎩⎩∴a =1 或-5,又 a <0,∴a =-5.11[答案] [a,1-a]⎧0≤x +a≤1 ⎧-a≤x≤1-a ,[解析]由已知得⎨⎨⎪0≤x -a≤1 ⎪a≤x≤1+a.∵0<a <1,得 a ≤x ≤1-a.2∴g (x)的定义域为 x ∈[a,1-a].12[答案] 0[解析] 本题考查偶函数的定义等基础知识.∵f(x)为偶函数,∴f(-x)=f(x),即 x 2-|-x +a|=x 2-|x +a|,∴|x-a|=|x +a|,平方,整理得:ax =0,要使 x ∈R 时恒成立,则 a =0.13[解析] f(8)=f(5+3)=f(5)=f(2+3)=f(2)=f(-1+3)=f(-1)=-f(1)=-1.[答案] -114[答案] 1 1[解析] f[g (1)]=f(3)=1, ∵g [f(x)]=2,∴f(x)=2,∴x =1.15[答案] ①②③[解析] 令 x =y =0 得 f(0)=2f(0),所以 f(0)=0,所以①恒成立;令 x =2,y =1 得 f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3f(1),所以②恒令 x =y =1得 f(1)=2f(1),所以 f(1)=1f(1),所以③恒成立;max=41.⎩成立;2 2 2 2令 y =-x 得 f(0)=f(x)+f(-x),即 f(-x)=-f(x),所以 f(-x)f(x)=-[f(x)]2≤0,所以④不恒成立.16[解析] (1)f(x)的图像如图所示.(2)由图得函数 f(x)的递减区间是(-∞,-1),(0,1).f(x)的递增区间是(-1,0),(1,+∞),值域为{y|y ≥-1}.17[解析] (1)当 a =-5 时,f(x)=x 2+10x +2=(x +5)2-23,x ∈[-3,3],又因为二次函数开口向上,且对称轴为 x =-5,所以当 x =-3 时,f(x) =-19,当 x =3 时,f(x) min(2)函数 f(x)=(x -a)2+2-a 2 的图像的对称轴为 x =a ,因为 f(x)在[-3,3]上是单调函数,所以 a ≤-3 或 a ≥3.⎧⎪-1≤x -2≤1,18[解析]由题意可知⎨⎪-1≤1-x≤1,解得 1≤x ≤2.①又 f(x)在[-1,1]上是增函数,且 f(x -2)<f(1-x),∴x-2<1-x,即x<3.②由①②可知,所求自变量x的取值范围为{x|1≤x<3}.即f(x)=⎨2219[解析]∵f(x)=(x-2)2-8,x∈[t,t+1],∴当2∈[t,t+1]时,即1≤t≤2时,g(t)=f(2)=-8.当t+1<2,即t<1时,f(t)在[t,t+1]上是减函数.∴g(t)=f(t+1)=t2-2t-7;当t>2时,f(x)在[t,t+1]上是增函数,∴g(t)=f(t)=t2-4t-4.⎧⎪t2-2t-7综上可知,g(t)=⎨-⎪⎩t2-4t-,,20[解析](1)证明:∵定义域关于原点对称,f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x),即f(-x)=f(x),∴f(x)是偶函数.(2)当x≥0时,f(x)=x2-2x-1=(x-1)2-2,当x<0时,f(x)=x2+2x-1=(x+1)2-2,⎧⎪⎪⎩-+-2,x≥0,-2,x<0.任取 x ,x ∈R ,且 x <x ,则 +x x +x2+1) 1 3=(x -x )[(x + x )2+ x2+1].13因为 x <x ,所以 x -x <0,(x + x )2+ x2+1>0.根据二次函数的作图方法,可得函数图像,如图函数 f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f(x)在区间[-3,-1),[0,1]上为减函数,在[-1,0),[1,3]上为增函数.(3)当 x ≥0 时,函数 f(x)=(x -1)2-2 的最小值为-2,最大值为f(3)=2.当 x <0 时,函数 f(x)=(x +1)2-2 的最小值为-2,最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].21[解析] (1)函数 f(x)=x +x 3,x ∈R 是增函数,证明如下: 12 1 2f(x 1)-f(x 2)=(x 1+x 31)-(x 2+x 23)=(x 1-x 2)+(x 31-x 23)=(x 1-x 2)(x 21 1 21 2 1 2 2 4 1 2 1 2 1 2 2 4所以f(x)-f(x)<0,即f(x)<f(x),1212所以函数f(x)=x+x3,x∈R是增函数.(2)由a+b>0,得a>-b,由(1)知f(a)>f(-b),因为f(x)的定义域为R,定义域关于坐标原点对称,又f(-x)=(-x)+(-x)3=-x-x3=-(x+x3)=-f(x),所以函数f(x)为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.。
新北师大版高中数学必修一第二单元《函数》测试(包含答案解析)(3)

