2014-2015学年湖北省武汉市青山区八年级(上)期末数学试卷
2014年八年级上期末统考数学试卷及答案

2014年八年级第一学期期末练习数学试卷(分数:100分时间:90分钟)2014.1班级姓名学号成绩一、选择题(本题共30分,每小题3分)在下列各题的4个备选答案中,只有一个符合题意,请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10答案1.下列交通标志是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.532aaa=⋅B.()532aa=C.326aaa=÷D.10552aaa=+3.下列长度的三条线段能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,64.下列二次根式中,是最简二次根式的是()A.21B.3C.8D.95.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A.(-2 ,1 )B.(2 ,1 )C.(-2 ,-1)D.(2 ,-1)6.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°7.若分式112--xx的值为0,则x的值为()A.1 B.-1 C.0 D.1±8.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()1c baba72°50°A . 12B . 16C . 20D . 16或20 9.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图(1)),然后拼成一个平行四边形(如图(2)),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ) A .222()a b a b -=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22()()a b a b a b -=+-10.如图(1)是长方形纸带,α=∠DEF ,将纸带沿EF 折叠成图(2),再沿BF 折叠成图(3), 则图(3)中的CFE ∠的度数是( )FGEGFFEE DDD CCCBBBA A A图(1) 图(2) 图(3) A .α2B . α290+︒C .α2180-︒D . α3180-︒ 二、填空题(本题共18分,每小题3分)11.若1-x 有意义,则x 的取值范围是 . 12.分解因式:=+-3632x x .13.计算:222⎪⎭⎫⎝⎛÷a b b a = .14.若实数a 、b 满足()0422=-++b a ,则=ba. 15.如图,等边△ABC 中,AB = 2, AD 平分∠BAC 交BC 于D ,则线段AD 的长为 .16.下面是一个按某种规律排列的数阵:1第1行2第2行3 11 32 第3行 1314 15 4 17 23 19 52第4行根据数阵排列的规律,第5行从左向右数第3个数是 ,第n (3≥n 且n 是整数)行图(1) 图(2)DCBA从左向右数第2-n 个数是 (用含n 的代数式表示). 三、解答题(本题共19分,第20题4分,其余每小题5分)17011(2013)()2---+18.如图,在△ABC 中,AB =AC , D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F .求证:DE =DF .B19.已知0342=--x x ,求代数式()()()2232y y x y x x --+--的值.20.如图,电信部门要在公路m,n 之间的S 区域修建一座电视信号发射塔P .按照设计要求,发射塔P 到区域S 内的两个城镇A ,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹) .四、解答题(本题共20分,每小题5分) 21.解方程: 3221+=x x22.先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .23.小明是学校图书馆A 书库的志愿者,小伟是学校图书馆B 书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A 书库恰有120册图书需整理, 而B 书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15 分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?24.在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,过D 作DE ∥AC ,交AB 于E ,若AB=5,求线段DE 的长.五、解答题(本题共13分,第25题6分,第26题7分) 25. 阅读材料1:对于两个正实数,a b ,由于()02≥-ba ,所以()()0222≥+⋅-b b a a ,即02≥+-b ab a ,所以得到ab b a 2≥+,并且当a b =时,a b +=阅读材料2:若0x >,则22111x x x x x x x +=+=+,因为10,0x x>>,所以由阅读材料1可得,2121=⋅≥+x x x x ,即21x x +的最小值是2,只有1x x=时,即1x =时取得最小值.根据以上阅读材料,请回答以下问题: (1)比较大小:21x + 2x (其中1x ≥); 1x x+2-(其中1x <-) (2)已知代数式2331x x x +++变形为11x n x +++,求常数n 的值;(3)当x = 时,133+++x xx 有最小值,最小值为 . (直接写出答案)26.在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,ACE ∠=90°,则线段AE 、EAAB 、DE 的长度满足的数量关系为 ;(直接写出答案)(2)如图(2),AC 平分BAE ∠, EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD = 8,AB =2,DE =8,135ACE ∠=︒,则线段AE 长度的最大值是____________(直接写出答案).数学参考答案及评分标准 2014.1一、选择题(本题共30分,每小题3分)EDCBA图(3)EDC BA图(2)二、填空题(本题共18分,每小题3分)三、解答题(本题共19分,第20题4分,其余每小题5分) 17.解:原式=21332+-+----------------------------------4分=133+ ------------------------------------5分18.解法一:∵D 是BC 的中点,∴BD=CD . ------------------------------1分 ∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠BED=∠CFD=90° . ---------------------------------------2分 ∵AB =AC ,∴ ∠B=∠C . ---------------------------------------3分∵ △BED 和△CFD 中⎪⎩⎪⎨⎧=∠=∠∠=∠CD BD C B CFDBED∴△BED ≌△CFD . ------------------------------------------------4分 ∴DE =DF . ----------------------------------------------------------5分解法二: 连接AD .∵在△ABC 中, AB =AC ,D 是BC 的中点,∴AD 平分∠BAC . --------------------------------------------------3分 ∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF . ----------------------------------------------------------5分 19.解:原式=()()22229124yyx x x ---+-=22229124y y x x x -+-+-=91232+-x x ------------------------------------------------------------------------------3分 ∵0342=--x x ,∴342=-x x∴原式=()189339432=+⨯=+-x x .----------------------------------------------------------5分20.作图痕迹:线段AB 的垂直平分线的作图痕迹2分覆盖区域S 的直线m 与n 的夹角的角平分线作图痕迹2分.BB(未标出点P 扣一分)四、解答题(本题共20分,每小题5分) 21.解:方程两边同乘()32+x x ,得:x x 43=+----------------------------------------------------------2分解这个整式方程,得:1=x --------------------------------------------------------------4分检验:当1=x 时,()()0311232≠+⨯⨯=+x x ,∴原方程的解是1=x .------------------------------------------------------------5分 22.