整式的乘除和因式分解

合集下载

八年级数学人教版上册第14章整式的乘除与因式分解14.2.2完全平方公式(第1课时图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.2.2完全平方公式(第1课时图文详解)

八年级上册第14章整式的乘除与因式分解
一位老人非常喜欢孩子.每当有孩子到他家做客时, 老人都要拿出糖果招待他们.来一个孩子,老人就给这个 孩子一块糖,来两个孩子,老人就给每个孩子两块塘,… (1)第一天有a个男孩去了老人家,老人一共给了这些孩
子多少块糖? a2
(2)第二天有b个女孩去了老人家,老人一共给了这些孩
八年级上册第14章整式的乘除与因式分解
(2)(-a2+b3)2 【解析】原式= (b3-a2)2
=b6-2 a2 b3+a4 ∵(a-b)2 =(b-a)2 ∴(-a2 +b3)2 = (a2 -b3)2
八年级上册第14章整式的乘除与因式分解
【例2】运用完全平方公式计算:
(1) 1022;
(2) 992.
(2) (4x-3y)2 =16x2-24xy+9y2
(4)(-2m-1)2 =4m2+4m+1
八年级上册第14章整式的乘除与因式分解
1.(日照·中考)由m(a+b+c)=ma+mb+mc,可得a+b)(a2- ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2) =a3+b3 ①.我们把等式①叫做多项式乘法的立方公式. 下列应用这个立方公式进行的变形不正确的是( ) (A)(x+4y)(x2-4xy+16y2)=x3+64y3 (B)(2x+y)(4x2-2xy+y2)=8x3+y3 (C)(a+1)(a2+a+1)=a3+1 (D) x3+27=(x+3)(x2-3x+9) 【解析选】C.根据乘法的立方公式(a+b)(a2-ab+b2)

整式的乘除知识点归纳

整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。

一、整式的定义整式由单项式或多项式组成。

单项式是一个数字或变量的乘积,也可以包含指数。

例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。

多项式是多个单项式的和。

例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。

二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。

2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。

3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。

在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。

例如,(2x^2)×(3y)=6x^2y。

三、整式的除法整式的除法是乘法的逆过程。

除法运算中,被除数除以除数得到商。

以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。

例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。

例如,5/0没有意义。

在进行整式的除法运算时,要注意约分和消去的原则。

例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。

四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。

常见的运算顺序规则如下:1.先解决括号内的运算。

2.然后进行乘法和除法的运算。

3.最后进行加法和减法的运算。

五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。

对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。

八年级上数学整式的乘除与因式分解基本知识点

八年级上数学整式的乘除与因式分解基本知识点

整式是一个或多个代数式的和、差或积。

整式的乘除与因式分解是数学中非常重要的概念,是解决各种代数问题的基础。

本文将详细介绍八年级上数学中整式的乘除与因式分解的基本知识点。

一、整式的乘法1.1 单项式的乘法:单项式的乘法是指单项式与单项式之间的乘法。

例如:2x ×3y = 6xy,-4a^2 × 5b^3 = -20a^2b^31.2多项式的乘法:多项式的乘法是指多项式与多项式之间的乘法。

例如:(3x+2)(x-1)=3x^2+x-2二、整式的除法2.1 单项式的除法:单项式的除法是指单项式除以单项式。

例如:4x^2 ÷ x = 4x,10a^3b^2 ÷ 2ab = 5a^2b。

2.2多项式的除法:多项式的除法是指多项式除以多项式。

例如:(12x^3+9x^2+3x)÷3x=4x^2+3x+1三、整式的因式分解整式的因式分解是将一个整式写成几个整式的乘积的形式,其中每个整式都是原来整式的因式。