一、选择题1.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-2.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)3.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值 D .有最大值83,无最小值 4.方程2x y +=所表示的曲线大致形状为( )A .B .C .D .5.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( )A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<6.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( ) A .[]1,4 B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦7.若函数2()2(2)1f x mx m x =+-+的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞8.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( ) A .(1,2)- B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞9.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( )A .()2,+∞B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4C .有最大值-3D .有最小值-311.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.若函数()12423xx f x m m +=-⋅+-,在其定义域R 内存在实数x ,满足()()f x f x -=-,则整数m 的取值集合是________.14.设函数()42x f x e x =-()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________. 15.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________16.函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 取值范围为________.17.函数1y x x =+-______.18.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,21.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.19.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()0)(f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”.0x 是它的一个均值点,若函数()2f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是___________.20.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.21.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由. 22.已知函数()1f x x x=+. (1)判断函数()f x 的奇偶性;(2)证明:函数()f x 在[)1,+∞上是增函数; (3)求函数()f x 在[]41--,上的最大值与最小值. 23.已知函数()24f x x ax =-.(1)当1a =时,求函数()f x 的值域; (2)解关于x 的不等式()230f x a +>;(3)若对于任意的[)2,x ∈+∞,()21f x x >-均成立,求a 的取值范围.24.已知11012x f x x x ⎛⎫⎛⎫=<≤ ⎪ ⎪-⎝⎭⎝⎭.(1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明. 25.已知函数()2342()log log 16a f x x x=⋅⋅.(1)若1a =,求方程()1f x =-的解集; (2)当[]2,4x ∈时,求函数()f x 的最小值.26.已知函数()81f x x =- (1)求函数()f x 的定义域并求()2f -,()6f ;(2)已知()4211f a a+=+,求a 的值.【参考答案】***试卷处理标记,请不要删除1.B 解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.2.D解析:D 【分析】任设120x x <<,则211x x >,21()1x f x <-,根据定义可得()f x 在(0,)+∞上为递减函数,令1x y ==得(1)1f =-,令18,8x y ==可得(8)4f =-,可得(2)2f =-,将不等式化为[(3)](2)f x x f ->,利用单调性和定义域可解得结果. 【详解】任设120x x <<,则211x x >,21()1x f x <-,所以()()()()222111111111x x f x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=++<-+= ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上为递减函数,在()()()1f xy f x f y =++中,令1x y ==得(1)2(1)1f f =+,得(1)1f =-,令1 8,8x y==得11(1)(8)(8)()188f f f f=⨯=++,所以(8)1124f=---=-,又(8)(2)(4)1f f f=++(2)(2)(2)113(2)2f f f f=++++=+4=-,所以(2)2f=-,()(3)3f x f x+->-可化为()(3)12(2)f x f x f+-+>-=,所以[(3)](2)f x x f->,所以30(3)2xxx x>⎧⎪->⎨⎪-<⎩,解得01x<<或23x<<.