解:原式=1211112++÷⎪⎭⎫⎝⎛+-++a a a a a a =121112++÷+-+a a a a a =()a a a a 211+⋅+ =1+a ------------------------------------------------------------4分当13-=a 时,原式=3113=+-.---------------------------------------5分23.解:设小伟每小时可以整理x 册图书,则小明每小时可以整理1.2x 册图书.60158021120+=x x .-------------------------------------------------------2分 解得: 80=x ----------------------------------------------------3分 经检验80=x 是原方程的解且符合实际.-----------------------4分96802121=⨯=.x .答:小伟每小时可以整理80册图书,小明每小时可以整理96册图书. -----------5分24.解:∵AD 平分∠BAC ,∴∠1=∠2 .∵DE ∥AC ∴ ∠2=∠ADE .∴ ∠1=∠ADE .∴AE =DE .-------------------------------------------------------3分 ∵AD ⊥DB ,∴∠ADB =90°∴∠1+∠ABD =90°,∠ADE +∠BDE =∠ADB =90°, ∴∠ABD =∠BDE .∴DE =BE .--------------------------------------------------------4分 ∵AB=5∴DE =BE= AE=5252121.AB =⨯=.------------------5分 五、解答题(本题共13分,第25题6分,第26题7分) 25.(1)比较大小:21<21x + ≥ 2x (其中1x ≥); 1x x +____2-(其中1x <-)---------2分 (2)解: 111332+++=+++x n x x x x()()1111121+++=+++++x n x x x x x 11112+++=+++x n x x x ∴2=n --------------------------------------------4分 (3)当x = 0 时,133+++x xx 有最小值,最小值为 3 . (直接写出答案)---6分26.(1) AE=AB+DE ; ------------1分 (2)解:猜想:AE =AB+DE +BD 21.------------2分 证明:在AE 上取点F ,使AF =AB ,连结CF , 在AE 上取点G ,使EG =ED ,连结CG .∵C 是BD 边的中点,∴CB =CD=BD 21.∵AC 平分BAE ∠,∴∠BAC =∠F AC .∵AF =AB ,AC =AC ,∴△ABC ≌△AFC .∴CF =CB ,∴∠BCA =∠FCA .----------------------------4分同理可证:CD =CG ,∴∠DCE =∠GCE . ∵CB =CD ,∴CG =CF∵120ACE ∠=︒,∴∠BCA +∠DCE=180°-120°=60°.图(2)∴∠FCA +∠GCE=60°.∴∠FCG=60°.∴△FGC 是等边三角形.-------------------------5分 ∴FG =FC=BD 21. ∵AE =AF+EG+FG . ∴AE =AB+DE +BD 21.-----------------------6分 (3)2410+. ----------------7分说明:其它正确解法按相应步骤给分.EDCBA图(3)EDC BA图(1)G FEDCBA。
青山区2014-2015学年度下学期期末测试八年级数学试卷

青山区2014-2015学年度下学期期末测试八年级数学试卷一.选择题 1.若2+x 在实数范围内有意义,则x 的取值范围是A.2-≥xB.2->x C 0>x . D.2-≤x2.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A.AD=BCB.AC=BDC.BC ∥ADD.∠A=∠B 3.下表是武汉市今年春节放假7天最低气温(℃)的统计结果 日期 除夕 初一 初二 初三 初四 初五 初六 最低气温(℃)44561064这七天最低气温的众数和中位数分别是A.4,4B.4,5C.6,5D.6,6 4.下列计算正确的是A.532=+B.482=⨯C.5656=÷ D.()3-3-2=5.矩形具有而菱形不一定具有的性质是A.对角线互相平分B.对角线互相垂直C.对边相等D.对角线相等 6.点A (1,m )为直线y=2x 上一点,则OA 的长度为A.1B.3C.2D.57.已知一次函数y=kx-3,若y 随x 的增大而增大,则它的图像经过A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限8.某赛季甲,乙两名篮球运动员12场比赛得分情况如表所示,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分平均数大于乙运动员得分平均数D.甲运动员的成绩比乙运动员的成绩稳定9.如图,在Rt △ABC 中,∠ABC=90°,D 为斜边上AB 的中点,动点P 从B 点出发,沿A C B →→运动,如图(1)所示,设S △DPB =y ,点P 运动的路程为x ,若y 与x 之间的函数图像如图(2)所示,则a 的值为A.3B.4C.6D.12 10.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE=BC ,DH ⊥AE 于点H ,BH 并延长交CD 于点F ,连接DE 交BF 于点O ,OE=2,OB 的长度为A.4B.2-6C.22+D.23 二.填空题11.=12-3 。
2014-2015学年湖北省八年级(上)期末数学试卷

2014-2015学年湖北省襄阳市宜城市八年级(上)期末数学试卷一、选择题(本大题共10个小题,在下面的每小题的四个选项中,有且只有一个符合题意,每小题3分,共30分)1.(3分)(2014•牡丹江)下列运算正确的是()A.2x+6x=8x2B.a6÷a2=a3C.(﹣4x3)2=16x6D.(x+3)2=x2+92.(3分)(2014•毕节市)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+23.(3分)(2014秋•宜城市期末)化简:﹣=()A.1 B.﹣x C.x D.4.(3分)(2010•潍坊)如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角形),若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°5.(3分)(2004•济宁)用9根同样长的火柴棒在桌面上摆一个三角形(不许将火柴棒折断,并且全部用完),能摆出不同形状的三角形的个数是()A.1 B.2 C.3 D.46.(3分)(2014秋•宜城市期末)若x+n与x+2的乘积中不含x的一次项,则n的值为()A.﹣2 B.2 C.0 D.17.(3分)(2014秋•孝义市期末)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4 B.3 C.2 D.18.(3分)(2014•益阳)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠29.(3分)(2014•黑龙江)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠310.(3分)(2014秋•宜城市期末)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)(2014秋•宜城市期末)化简:(m+n)(m﹣n)+2n2=.12.(3分)(2014•乐山)若a=2,a﹣2b=3,则2a2﹣4ab的值为.13.(3分)(2014秋•宜城市期末)已知a2﹣3ab+b2=0(a≠0,b≠0),则代数式+的值等于.14.(3分)(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.15.(3分)(2014秋•宜城市期末)如图,AB=AC=8cm,DB=DC,若∠ABC=60°,则BE=cm.16.(3分)(2014秋•宜城市期末)在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=.三、解答题(共52分)17.(5分)(2014秋•宜城市期末)先化简,再求值.(a﹣b)2﹣(a+2b)(a﹣2b)+2a(1+b),其中a=2015,b=﹣1.18.(5分)(2014•资阳)先化简,再求值:(a+)÷(a﹣2+),其中,a满足a﹣2=0.19.(6分)(2014•舟山)解方程:=1.20.(6分)(2014•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.21.(6分)(2014•白银)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.22.(7分)(2014秋•宜城市期末)已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.23.(8分)(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?24.(9分)(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.2014-2015学年湖北省襄阳市宜城市八年级(上)期末数学试卷参考答案一、选择题(本大题共10个小题,在下面的每小题的四个选项中,有且只有一个符合题意,每小题3分,共30分)1.C;2.A;3.B;4.D;5.C;6.A;7.B;8.A;9.C;10.C;二、填空题(每小题3分,共18分)11.m2+n2;12.12;13.3;14.240;15.4;16.45°或135°;三、解答题(共52分)17.;18.;19.;20.;21.;22.;23.;24.;。