例如:12x^2+8xy,将其因式分解为4x(3x+2y)。

3.1 提取公因式:如果一个整式的每一项都能被同一个整式整除,那么这个公因式就是整式的一个因子。

例如:12x^2+8xy,公因式是4x。

3.2分解差的平方:差的平方是指形如"一个数的平方减另一个数的平方"的表达式。

例如:x^2-9,可因式分解为(x-3)(x+3)。

3.3 分解二次三项式:二次三项式是指形如"一个平方项加两个相同系数的次项"的表达式。

例如:x^2+2xy+y^2,可因式分解为(x+y)^2四、习题例析例1:将多项式4x^2+16x因式分解。

解:这个多项式2x的平方加4x的倍数,所以可以因式分解为4x(x+4)。

例2:将多项式a^2-9因式分解。

解:由差的平方公式可得,a^2-9=(a-3)(a+3)。

例3:将多项式4x^2y^2-8xy^2因式分解。

《因式分解》整式的乘除与因式分解

《因式分解》整式的乘除与因式分解

《因式分解》整式的乘除与因式分解汇报人:日期:CATALOGUE目录•整式的乘除•因式分解的方法•因式分解的应用•因式分解的实践练习•因式分解的注意事项和易错点•因式分解的复习与巩固01整式的乘除单项式乘单项式系数乘法:将两个单项式的系数相乘作为积的系数。

相同字母的幂相乘:把一个单项式的字母因数与另一个单项式的相同字母的幂相乘作为积的一个因式,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

对于只在第二个单项式里含有的字母,则连同它的指数也作为积的一个因式:同样地处理其他的单项式。

系数相除将除式的系数与被除式的系数相除作为商的系数。

相同字母的幂相除把被除式的相同字母的幂与除式的相同字母的幂相除作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

单项式除以单项式•按整式乘法法则进行计算:用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。

多项式乘多项式•顺序:先乘方,再乘除,然后加减;有括号的先算括号里面的;同级运算按从左到右的顺序进行。

整式的混合运算02因式分解的方法总结词提公因式法是因式分解中最基本的方法之一,其核心是将多项式中的公因式提取出来,形成新的多项式。

详细描述提公因式法适用于有公因式的多项式。

通过将多项式中的公因式提取出来,放在多项式的最前面,然后除以公因式得到新的多项式。

这个方法可以简化多项式的计算和化简过程。

提公因式法公式法是因式分解中比较常用的方法之一,其核心是利用已知的公式或定理来进行因式分解。

总结词公式法适用于一些特定的多项式。

这些多项式往往有对应的公式或定理可以利用来进行因式分解。

通过将多项式代入公式或定理中,可以得到新的多项式,从而简化计算和化简过程。

详细描述公式法十字相乘法总结词十字相乘法是一种特殊的因式分解方法,其核心是将二次项和常数项分别用交叉相乘的方式进行因式分解。

详细描述十字相乘法适用于一些特定的二次多项式。

初二数学整式的乘除和因式分解

初二数学整式的乘除和因式分解

初二数学整式的乘除和因式分解教案计划一、知识点总结:1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

2、幂的乘法则:幂的乘方,底数不变,指数相乘。

3、积的乘法则:积的乘方,等于各因数乘方的积。

4、同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

5、零指数和负指数;6、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加。

8、多项式与多项式相乘的法则。

二、例题讲解:1、(a+b)(a+b)=a^2+2ab+b^22、(-3)^5=(-3)(-3)(-3)(-3)(-3)= -2433、(2x^2y^3z)(-3xy)= -6x^3y^4z4、(ab)/(a)=b5、2^-3=1/(2^3)=1/86、(-2x^2y^3z)(3xy)= -6x^3y^4z7、2x(2x-3y)-3y(x+y)=4x^2-6xy-3xy-3y^2=4x^2-9xy-3y^28、(3a+2b)(a-3b)=3a^2-7ab-6b^29、单项式的除法法则:单项式相除时,先将系数相除,再将同底数幂相除,将商的因式作为结果,对于只在被除式中含有的字母,则将其连同指数作为商的一个因式。