故选:D【点睛】关键点点睛:利用定义判断函数的单调性以及求出(2)f是解题关键.3.D解析:D【分析】作出函数()f x的图象,结合图象可得出结论.【详解】由已知可得(){}min24,41,2f x x x x=-+++,作出函数()f x的图象如下图所示:函数()f x的图象如上图中的实线部分,联立224y xy x=+⎧⎨=-+⎩,解得2383xy⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.4.D解析:D 【分析】先利用方程得到图像的对称性,再作0y ≥,0x ≥时的图像,利用对称性即得结果. 【详解】 由方程2x y +=可知图像关于原点中心对称,也关于坐标轴对称.20,44x y y =-≥-≤≤,20,22y x x =-≥-≤≤.当0y ≥,0x ≥时,方程2x y +=转化成()22y x =-,作图如下:再利用对称性即得图像为 D. 故选:D. 【点睛】本题解题关键是利用绝对值的性质得到图像的对称性,就只需要画0y ≥,0x ≥部分图像,即突破问题.5.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221xf x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.6.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦.故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.7.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.8.A解析:A 【分析】由函数的单调性列x 的不等式求解即可. 【详解】由()()()12120f x f x x x -->⎡⎤⎣⎦,则函数()f x 在R 上为增函数, 由()()2211f x f m m +>--对x ∈R 恒成立,故22min 1(1)m m x --<+,即211m m --<解得12m -<<.故选:A. 【点睛】本题考查函数的单调性,考查恒成立问题,是基础题9.D解析:D 【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.故选:D . 【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.【分析】将已知等式转化为方程有解问题利用换元法和二次函数的性质列出不等式组解出整数m 的取值集合【详解】根据题意函数其定义域为R 则有若在其定义域R 内存在实数x 满足即方程在R 上有解该方程变形可得令原问题解析:{|1m m -≤≤【分析】将已知等式转化为方程有解问题,利用换元法和二次函数的性质列出不等式组,解出整数m 的取值集合. 【详解】根据题意,函数()1224234223xx x x f x m m m m +=-⋅+-=-⋅+-,其定义域为R ,则有()24223xx f x m m ---=-⋅+-,若在其定义域R 内存在实数x ,满足()()f x f x -=-,即方程()2242234223x x x x m m m m ---⋅+-=--⋅+-在R 上有解,该方程变形可得()244222260xxx x m m --+-++-=,令222x x t -+=≥,原问题转化为()222280F t t mt m =-+-=在[)2,+∞有解,则必有()20F ≤或()22(2)0244280F m m m ⎧>⎪⎪>⎨⎪∆=--≥⎪⎩,解得:1m ≤m的取值集合为{|1m m -≤≤,故答案为:{|1m m -≤≤. 【点睛】关键点点睛:本题考查方程有解问题,考查二次函数的性质,考查换元法的应用,解决本题的关键点是将定义域R 内存在实数x ,满足()()f x f x -=-,转化为方程有解问题,化简并利用换元法,结合二次函数图象和性质,列出不等式组求出参数范围,考查学生计算能力,属于中档题.14.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .15.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++ 1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.16.【分析】根据指数函数和一次函数的性质得出关于的不等式组即可求解【详解】由题意函数是上的单调递增函数可得解得即实数取值范围故答案为:【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性将题设条解析:8[,6)3【分析】根据指数函数和一次函数的性质,得出关于a 的不等式组,即可求解. 【详解】由题意,函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 可得13021322a a a a ⎧⎪>⎪⎪->⎨⎪⎪+≥-+⎪⎩,解得863a ≤<,即实数a 取值范围8[,6)3.故答案为:8[,6)3. 【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性,将题设条件转化为函数的不等式(组),即可求出参数的值或范围; 若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.17.【分析】利用换元法将函数换元构造出新函数由新函数的定义域结合二次函数的性质求出最值即可得到值域【详解】设则所以原函数可化为:由二次函数性质当时函数取最大值2由性质可知函数无最小值所以值域为:故答案为 解析:(],2-∞【分析】利用换元法将函数换元构造出新函数,由新函数的定义域结合二次函数的性质求出最值即可得到值域. 