青山初二(上)期末数学2014.1

青山区2013--2014学年度第一学期期末教学质量评估卷初二年级数学 2014.1一、选择题(每题3分,共30分)1.下列各数中是无理数的是( ) A.23 B.327 C.3.4010010001 D.π+1 2.根据下列表述,能确定位置的是( )A.包头万达电影院2排B.青山区民族东路C.娜林商厦北偏东30°D.东经118°,北纬40°3.下列函数中是一次函数的是( )A.122-=x yB.x y 1-=C.31+=x y D.1232-+=x x y 4.点P (3+m ,1+m )在直角坐标系的x 轴上,则点P 关于y 轴的对称点的坐标为( )A.)2,0(B.)0,2(-C.)0,2(D.)2,0(-5.如图,∠1,∠2,∠3是三角形ABC 的外角,且∠1=∠2=125°,则∠BAC 的度数是( )A.60°B.70°C.80°D.90°6.如果一组数x 1、x 2、x 3、x 4、x 5的平均数是x ,则另一组数x 1、x 2+1、x 3+2、x 4+3、x 5+4的平均数是( ) A.x B.2+x C.25+x D.10+x 7.下列命题中,属于假命题的是( )A.若0=-b a 则0==b aB.若0>b a -,则b a >C.若0<b a -,则b a <D.若0≠-b a ,则b a ≠8.有一张直角三角形纸片,两直角边AC=6cm ,BC=8cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,如图,则CD 等于( )A.425B.322C.47D.359.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点。
用21,S S分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是( )10.一批宿舍,若每间住1人有10人无住处;若每间住3人,则有10间无人住则这批宿舍间数为( )A.20B.10C.15D.12二、填空题(每题3分,共24分)11.数据0,1,2,3,5,3的平均数是_______,众数为________,中位数是________.12.如图,在竖直高度与水平距离的比为2:1的山坡上种树,要求株距(相邻两数的水平距离)是6m ,斜坡上相邻两数间的坡面距离是________m .13.点P ),3(b -与Q )7,1(+a 关于x 轴对称,则2013)2(a b -=________.14.已知:098.48.683=,且3x -=40.98,则x =________.15.如图,四边形ABCD 中,4=AB ,13=BC ,12=CD ,3=AD ,︒=∠90A ,求四边形ABCD 的面积为________.16.设y x 、为未知数的二元一次方程组⎩⎨⎧=-=+my x m y x 7232的解满足834=-y x ,则_________=m .17.在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图像如图②所示,则当9=x 时,点R 应运动到_______处.18.学生问老师:“您今年有多大?”老师风趣地说:“我像你这么大时,你才1岁,你到我这么大时,我已经37岁了”,老师的年龄为______岁.三、解答题(共46分,要求写出必要的解题步骤)19.计算(4分) 计算:6142216432+- 20.解方程组(每小题5分,共10分)(1)⎪⎩⎪⎨⎧=-2=4y -3x 143y x21.(6分)若AB ∥CD ,EF 与AB 、CD 相交于点E 、F, EP ⊥EF ,∠EFD 的平分线与EP 相交于点P , 且∠BEP= 20°,求∠EPF 的度数.22.(11分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测 试,三人的测试成绩如下表:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分。
青山区2014~2015学年度第一学期八年级期末考试数学试卷(word版)

青山区2014~2015学年度第一学期八年级期末考试数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.如下书写的四个美术字,其中为轴对称的是( )2.要使分式21-x 有意义,则x 的取值应满足( ) A .x ≠2 B .x ≠1 C .x =2 D .x =-13.PM 2.5是大气中微粒直径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学技术手法表示为( )A .2.5×106B .0.25×10-8C .2.5×10-6D .2.5×10-7 4.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E ,已知PE =3,则点P 到AB 的距离是( )A .3B .4C .6D .无法确定5.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( )A .AC =ADB .BC =BD C .∠C =∠D D .∠ABC =∠ABD 6.下列计算正确的是( ) A .a 3·a 2=a 6 B .3a (a -2b )=3a 2-2ab C .a 4÷a 5=a -1 D .30=07.信息技术的储存设备常用B 、K 、M 、G 等作为储存量的单位,其中1G =210M ,1M =210K ,1K =210B (字节),对于一个储存量为4G 的闪存盘,其容量是( )A .230B B .232BC .21000BD .21002B8.如图,从边长为a +2的正方形纸片中剪去一个边长为a -1的正方形(a >1),剩余部分沿虚线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4a +1B .4a +3C .6a +3D .a 2+19.观察规律:(2211-)=432321)211)(211(=⨯=+- 3234322321)311)(311)(211)(211()311)(211(22=⨯⨯⨯=+-+-=--,…… 若20151008)11()411)(311)(211(2222=----n ,n 为正整数,则n 的值为( ) A .1008 B .1009 C .2015 D .2016 10.如图,在MN 的同侧△AMN 和△BMN ,BM 平分∠AMN ,AN 平分∠BNM ,AN 交BM 于点C .设∠A =α°,∠B =β°,下列结论不正确的是( )A .若α=β,则点C 在MN 的垂直平分线上B .若α+β=180°,则∠AMB =∠NMNC .∠MCN =)603(++βα° D .当∠MCN =120°时,延长MA 、NB 交于点O ,则OA =OB二、填空题(本题共有6小题,每小题3分,共18分)11.一辆汽车b 小时行驶了a 千米,则它的平均速度为________千米/小时12.分解因式:x 2-2x +1=________13.如图1,已知三角形纸片ABC ,AB =AC ,∠A =50°,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E 、D 分别在AB 、AC 上,则∠DBC =________14.计算:(xy 2)2÷xy 3=________15.已知a +b =21,那么a 2-b 2+b 的值为________ 16.在△ABC 中,∠A =120°,AB =AC =m ,BC =n ,CD 是的边AB 上的高,则△ACD 的面积为________(用含m 和n 的式子表示)三、解答题(共9题,共72分)17.(本题6分)解方程:xx 332=-18.(本题6分)先化简,再求值:x 2(x -1)-x (x 2+x -1),其中x =2119.(本题6分)如图,AC 和BD 相交于点O ,OA =OC ,OB =OD ,求证:AB ∥CD20.(本题7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-3,5)、B (-4,3)、C (-1,1)(1) 作出△ABC 关于直线x =1对称的△A 1B 1C 1(2) B 1点的坐标________,C 1点的坐标________(3) C 点与C 2点关于直线x =n 对称,则C 2的坐标_________(用含有n 的式子表示)21.(本题7分)在一块a平方公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天哇完成(1) 一个人一天能在稻田上插秧________平方公顷(2) 一台插秧机_______天完成这块稻田的插秧工作(3) 一台插秧机的工作效率是一个人工作效率的多少倍?22.(本题7分)在Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线(1) 如图1,若AD=BD,求∠A的度数(2) 如图2,在(1)的条件下,作DE⊥AB于E,连接EC,求证:△EBC是等边三角形23.(本题10分)某校为美化校园,计划对面积为2000 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480 m2区域的绿化时,甲队比乙队少用6天(1) 求甲乙两工程队每天能完成绿化的面积分别是多少m2?(2) 在该次校园绿化工程中,设安排甲队工作y天①再安排乙队工作___________天,完成该工程(用含有y的式子表示)②若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.12万元,要使这次的绿化总费用不超过7.6万元,乙队的工作天数不超过34天,如何安排甲队的工作天数?24.(本题10分)在△ABC 中,∠ACB =2∠ABC ,∠BAC 的平分线AQ 交BC 于点D ,点P 为AQ 上一动点,过点P 作直线l ⊥AQ 于P ,分别交直线AB 、AC 、BC ,于点E 、F 、M(1) 当直线l 经过点B 时(如图1),求证:ABAF(2) 当M 在BC 延长线上时(如图2),写出BE 、CF 、CD 之间的数量关系,并加以证明(3) 当M 是BC 中点时,请补全图3,并直接写出CFCD =________(不需证明)25.(本题12分)等腰Rt △ABC 中,∠BAC =90°, 点A 、点B 分别是y 轴、x 轴上两个动点,直角边AC 交x 轴于点D ,斜边BC 交y 轴于点E(1) 如图1,若A (0,1),B (2,0),求C 点的坐标(2) 如图2,当等腰Rt △ABC 运动到使点D 恰为AC 中点时,连接DE ,求证:∠ADB =∠CDE(3) 如图3,M 为y 轴上一点,连接CM ,以CM 为直角边向右作等腰Rt △CMN ,其中CM =MN ,连接NB ,若AM =7,求五边形ACMNB 的面积。
包头青山区初二第一学期数学期末试卷

2015.1.7 包头市青山区初二第一学期期末数学试卷一、选择题(每题3分,共30分)1.4的值是()A.4B.2C.-2 D2答案:B考点:算术平方根分析:直接利用算术平方根的定义得出答案。
解:4=2.故选B.2.如果方程x﹣y=3与下面方程中的一个组成的方程组的解为,那么这个方程可以是()A .3x﹣4y=16 B.1x+2=54y C.1x+3=82y D.2(x﹣y)=6y答案:D考点:二元一次方程组的解.分析:把已知方程与各项方程联立组成方程组,使其解为x=4,y=1即可.解:A、联立得:,解得:,不合题意;B、联立得:,解得:,不合题意;C、联立得:,解得:,不合题意;D、联立得:解得:,符合题意.故选D .点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3. 12位参加歌唱比赛同学的成绩各不相同,按成绩取前6位进入决赛,如果小颖知道了自己的成绩后,要判断能否进入决赛,小颖需要知道这12位同学成绩的( )A . 平均数B . 极差C . 中位数D .方差答案:C考点: 统计量的选择.分析: 由于12名同学取前6名,所以根据中位数的意义分析即可.解:∵12名参赛同学取前6名,∴小颖同学只要知道其他11为同学的中位数,然后把自己的成绩与该同学的成绩相比较即可判定自己是否进入决赛.故选C .点评: 此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义.4.下列说法正确的是( )A. 在同一平面内,a,b,c 是直线, //,//,a //b bc 且a 则 B.在同一平面内,a,b,c 是直线,,,a c a b b c ⊥⊥⊥且则C.在同一平面内,a,b,c 是直线, //,,a//c a b b c ⊥且则D.在同一平面内,a,b,c 是直线,//,//,a c a b b c ⊥且则答案:A考点: 平行线的判定与性质;垂线.分析: 根据平行线的判定与平行公理,对各小题分析判断即可得解.解:∵直线a ,b ,c 在同一平面内,∴.//,//,a//c A b b c a 则,正确;,,a //c B a b b c ⊥⊥则,错误;//,,a c C a b b c ⊥⊥∴则,错误;, //,//,a//c D a b b c 则,错误。
青山区2010-2011学年度第一学期八年级期末试题及答案

DCABD C B A 青山区2010-2011学年度第一学期八年级期末测试数学试卷本试卷120分 考试用时120分钟一、选一选(本大题共1 2小题,每小题3分,共36分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答寒的代号在答题卡上将对应的答案标号涂黑。
1.下列运算中,正确的是A . x 2x 3=5x B . x+x 2=x 3 C . 2x 3÷x 2=x D .(2x )3=23x2.若2 x 在实数范围内有意义,则x 的取值范围是( )A. x≥-2B. x≠-2 .C. x≥2D. x≠23.下列各点,不在函数y=2x -1的图象上的是( ) A .(2,3) B .(-9,-5) C .(O ,-1) D .(-1,0)4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )5.估计与28最接近的整数是( )A .4B . 5 C.6 D . 76.下列各式:①XL 一xy';②X2一xy+2y2;③_X2+ y2;④X2—2xy+y2,其中能用 公式法分解因式的有A .1个B .2个C .3个D .4个 7.下列计算:①2+3=5;②2a 3·3a 2= 6a 6;③(2x+y)(x -3y)=2x 2-5xy -3y 2; ④(x+ y)2=x 2+ y 2.其中计算错误的个数是( )A.O 个B.l 个 C .2个 D.3个8.如图,点A 在线段BC 的垂直平分线上,AD=DC ,∠ A=28°, 则∠BCD 的度数为( )A . 76° .B . 62°C . 48°D . 38° 9.已知a+b=2,则a 2-b 2+4b 的值是( )A . 2B . 3C . 4D . 610.如果直线y=ax+2与直线y=bx -3相交于x 轴上的同一点,则a:b 等于 ( )CADEDBACt (分)A . -32 B .32 C.-23 D .23 11.甲、乙两人以相同路线前往距离工作单位10km 的培训中心 参加学习.图中l 甲、,l 乙分别表示甲、乙两人前往目的地所走的路程S (km)随时间t (分)变化的函数图象,以下说法:①乙比甲 提前12分钟到达;②甲的平均速度为15千米/小时;⑧乙走了 8km 后遇到甲;④乙出发6分钟后追上甲,其中正确的有( ) A .4个 B .3个 C .2个 D .1个12.如图: △ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD, CE ⊥CD,且CE=CD ,连接BD. DE. BE ,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥ BE;④BDCD=1. 其中正确的是( ) A .①②③ B.①②④ C .①⑧④ D.①②⑧④二、填一填(每题3分,共12分)13.计算:(2a )3=_____, 24x 2y-(-6xy)=_________, ,2)3(- =___14.若1+-b a 与42++b a 互为相反数,则1+b a =______.15.如图,点D 、E 在△ABC 的BC 边上,.∠ BAD=∠CAE ,要推理得出 △ABF ≌△ACD,可以补充的一个条件是__________________. (不添加辅助线,写出一个即可).16.如图,直线l 1 y 1:= kx+b 与直线l 2:y 2=mx+n 交点为 P(1,1),当y 1>y 2>0时,x 的取值范围是________.三、解下列各题(本大题有9小题,共72分)17.(本题6分)计算:(21x 4y 3 -35x 3y 2+7x 2y 2)÷(-7x 2y )E D ABCFA18. (本题6分)分解因式:9x 2y- 6xy 2+ y 319. (本小题6分)如图,△ABC 中,AB=AC, BD 上AC 于点D , CE ⊥AB 于点E . 求证:BD=CE20. (本题7分)先化简,后求值:[(x 2+y 2)-(x —y)2+2y(x —y)]÷4y,其中2x-y =18.21. (本题7分)(1)点(1,3)沿X 轴的正方向平移4个单位得到的点的坐标是_________ (2)直线y=3x 沿x 轴的正方向平移4个单位得到的直线解析式为(3)若直线l 与(2)中所得的直线关于直线x=2对称,试求直线l22. (本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且BA=BC ,过点C 作BE 的垂线CD ,过E 点作EF 上AE 交∠DCE 的角平分线于F 点,交HE 于P .(1)试判断△PCE 的形状,并请说明理由. (2)若∠HAE=120°,AB=3,求EF 的长. 23.