【详解】设)0t t =≥,则21x t =-, 所以原函数可化为:()2210y t t t =-++≥,由二次函数性质,当1t =时,函数取最大值2,由性质可知函数无最小值, 所以值域为:(],2-∞. 故答案为:(],2-∞. 【点睛】本题考查换元法求函数值域,当函数解析式中含有根式时,一般考虑换元法,用换元法时要注意一定写出新变量数的取值范围.18.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】 根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.19.【分析】根据新定义可得在区间上有解利用分离变量法即可求出答案【详解】解:设∴在区间上有解即在区间上有解∵令单调递减时单调递增所以所以实数的取值范围是故答案为:【点睛】关键点点睛:此题考查了函数的新定 解析:[)0,+∞【分析】根据新定义可得2x mx m +=在区间()1,1-上有解,利用分离变量法即可求出答案. 【详解】解:设11x -<<,()()()()1111f f f x m --==--, ∴2x mx m +=在区间()1,1-上有解,即21x m x=-在区间()1,1-上有解,∵()()()()22212112211121111x x x x x y x x x x x-+----+====-+-----, 令()10,2x t -=∈,12y t t∴=+-,(]0,1t ∈单调递减,[)1,2t ∈时单调递增,所以120y t t=+-≥,所以实数m 的取值范围是[)0,+∞. 故答案为:[)0,+∞. 【点睛】关键点点睛:此题考查了函数的新定义题目,解题的关键是将问题转化为2x mx m +=在区间()1,1-上有解,分离参数求解,意在考查了分析能力、数学运算.20.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.三、解答题21.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k=-与区间()0,4端点的大小关系得出实数k 的取值范围; (3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n=⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值. 【详解】 (1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a bb a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+(2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k=- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k<-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭(3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =-4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围. 22.(1)奇函数;(2)证明见解析;(3)172,4-- 【分析】(1)直接利用函数的奇偶性定义判断即可;(2)利用单调性定义进行判断证明:取值、作差、定号、得结论; (3)利用(2)的结论,得到函数在区间上的单调性,进一步求得最值. 【详解】 函数1()f x x x=+的定义域为(-∞,0)(0⋃,)+∞ (1)因为对任意的0x ≠,都有11()()()()()f x x x f x x x-=+-=-+=--, 故函数()f x 为奇函数.(2)对区间[)1,+∞上的任意两个数1x 、2x ,且12x x <, 则121212121212111()()()()()x x f x f x x x x x x x x x --=+-+=-. 由于1x 、[)21x ∈+∞,且12x x <,则121x x >,1210x x ->,120x x -<. 从而12())0(f x f x -<即12()()f x f x <,因此函数()f x 在区间[)1,+∞上为增函数. (3)由(2)知,函数()f x 在区间[)1,+∞上为增函数,由(1)知,函数()f x 是奇函数,所以函数()f x 在区间(],1-∞-上为增函数,则函数()f x 在区间[]41--,上为增函数, 故()min f x =()1744f -=-,()()12max f x f =-=-. 【点睛】方法点睛:判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为奇函数);(2)和差法, ()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) . 23.(1)[)4,-+∞;(2)答案见解析;(3)1,8⎛⎫-∞ ⎪⎝⎭. 【分析】(1)由二次函数值域的求解方法可直接求得结果;(2)将不等式变为()()30x a x a -->,分别在0a =、0a <和0a >三种情况下讨论得到不等式的解集;(3)利用分离变量法得到142a x x <+-,令()12g x x x=+-,由对勾函数性质可求得()min g x ,由()min 4a g x <可求得结果.【详解】(1)当1a =时,()24f x x x =-,∴当2x =时,()min 484f x =-=-,则()f x 的值域为[)4,-+∞.