(本题10分)玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需一种EBCECB x 乙地甲地B 省A 省捐赠省台数(台)调运灾区大型挖掘机,甲地需要27台,乙地需要25台;A 、B 两省获知情况后慷慨相助,分别捐赠 该型号挖掘机28台和24台,并将其全部调运往灾区,如果从A 省调运一台挖掘机到甲地耗 资0.4万元,到乙地耗资0.3万元;从B 省调运一台挖掘机到甲地耗资0.5万元,到乙 地耗资0.2万元;设从A 调往甲地x 台挖掘机,A 、B 两省将捐赠的挖掘机全部调往灾区共 耗资y 万元:(1)请完成表格的填空:(2)求出y 与x 之间的函数关系式,并直接写出 自变量x 的取值范围(3)画出这个函数的图象,结合图象说明若要使总耗资不超过16.2万元,有哪几种调运方案?哪种调运方案的总耗资最少?24. (本题10分)如图1,AD∥BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E 在线段AB 上. (1)填空:∠ADE=____°; (2)求证: AB=BC;(3)如图2所示,若F 为线段CD 上一点,∠FBC=30°, 求FCDF的值.25. (本题12分)如图1:直线y= kx+4k (k ≠0)交x 轴于点A ,交y 轴于点C ,点M (2,m)为直线AC 上一点,过点M 的直线BD 交x 轴于点B ,交y 轴于点D . (1)求OAOC的值(用含有k 的式子表示.); (2)若S ∆BOM =3S ∆DOM ,且k 为方程(k+7)(k+5)-(k+6)(k+5=29的根,求直线BD 的 解析式.(3)如图2,在(2)的条件下,P 为线段OD 之间的动点(点P 不与点O 和点D 重合),OE 上AP 于E ,,DF 上AP 于F ,下列两个结论:①DF OE AE +值不变;②OEAE -值不三、解下列各题(本大题有9小题,共72分)17.(本题6分)解:原式=y xy y x -+-5322 (对一项得2分) ……6分 18. (本题6分)解:原式=y(9x 2-6xy+y 2) ……3分 =y(3x-y)2 ……6分19. (本小题6分)证明:∵BD ⊥AC ,CE ⊥AB∴∠ADB=∠AEC=90° ……1分在△ABD 和△AEC 中⎪⎩⎪⎨⎧=∠=∠∠=∠AC AB AA AEC ADB ∴△ABD ≌△AEC(AAS ) ……4分 ∴BD =CE . ……6分20. (本题7分)解:原式=()[]y y xy yxy x y x 422222222÷-++--+ ……2分=[]y y xy y xy x y x 422222222÷-+-+-+ ……3分=()y y xy 4242÷- ……4分=y x 21-……5分 ∵y x -2 =18∴y x 21-=9 ∴原式=9 ……7分21. (本题7分) 解:(1)(5,3); ……1分 (2)y=3x-12; ……3分 (3)设直线l 的解析式为:y=kx+b∵点(4,0)和(0,-12)在直线y=3x-12上,它们关于直线x=2的对称点为: (0,0) (4,-12) ……5分 将x=0,y=0和x=4,y=-12分别代入y= kx+b 中,得:⎩⎨⎧-=+=1240b k b 解得:⎩⎨⎧=-=03b k∴直线l 的解析式为:y=-3x ……7分22. (本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且,过点C 作BE 的垂线CD ,过E 点作交∠DCE 的角平分线于F 点,交HE 于P.(1)试判断△PCE 的形状,并请说明理由; (2)若,AB=3,求EF 的长.解: (1)△PCE 是等腰直角三角形,理由如下: ……1分∵∠PCE=21∠DCE=21×90°=45° ∠PEC=45°∴∠PCE=∠PE C ……3分 ∠CPE=90°∴△PCE 是等腰直角三角形 ……4分 (2)∵∠HEB=∠H=45°∴HB=BE ∵BA=BC∴AH =CE ……5分 而∠HAE=120°∴∠BAE=60°,∠AEB=30° 又∠AEP=90°∴∠CEP=120°=∠HAE ……6分 而∠H=∠FCE=45°∴△HAE ≌△CEF(ASA)∴AE=E F ……7分 又AE=2AB=2×3=6∴EF=6 ……8分23.(本题10分) (1)(每空1分) ……3分解:(2)y=0.4x+0.3(28-x )+0.5(27-x )+0.2(x-3)0.221.3x =-+ ……5分 (273≤≤x 且 x 为整数) ……6分(3)如图,当2.16=y 时,2.163.212.0=+-x5.25=x ……7分 函数图象经过点(25.5,16.2) 又∵273≤≤x∴当275.25≤≤x 时,总耗资不超过16.2万元 ……8分∵x 为整数∴有两种调运方案:①当26=x 时,即从A 省调运26台到甲地,2台到乙地,从B 省调运1台到甲地,23台到乙地;②当27=x 时,即从A 省调运27台到甲地,1台到乙地,从B 省调运0台到甲地,24台到乙地. ……9分∵02.0 -∴y 随x 的增大而减小∴27=x ,即第二种方案耗资最少,为9.15=y 万元. ……10分24. (本题10分) 解:(1)45; ……2分 (2)证明:连接AC∵∠DCB=75º,AD ∥BC ∴∠ADC=105º由等边△DCE 可知:∠CDE =60º故∠ADE =45º由AB ⊥BC ,AD ∥BC 可得:∠DAB=90º ∴∠AED=45º∴AD=AE∴点A 在线段DE 的垂直平分线上 ……4分 又CD=CE∴点C 也在线段DE 的垂直平分线上 ……5分 ∴AC 就是线段DE 的垂直平分线 即AC ⊥DE∴AC 平分∠EAD ∴∠BAC=45°∴△ABC 是等腰直角三角形∴BA=BC ……6分 (3)解:连接AF ,延长BF 交AD 的延长线于点G ∵∠FBC=30º,∠ABC=90 º ∴∠ABF=60º,∠DCB=75º ∴∠BFC=75º故BC=BF由(2)知:BA=BC ∴BA=BF∴△ABF 是等边三角形∴AB=BF=FA ……7分 ∴∠BAC=60 º ∴∠DAF=30 º 又∵AD ∥BC∴∠FAG=∠G=30º∴FG =FA= FB ……8分 又∠DFG=∠CFB∴△BCF ≌△GDF (ASA ) ……9分 ∴DF=CF ∴DFFC=1 ……10分25. (本题12分)(1)解:∵A (-4,0) C(0,4k ) ……2分 由图象可知0k∴OA=4 , OC=4k - ……3分∴k kOA OC -=-=44 ……4分(2)解: ∵()()()()295657=++-++k k k k 解得:12k =-……5分 ∴直线AC 的解析式为:122y x =--∴M (2,-3) ……6分 过点M 作ME ⊥y 轴于E ∴ME=2∵DOM BOM S S ∆∆=3 ∴DOM BOD S S ∆∆=4又∵2OB OD S BOD ⋅=∆ 2MEOD S DOM ⋅=∆ ∴422⨯⋅=⋅MEOD OB OD ∴ME OB 4=∴8=OB∴B (8,0) ……7分 设直线BD 的解析式为:b kx y +=则有 ⎩⎨⎧=+-=+0832b k b k解得:⎪⎩⎪⎨⎧-==421b k ……9分∴直线BD 的解析式为:421-=x y ……8分(3)解:②DFOEAE -值不变.理由如下:过点O 作OH ⊥DF 交DF 的延长线于H ,连接EH ……9分 ∵DF ⊥AP∴∠DFP=∠AOP=90º 又∠DPF=∠APO ∴∠ODH=∠OAE ∵点D 在直线421-=x y ∴D(0,-4) ∴OA=OD=4又∵∠OHD=∠OEA=90 º∴△ODH ≌⊿OAE (AAS ) ……10分 ∴AE=DH , OE=OH , ∠HOD=∠EOA∴∠EOH=∠HOD+∠EOD=∠EOA+∠EOD=90º ……11分 ∴∠OEH=45º∴∠HEF=45º=∠FHE ∴FE=FH∴等腰Rt ⊿OH ≌等腰Rt ⊿FHE ∴OE=OH=FE=HF ∴1=-=-DFHFDH DF OE AE ……12分。
【解析版】2014-2015学年武汉市汉阳区八年级上期末数学试卷

2014-2015学年湖北省武汉市汉阳区八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是()A.线段 B.角 C.等腰三角形 D.直角三角形2.当分式的值为零时,x的值为()A. 0 B. 2 C.﹣2 D.±23.若等腰三角形的两内角度数比为1:4,则它的顶角为()度.A. 36或144 B. 20或120 C. 120 D. 204.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=ax+ay B. x2﹣4x+4=x(x﹣4)+4C. 10x2﹣5x=5x(2x﹣1) D. x2﹣16+3x=(x﹣4)(x+4)+3x5.下列计算错误的是()A. 5a3﹣a3=4a3 B.(a2b)3=a6b3C.(a﹣b)3(b﹣a)2=(a﹣b)5 D. 2m•3n=6m+n6.已知x m=6,x n=3,则的x2m﹣n值为()A. 9 B. C. 12 D.7.若代数式的值是负数,则x的取值范围是()A. x<﹣ B. x<﹣ C. x>﹣ D. x8.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A. 6天 B. 8天 C. 10天 D. 7.5天9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B 的度数是()A. 45° B. 50° C. 55° D. 60°10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40° B. 45° C. 50° D. 55°二、填空题:(每题3分,共18分)11.若x﹣y=5,xy=6,则x2y﹣xy2= .12.计算:(2m+3n)(3n﹣2m)= .13.如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD= .14.