(2)由()230f x a +>得:()()224330x ax a x a x a -+=-->,当0a =时,20x >,则不等式的解集为()(),00,-∞⋃+∞; 当0a <时,3a a <,则不等式的解集为()(),3,a a -∞+∞; 当0a >时,3a a >,则不等式的解集为()(),3,a a -∞+∞.(3)由()21f x x >-得:2421x ax x ->-,[)2,x ∈+∞142a x x∴<+- 记函数()12g x x x=+-,由对勾函数性质知:()g x 在[)2,+∞上单调递增, ()()1122222g x g ∴≥=+-=,142a ∴<,解得:18a <,a ∴的取值范围为1,8⎛⎫-∞ ⎪⎝⎭.【点睛】方法点睛:恒成立问题的常用处理方法是采用分离变量的方式,将问题转化为变量与函数最值之间的大小关系:①若()a f x ≤恒成立,则()min a f x ≤;②若()a f x ≥恒成立,则()max a f x ≥. 24.(1)()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明见解析. 【分析】(1)令1(2)t t x =≥,则1x t=,求得()1(2)1f t t t =≥-,从而可得答案. (2)()f x 在[)2,+∞上递减,证任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,可证明()()120f x f x -<,从而可得结论.【详解】 (1)令1(2)t t x =≥,则1x t= 因为11012x f x x x ⎛⎫⎛⎫=<≤ ⎪ ⎪-⎝⎭⎝⎭所以()111(2)11t tf t t t ==≥--, 所以()1(2)1f x x x =≥-; (2)()f x 在[)2,+∞上递减,证明如下:任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>, 因为()()12121111f x f x x x -=--- ()()()()21121111x x x x ---=--()()2112011x x x x -=<--所以()()12f x f x <, 则()f x 在[)2,+∞上递减. 【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数. 25.(1)122⎫⎪⎬⎪⎪⎩⎭;(2)2343,243,332812,3a a a a a a ⎧+≥-⎪⎪⎪--<<-⎨⎪+≤-⎪⎪⎩.【分析】(1)根据对数的运算化简方程即可得出解集;(2)根据二次函数的对称轴,分类讨论,即可求出函数的最小值.【详解】()()234342222()log log 16log log 2log a a f x x x x x =⋅⋅=⋅+()22log 43log (0)x a x x =+>(1)若1a =,则()22()log 43log 1f x x x =+=-,令2log t x =,则方程为(43)1t t +=-, 解得:13t =-或1t =-, 则21log 3x =-或2log 1x =-,∴132x -==或12x =, ∴方程的解集为122⎫⎪⎨⎬⎪⎪⎩⎭. (2)∵[2,4]x ∈,∴2log [1,2]x ∈,令2log [1,2]t x =∈,则[]()(34),1,2f t t t a t =+∈,对称轴为23t a =-. ①当213a -≤,即32a ≥-时,min ()(1)43f t f a ==+; ②当2123a <-<,即332a -<<-时,2min 24()33f t f a a ⎛⎫=-=- ⎪⎝⎭; ③当223a -≥,即3a ≤-时,min ()(2)812f t f a ==+. 综上,2min 343,243(),332812,3a a f x a a a a ⎧+≥-⎪⎪⎪=--<<-⎨⎪+≤-⎪⎪⎩. 【点睛】关键点点睛:二次函数求最值问题,需要根据开口方向及对称轴研究函数的最值,对称轴与定义域[1,2]的关系,分3种情况讨论即可,属于中档题.26.(1){|3x x ≥-且}1x ≠,()523f -=-,()2365f =;(2)23-. 【分析】 (1)要使解析式有意义可得1030x x -≠⎧⎨+≥⎩,解不等式组,即可得答案;(2)求出()21f a +的表达式,进而得到方程441a a=+,即可得答案; 【详解】 (1)由1030x x -≠⎧⎨+≥⎩解得13x x ≠⎧⎨≥-⎩, ∴函数()f x 的定义域为{|3x x ≥-且}1x ≠,∴()523f -=-,()2365f =.(2)()4211f a a +=+,∴441a a+=+, 23a ∴=-. 【点睛】函数的定义域是指使得解析式有意义的自变量的取值的集合,注意要写成集合或区间的形式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一函数的单调性思考画出函数f(x)=x、f(x)=x2的图像,并指出f(x)=x、f(x)=x2的图像的升降情况如何?★答案☆两函数的图像如下:函数f(x)=x的图像由左到右是上升的;函数f(x)=x2的图像在y轴左侧是下降的,在y轴右侧是上升的.梳理单调性是相对于区间来说的,函数图像在某区间上上升,则函数在该区间上为增函数.反之则为减函数.很多时候我们不知道函数图像是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:一般地,在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的.在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y=f(x)在区间A 上是递减的.如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,就称函数y=f(x)在该子集上具有单调性;如果函数y=f(x)在整个定义域内是增加的或是减少的,我们分别称这个函数是增函数或减函数,统称为单调函数.知识点二 函数的单调区间思考 我们已经知道f (x )=x 2在(-∞,0]上是减少的,f (x )=1x 在区间(-∞,0)上是减少的,这两个区间能不能交换?★答案☆ f (x )=x 2的减区间可以写成(-∞,0),而f (x )=1x 的减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x 的定义域.梳理 一般地,有下列常识:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大.类型一 求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图像说出函数的单调区间,以及在每一单调区间上,它是增加的还是减少的?解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是减少的,在区间[-2,1],[3,5]上是增加的.反思与感悟 函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D 上函数要么是增加的,要么是减少的,不能二者兼有. 跟踪训练1 写出函数y =|x 2-2x -3|的单调区间,并指出单调性.解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图像,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中递减区间是 (-∞,-1],[1,3];递增区间是[-1,1],[3,+∞). 类型二 证明单调性命题角度1 证明具体函数的单调性 例2 证明f (x )=x 在其定义域上是增函数. 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=x 1-x 2=(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )=x 在定义域[0,+∞)上是增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x在[1,+∞)上是增函数.证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2).∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0,即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )=x +1x 在区间[1,+∞)上是增函数.命题角度2 证明抽象函数的单调性例3 已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.求证:函数f (x )在R 上是增函数.证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2.令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1.∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴函数f (x )在R 上是增函数. 方法二 设x 1>x 2,则x 1-x 2>0, 从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.反思与感悟 因为抽象函数不知道解析式,所以不能代入求f (x 1)-f (x 2),但可以借助题目提供的函数性质来确定f (x 1)-f (x 2)的大小,这时就需要根据解题需要对抽象函数进行赋值. 跟踪训练3 已知函数f (x )的定义域是R ,对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.求证:f (x )在R 上是减函数.证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0), ∵当x >0时,0<f (x )<1,∴f (1)≠0,∴f (0)=1.令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1, 又∵-x >0时,0<f (-x )<1,∴f (x )=1f (-x )>1.∴对任意实数x ,f (x )恒大于0. 设任意x 1<x 2,则x 2-x 1>0, ∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0, ∴f (x )在R 上是减少的. 类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为( )A .[18,13)B .(0,13)C .[18,+∞)D .(-∞,18]∪[13,+∞)★答案☆ A解析 要使f (x )在R 上是减函数,需满足: ⎩⎪⎨⎪⎧3a -1<0,-a <0,(3a -1)·1+4a ≥-a ·1.解得18≤a <13.反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超.另外,函数在单调区间上的图像不一定是连续不断的.跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________. ★答案☆ a ≤1或a ≥2解析 由于二次函数开口向上,故其增区间为[a ,+∞),减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2. 