若,则= .15.观察:l×3+1=222×4+1=323×5+1=424×6+1=52…,请把你发现的规律用含正整数n(n≥2)的等式表示为(n=2时对应第1个式子,…)16.在平面直角坐标系中,A(4,0),B(0,4),D在第一象限,且DO=DB,△DOA为等腰三角形,则∠OBD的度数为.三、解答题(共72分)17.解分式方程:.18.(1)分解因式:(p﹣4)(p+1)+3p(2)利用因式分解计算:7552﹣2552.19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.20.计算(1)(2).21.已知x+=4,求(1)x2+;(2)(x﹣2)2.22.某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,求动车提速后的平均速度.23.如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.24.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD 是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.25.四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F 两点,(1)当E、F分别在边AB上时(如图1),求证:BM+AN=MN;(2)当E、F分别在边BA的延长线上时如图2,求线段BM、AN、MN之间又有怎样的数量关系;(3)在(1)的条件下,若AC=5,AE=1,求BM的长.2014-2015学年湖北省武汉市汉阳区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是()A.线段 B.角 C.等腰三角形 D.直角三角形考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:线段、角、等腰三角形一定为轴对称图形,直角三角形不一定为轴对称图形.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.当分式的值为零时,x的值为()A. 0 B. 2 C.﹣2 D.±2考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须使分式分子的值为0,并且分母的值不为0.解答:解:∵|x|﹣2=0,∴x=±2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0;x=2时分母x﹣2=0,分式没有意义.故选C.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.若等腰三角形的两内角度数比为1:4,则它的顶角为()度.A. 36或144 B. 20或120 C. 120 D. 20考点:等腰三角形的性质.分析:设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.解答:解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为20°或120°.故选:B.点评:本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.4.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=ax+ay B. x2﹣4x+4=x(x﹣4)+4C. 10x2﹣5x=5x(2x﹣1) D. x2﹣16+3x=(x﹣4)(x+4)+3x考点:因式分解的意义.专题:因式分解.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.5.下列计算错误的是()A. 5a3﹣a3=4a3 B.(a2b)3=a6b3C.(a﹣b)3(b﹣a)2=(a﹣b)5 D. 2m•3n=6m+n考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:A、5a3﹣a3=4a3,计算正确,故本选项错误;B、(a2b)3=a6b3,计算正确,故本选项错误;C、(a﹣b)3(b﹣a)2=(a﹣b)5,计算正确,故本选项错误;D、2m•3n≠6m+n,计算错误,故本选项正确.故选D.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.6.已知x m=6,x n=3,则的x2m﹣n值为()A. 9 B. C. 12 D.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.解答:解:∵x m=6,x n=3,∴x2m﹣n=(x m)2÷x n=62÷3=12.故选C.点评:本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(x m)2÷x n是解题的关键.7.若代数式的值是负数,则x的取值范围是()A. x<﹣ B. x<﹣ C. x>﹣ D. x考点:分式的值.专题:计算题.分析:根据分式的值为负数,求出x的范围即可.解答:解:根据题意得:<0,即5x+2<0,解得:x<﹣.故选B.点评:此题考查了分式的值,熟练掌握不等式的解法是解本题的关键.8.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A. 6天 B. 8天 C. 10天 D. 7.5天考点:分式方程的应用.专题:工程问题.分析:首先设工作总量为1,未知的规定日期为x.则甲单独做需x+1天,乙队需x+4天.由工作总量=工作时间×工作效率这个公式列方程易求解.解答:解:设工作总量为1,规定日期为x天,则若单独做,甲队需x+1天,乙队需x+4天,根据题意列方程得3(+)+=1,解方程可得x=8,经检验x=8是分式方程的解,故选B.点评:本题涉及分式方程的应用,难度中等.考生需熟记工作总量=工作时间×工作效率这个公式.9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B 的度数是()A. 45° B. 50° C. 55° D. 60°考点:线段垂直平分线的性质.分析:首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,继而求得答案.解答:解:连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣4∠E,∵∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故选B.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40° B. 45° C. 50° D. 55°考点:轴对称-最短路线问题.分析:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.解答:解:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°﹣2×50°=80°,∴∠AOB=40°,故选A.点评:本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.二、填空题:(每题3分,共18分)11.若x﹣y=5,xy=6,则x2y﹣xy2= 30 .考点:因式分解-提公因式法.分析:将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.解答:解:∵x﹣y=5,xy=6,∴x2y﹣xy2=xy(x﹣y)=6×5=30.故答案为:30.点评:此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.计算:(2m+3n)(3n﹣2m)= 9n2﹣4m2.考点:平方差公式.专题:计算题.分析:先整理得到原式=(3n+2m)(3n﹣2m),然后利用平方差公式计算.解答:解:原式=(3n+2m)(3n﹣2m)=9n2﹣4m2.故答案为9n2﹣4m2.点评:本题考查了平方差公式:(a+b)(a﹣b)=a2﹣b2.13.如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD= 3 .考点:含30度角的直角三角形.分析:求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.解答:解:∵△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB﹣BD=4﹣1=3,故答案为:3.点评:本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解此题的关键是得出BC=2BD和AB=2BC,难度适中.14.若,则= 7 .考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=2xy,原式变形后代入计算即可求出值.解答:解:∵﹣==﹣2,∴x﹣y=2xy,则原式===7.故答案为:7点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.观察:l×3+1=222×4+1=323×5+1=424×6+1=52…,请把你发现的规律用含正整数n(n≥2)的等式表示为(n﹣1)(n+1)+1=n2(n≥2,且n 为正整数)(n=2时对应第1个式子,…)考点:规律型:数字的变化类.