命题角度2 用单调性解不等式例5 已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围. 解 f (1-a )<f (2a -1)等价于 ⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23.反思与感悟 若已知函数f (x )的单调性,则由x 1,x 2的大小,可得f (x 1),f (x 2)的大小;由f (x 1),f (x 2)的大小,可得x 1,x 2的大小.跟踪训练5 在例5中若函数y =f (x )的定义域为R ,且为增函数,f (1-a )<f (2a -1),则a 的取值范围又是什么?解 ∵y =f (x )的定义域为R ,且为增函数, f (1-a )<f (2a -1),∴1-a <2a -1,即a >23,∴所求a 的取值范围是(23,+∞).1.函数y =f (x )在区间[-2,2]上的图像如图所示,则此函数的增区间是( )A .[-2,0]B .[0,1]C .[-2,1]D .[-1,1]★答案☆ C2.函数y =6x 的减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0),(0,+∞)D .(-∞,0)∪(0,+∞) ★答案☆ C3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ) A .f (x )=x 2 B .f (x )=1xC .f (x )=|x |D .f (x )=2x +1 ★答案☆ B4.已知函数y =f (x )满足:f (-2)>f (-1),f (-1)<f (0),则下列结论正确的是( ) A .函数y =f (x )在区间[-2,-1]上递减,在区间[-1,0]上递增 B .函数y =f (x )在区间[-2,-1]上递增,在区间[-1,0]上递减 C .函数y =f (x )在区间[-2,0]上的最小值是f (-1) D .以上的三个结论都不正确 ★答案☆ D5.若函数f (x )在R 上是减函数,且f (|x |)>f (1),则x 的取值范围是( ) A .x <1 B .x >-1 C .-1<x <1 D .x <-1或x >1 ★答案☆ C1.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都递减,未必有f (x )在A ∪B 上递减. 2.对增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0.对减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0.3.熟悉常见的一些单调性结论,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是增函数,h (x )是减函数,则:①在定义域的交集(非空)上,f (x )+g (x )递增,f (x )-h (x )递增,②-f (x )递减,③1f (x )递减(f (x )≠0). 5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f (x 1)f (x 2)与1比较.课时作业一、选择题1.函数y =1x -1的单调区间是( )A .(-∞,1),(1,+∞)B .(-∞,1)∪(1,+∞)C .{x ∈R |x ≠1}D .R★答案☆ A解析 单调区间不能写成单调集合,也不能超出定义域,故C ,D 不对,B 表达不当.故选A.2.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f (x 1)-f (x 2)x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f (x 1)-f (x 2)>0 ★答案☆ C解析 因为f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),x 1-x 2与f (x 1)-f (x 2)的符号相同,故A ,B ,D 都正确,而C 中应为若x 1<x 2,则f (a )≤f (x 1)<f (x 2)≤f (b ). 3.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图像上的两点,那么-1<f (x )<1的解集是( ) A .(-3,0) B .(0,3)C .(-∞,-1]∪[3,+∞)D .(-∞,0]∪[1,+∞)★答案☆ B解析 由已知f (0)=-1,f (3)=1, ∴-1<f (x )<1,即f (0)<f (x )<f (3), ∵f (x )在R 上递增, ∴0<x <3,∴-1<f (x )<1的解集为(0,3).4.已知函数f (x )在R 上是增函数,则下列说法正确的是( ) A .y =-f (x )在R 上是减函数 B .y =1f (x )在R 上是减函数C .y =[f (x )]2在R 上是增函数D .y =af (x )(a 为实数)在R 上是增函数 ★答案☆ A解析 设x 1<x 2,因为函数f (x )在R 上是增函数,故必有f (x 1)<f (x 2). 所以-f (x 1)>-f (x 2),A 选项一定成立.其余三项不一定成立,如当f (x )=x 时,B 、C 不成立,当a <0时,D 不成立. 5.