分析:观察不难发现,比n小1的数与比n大1的数的积加上1的和等于n的平方,依此可以求解.解答:解:n=2时,l×3+1=22,即(2﹣1)(2+1)+1=22,n=3时,2×4+1=32,即(3﹣1)(3+1)+1=32,n=4时,3×5+1=42,即(4﹣1)(4+1)+1=42,n=5时,4×6+1=52,即(5﹣1)(5+1)+1=52,…n=n时,(n﹣1)(n+1)+1=n2,故答案为(n﹣1)(n+1)+1=n2(n≥2,且n为正整数).点评:此题主要考查了数字变化规律,根据已知数据得出数据的变与不变是解题关键.16.在平面直角坐标系中,A(4,0),B(0,4),D在第一象限,且DO=DB,△DOA为等腰三角形,则∠OBD的度数为75°.考点:等腰三角形的判定;坐标与图形性质.分析:根据△DOA为等腰三角形,分三种情况:①OD=AD;②OD=OA③OA=OD分别求得各边的长度,再利用三角函数即可得出答案.解答:解:如图,∵D在第一象限,且DO=DB,△DOA为等腰三角形,∴点D分三种情况:①OD1=AD1;②OD2=OA;③OA=OD3;∴∠OBD1=45°,∠OBD2=60°,∠OBD3=15°+60°=75°,故答案为:75°点评:本题考查了等腰三角形的判定以及坐标与图形的性质,熟练利用等腰三角形的性质是解题关键.三、解答题(共72分)17.解分式方程:.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣1+2x+2=7,移项合并得:3x=6,解得:x=2,经检验x=2是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(1)分解因式:(p﹣4)(p+1)+3p(2)利用因式分解计算:7552﹣2552.考点:因式分解的应用.分析:(1)首先利用整式的乘法计算,进一步整理后分解因式即可;(2)利用平方差公式因式分解计算即可.解答:解:(1)原式=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p﹣2);(2)原式=(755+255)×(755﹣255)=1010×500=50005000.点评:此题考查因式分解的运用,掌握平方差公式是解决问题的关键.19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.考点:等腰三角形的性质.专题:计算题.分析:(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.解答:(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.点评:本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.20.计算(1)(2).考点:分式的加减法;分式的乘除法.专题:计算题.分析:(1)原式约分即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:(1)原式=•=2;(2)原式=+==.点评:此题考查了分式的加减法,以及分式的乘除法,熟练掌握运算法则是解本题的关键.21.已知x+=4,求(1)x2+;(2)(x﹣2)2.考点:分式的混合运算;完全平方公式.专题:计算题.分析:(1)原式利用完全平方公式变形,把已知等式代入计算即可求出值;(2)原式利用完全平方公式化简,把已知等式变形后代入计算即可求出值.解答:解:(1)把x+=4两边平方得:(x+)2=x2++2=16,即x2+=14;(2)把x+=4,去分母得:x2﹣4x+1=0,即x2﹣4x=﹣1,原式=x2﹣4x+4=﹣1+4=3.点评:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则是解本题的关键.22.某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,求动车提速后的平均速度.考点:分式方程的应用.分析:设动车提速后的平均速度为xkm/h,则提速前的平均速度为(x﹣50)km/h,根据相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,列方程求解.解答:解:设动车提速后的平均速度为xkm/h,则提速前的平均速度为(x﹣50)km/h,由题意得,=,解得:x=200,经检验,x=200是原分式方程的解,且符合题意.答:动车提速后的平均速度为200km/h.点评:本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)利用平行线的性质结合全等三角形的判定与性质得出即可;(2)过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.解答:(1)证明:如图1,过点P作PF∥BC交AC于点F;∵PF∥BC,∴△APF∽△ABC,∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,∵,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=2,∴DE=1.点评:本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.24.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD 是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.考点:四边形综合题.专题:压轴题.分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解答:解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评:本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.25.四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F 两点,(1)当E、F分别在边AB上时(如图1),求证:BM+AN=MN;(2)当E、F分别在边BA的延长线上时如图2,求线段BM、AN、MN之间又有怎样的数量关系MN=BM﹣AN ;(3)在(1)的条件下,若AC=5,AE=1,求BM的长.考点:全等三角形的判定与性质;等腰直角三角形.专题:几何综合题.分析:(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=Q N,再根据AQ+AN=QN整理即可得证;(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;(3)过点M作MH∥AC交AB于G,交DN于H,可以证明△BMG是等边三角形,根据等边三角形的性质可得BM=MG=BG,根据全等三角形对应角相等可得∠QND=∠MND,再根据两直线平行,内错角相等可得∠QND=∠MHN,然后求出∠MND=∠MHN,根据等角对等边可得MN=MH,然后求出AN=GH,再利用“角角边”证明△ANE和△GHE全等,根据全等三角形对应边相等可得AE=GE,再根据BG=AB﹣AE﹣GE代入数据进行计算即可求出BG,从而得到BM的长.解答:(1)证明:把△DBM绕点D逆时针旋转120°得到△DAQ,则DM=DQ,AQ=BM,∠ADQ=∠BDM,∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD﹣∠MDN=120°﹣60°=60°,∴∠QDN=∠MDN=60°,∵在△MND和△QND中,,∴△MND≌△QND(SAS),∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN;(2)MN+AN=BM.理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,则DN=DP,AN=BP,∵∠DAN=∠DBP=90°,∴点P在BM上,∵∠MDP=∠ADB﹣∠ADM﹣∠BDP=120°﹣∠ADM﹣∠ADN=120°﹣∠MDN=120°﹣60°=60°,∴∠MDP=∠MDN=60°,∵在△MND和△MPD中,,∴△MND≌△MPD(SAS),∴MN=MP,∵BM=MP+BP,∴MN+AN=BM;(3)如图,过点M作MH∥AC交AB于G,交DN于H,∵△ABC是等边三角形,∴△BMG是等边三角形,∴BM=MG=BG,根据(1)△MND≌△QND可得∠QND=∠MND,根据MH∥AC可得∠QND=∠MHN,∴∠MND=∠MHN,∴MN=MH,∴GH=MH﹣MG=MN﹣BM=AN,即AN=GH,∵在△ANE和△GHE中,,∴△ANE≌△GHE(AAS),∴AE=EG=1,∵AC=5,∴AB=AC=5,∴BG=AB﹣AE﹣EG=5﹣1﹣1=3,∴BM=BG=3.点评:本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键,(3)作平行线并求出AN=GH是解题的关键,也是本题的难点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年湖北省武汉市青山区八年级(上)期末数学试卷
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)如下书写的四个美术字,其中为轴对称的是()
A.B.C.D.
2.(3分)要使分式有意义,则x的取值应满足()
A.x≠2 B.x≠1 C.x=2 D.x=﹣1
3.(3分)PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为()
A.2.5×106B.0.25×10﹣5C.2.5×10﹣6D.25×10﹣7
4.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P 到AB的距离是()
A.3 B.4 C.6 D.无法确定
5.(3分)如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是()
A.AC=AD B.BC=BD C.∠C=∠D D.∠ABC=∠ABD
6.(3分)下列计算正确的是()
A.a3•a2=a6B.3a(a﹣2b)=3a2﹣2ab
C.a4÷a5=a﹣1D.30=0
7.(3分)信息技术的储存设备常用B、K、M、G等作为储存量的单位,其中1G=210M,1M=210K,1K=210B(字节),对于一个储存量为4G的闪存盘,其容量是()A.230B B.232B C.21000B D.21002B
8.(3分)如图,从边长为a+2的正方形纸片中剪去一个边长为a﹣1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是()
A.4a+1 B.4a+3 C.6a+3 D.a2+1
9.(3分)观察规律:(1﹣)=,
,…
若(1﹣)(1﹣)(1﹣)…(1﹣)=,n为正整数,则n的值为()
A.1008 B.1009 C.2015 D.2016
10.(3分)如图,在MN的同侧作△AMN和△BMN,BM平分∠AMN,AN平分∠BNM,AN交BM于点C.设∠A=α°,∠B=β°,下列结论不正确的是()
A.若α=β,则点C在MN的垂直平分线上
B.若α+β=180°,则∠AMB=∠NMB
C.∠MCN=°
D.当∠MCN=120°时,延长MA、NB交于点O,则OA=OB
二、填空题(本题共有6小题,每小题3分,共18分)
11.(3分)一辆汽车b小时行驶了a千米,则它的平均速度为千米/小时.
12.(3分)分解因式:x2﹣2x+1=.
13.(3分)如图1,已知三角形纸片ABC,AB=AC,∠A=50°,将其折叠,如图2,使点A 与点B重合,折痕为ED,点E、D分别在AB、AC上,则∠DBC=.
14.(3分)计算:(xy2)2÷xy3=.
15.(3分)已知a+b=,那么a2﹣b2+b的值为.
16.(3分)在△ABC中,∠A=120°,AB=AC=m,BC=n,CD是△ABC的边AB的高,则△ACD的面积为(用含m,n的式子表示).
三、解答题(共9题,共72分)
17.(6分)解方程:.
18.(6分)求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.
19.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.
20.(7分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5)、B (﹣4,3)、C(﹣1,1)
(1)作出△ABC关于直线x=1对称的△A1B1C1;
(2)B1点的坐标,C1点的坐标;
(3)C点与C2点关于直线x=n对称,则C2的坐标(用含有n的式子表示)
21.(8分)在一块a平方公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成.
(1)一个人一天能在稻田上插秧平方公顷;
(2)一台插秧机天完成这块稻田的插秧工作;
(3)一台插秧机的工作效率是一个人工作效率的多少倍?
22.(7分)在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线.
(1)如图1,若AD=BD,求∠A的度数;
(2)如图2,在(1)的条件下,作DE⊥AB于E,连接EC.求证:△EBC是等边三角形.
23.(10分)某校为美化校园,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天.
(1)求甲乙两工程队每天能完成绿化的面积分别是多少m2?
(2)在该次校园绿化工程中,设安排甲队工作y天
①再安排乙队工作天,完成该工程(用含有y的式子表示)
②若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.12万元,要使这次的绿化总费用不超过7.6万元,乙队的工作天数不超过34天,如何安排甲队的工作天数?
24.(10分)在△ABC中,∠ACB=2∠ABC,∠BAC的平分线AQ交BC于点D,点P为AQ上一动点,过点P作直线l⊥AQ于P,分别交直线AB、AC、BC于点E、F、M.
(1)当直线l经过点B时(如图1),求证:AB=AF;
(2)当M在BC延长线上时(如图2),写出BE、CF、CD之间的数量关系,并加以证明;(3)当M是BC中点时,请补全图3,并直接写出=(不需证明)
25.(12分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.
(1)如图1,若A(0,1),B(2,0),求C点的坐标.
(2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE.
(3)如图3,M为y轴上一点,连接CM,以CM为直角边向右作等腰Rt△CMN,其中CM=MN,连接NB,若AM=7,求五边形ACMNB的面积.
2014-2015学年湖北省武汉市青山区八年级(上)期末数
学试卷
参考答案
一、选择题(本题共10小题,每小题3分,共30分)
1.B;2.A;3.C;4.A;5.B;6.C;7.B;8.C;9.C;10.D;
二、填空题(本题共有6小题,每小题3分,共18分)
11.;12.(x-1)2;13.15°;14.xy;15.;16.;
三、解答题(共9题,共72分)
17.;18.;19.;20.(6,3);(3,1);(2n+1,1);21.;;22.;23.(50-2y);24.2;25.;。