已知函数f (x )在(-∞,+∞)上是增函数,若a ,b ∈R 且a +b >0,则有( ) A .f (a )+f (b )>-f (a )-f (b ) B .f (a )+f (b )<-f (a )-f (b ) C .f (a )+f (b )>f (-a )+f (-b ) D .f (a )+f (b )<f (-a )+f (-b ) ★答案☆ C解析 ∵a +b >0,∴a >-b ,b >-a , ∵f (x )在R 上是增函数, ∴f (a )>f (-b ),f (b )>f (-a ), ∴f (a )+f (b )>f (-a )+f (-b ).6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,若f (4-a )>f (a ),则实数a 的取值范围是( ) A .(-∞,2) B .(2,+∞) C .(-∞,-2) D .(-2,+∞)★答案☆ A解析 画出f (x )的图像(图略)可判断f (x )在R 上递增, 故f (4-a )>f (a )⇔4-a >a ,解得a <2.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x ≥0,x 2-ax +1,x <0是(-∞,+∞)上的减函数,则实数a 的取值范围是________. ★答案☆ [0,13]解析 当x <0时,函数f (x )=x 2-ax +1是减函数,解得a ≥0,当x ≥0时,函数f (x )=-x +3a 是减函数,分段点0处的值应满足1≥3a ,解得a ≤13,∴0≤a ≤13.8.已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围是________. ★答案☆ [1,32)解析 由题意,得⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32,故满足条件的x 的取值范围是1≤x <32.9.函数f (x +1)=x 2-2x +1的定义域是[-2,0],则f (x )的递减区间是________. ★答案☆ [-1,1]解析 f (x +1)=x 2-2x +1=(x -1)2=(x +1-2)2, ∴f (x )=(x -2)2,x ∈[-1,1], ∴f (x )在定义域[-1,1]上递减.10.已知一次函数y =(k +1)x +k 在R 上是增函数,且其图像与x 轴的正半轴相交,则k 的取值范围是________. ★答案☆ (-1,0)解析 依题意⎩⎪⎨⎪⎧k +1>0,-k k +1>0,解得-1<k <0.三、解答题11.求函数y =-x 2+2|x |+3的递增区间. 解∵y =-x 2+2|x |+3=⎩⎪⎨⎪⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.函数图像如图所示:∴函数y =-x 2+2|x |+3的递增区间是(-∞,-1]和[0,1]. 12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内递增; (2)若a >0且f (x )在(1,+∞)内递减,求a 的取值范围. (1)证明 设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内递增. (2)解 设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述0<a ≤1.13.已知函数f (x )在(0,+∞)上为增函数,且f (x )<0(x >0),试判断F (x )=1f (x )在(0,+∞)上的单调性并给出证明过程. 解 F (x )在(0,+∞)上为减函数. 证明:任取x 1,x 2∈(0,+∞),且x 1<x 2, ∴F (x 2)-F (x 1)=1f (x 2)-1f (x 1)=f (x 1)-f (x 2)f (x 2)f (x 1).∵y =f (x )在(0,+∞)上为增函数,且x 1<x 2, ∴f (x 1)<f (x 2),∴f (x 1)-f (x 2)<0. 而f (x 1)<0,f (x 2)<0,∴f (x 1)f (x 2)>0. ∴F (x 2)-F (x 1)<0,即F (x 1)>F (x 2). ∴F (x )在(0,+∞)上为减函数. 四、探究与拓展14.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是____________.★答案☆ (0,1]解析 由f (x )=-x 2+2ax 在[1,2]上是减函数可得a ≤1,由g (x )=a x +1在[1,2]上是减函数可得a >0.∴0<a ≤1.15.设函数f (x )的定义域是(0,+∞),且对任意正实数x ,y 都有f (xy )=f (x )+f (y )恒成立,已知f (2)=1,且x >1时,f (x )>0.(1)求f (12)的值; (2)判断y =f (x )在(0,+∞)上的单调性并给出证明;(3)解不等式f (2x )>f (8x -6)-1.解 (1)对于任意x ,y ∈R 都有f (xy )=f (x )+f (y ),∴当x =y =1时,有f (1)=f (1)+f (1),∴f (1)=0.当x =2,y =12时,有f (2×12)=f (2)+f (12), 即f (2)+f (12)=0, 又f (2)=1,∴f (12)=-1. (2)y =f (x )在(0,+∞)上为增函数,证明如下:设0<x 1<x 2,则f (x 1)+f (x 2x 1)=f (x 2), 即f (x 2)-f (x 1)=f (x 2x 1). ∵x 2x 1>1,故f (x 2x 1)>0, 即f (x 2)>f (x 1),故f (x )在(0,+∞)上为增函数.(3)由(1)知,f (12)=-1, ∴f (8x -6)-1=f (8x -6)+f (12) =f (12(8x -6))=f (4x -3) ∴f (2x )>f (4x -3),∵f (x )在定义域(0,+∞)上为增函数,∴⎩⎪⎨⎪⎧2x >4x -3,4x -3>0. 解得解集为{x |34<x <32}.。