例如,-7abm÷49ab可以化简为-1/7m。

10、多项式除以单项式的法则:多项式除以单项式时,先将多项式的每一项除以单项式,然后将所有商相加。

例如,(am+bm+cm)÷m可以化简为a+b+c。

11、平方差公式:平方差公式展开只有两项,左边是两个二项式相乘,其中一个二项式的两项互为相反数,右边是相同项的平方减去相反项的平方。

例如,(a+b)(a-b)=a^2-b^2.12、完全平方公式:完全平方公式展开有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。

整式的乘除与因式分解知识点归纳解析

整式的乘除与因式分解知识点归纳解析

整 式 的 乘 除 及 因 式 分 解知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

5、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:________3=⋅a a ;________32=⋅⋅a a a532)()()(b a b a b a +=+•+,逆运算为:6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==例如:_________)(32=a ;_________)(25=x ;()334)()(a a = 7、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-________)(3=ab ;________)2(32=-b a ;________)5(223=-b a8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

人教版数学八上第十五章“整式的乘除与因式分解”简介

人教版数学八上第十五章“整式的乘除与因式分解”简介

第十五章“整式的乘除与因式分解”简介人民教育出版社中学数学室左怀玲俞求是人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。

本章的主要内容是整式的乘除运算、乘法公式以及因式分解。

本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。

整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识。

本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。

本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。

其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。

在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。

首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。

在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。

15.2 乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。

乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aaa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()p p p x x x +⋅-⋅-(p 为正整数); (3)232(2)(2)n ⨯-⋅-(n 为正整数). 2、已知2220x +=,求2x 的值.类型二、幂的乘方法则 3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -.4、已知25mx =,求6155m x -的值.【变式1】已知2ax =,3bx =.求32a bx +的值.【变式2】已知84=m,85=n,求328+m n的值.类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【巩固练习】 一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15cD.8c2.2nn a a+⋅的值是( ). A. 3n a+B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).A.224x x x +=B.347x x x x ⋅⋅= C. 4416a a a ⋅= D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010 C. 100×310=510 D. 100×1000=410 5.下列计算正确的是( ).A.()33xy xy =B.()222455xy x y -=-C.()22439xx -=-D.()323628xyx y -=-6.若()391528m n a ba b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25mn==,则2m n+=____________.8. 若()319xaa a ⋅=,则x =_______. 9. 已知35na=,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na=,则3222()8()n n a a --=__________.三.解答题13. 判断下列计算的正误.(1)336x x x += ( ) (2) 325()y y -=- ( ) (3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335nn x x x +⋅=,求n 的值.(2)若()3915n ma b b a b ⋅⋅=,求m 、n 的值.整式的乘法【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算. 要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成. (4)三个或三个以上的单项式相乘同样适用以上法则. 要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同. (3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.【典型例题】类型一、单项式与单项式相乘1、计算:(1)221323ab a b abc ⎛⎫⋅-⋅ ⎪⎝⎭; (2)121(2)(3)2n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭;(3)232216()()3m n x y mn y x -⋅-⋅⋅-.类型二、单项式与多项式相乘2、 计算:(1)21242233ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭; (2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭;(3)2222340.623a ab b a b ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭; (4)224312(6)2m n m n m n ⎛⎫-+- ⎪⎝⎭.【变式2】若n 为自然数,试说明整式()()2121n n n n +--的值一定是3的倍数.类型三、多项式与多项式相乘 3、计算:(1)(32)(45)a b a b +-;(2)2(1)(1)(1)x x x -++;(3)()(2)(2)()a b a b a b a b +--+-;(4)25(21)(23)(5)x x x x x ++-+-.一.选择题1.下列算式中正确的是( ). A.326326a a a⋅=B.358248x x x ⋅= C.44339x x x ⋅=D.77145510y y y ⋅=2.()2212m n mn x -⋅-的结果是( ). A. x n m 2421 B. 3321n m C. x n m 3321 D. x n m 3321-3.下面计算正确的是( ).A.()()22222a b a b a b +-=-B.()()22a b a b a b --+=-C.()()22333103a b a b a ab b --=-+D.2233()()a b a ab b a b --+=-4.已知()()221323x x x mx +-=--,那么m 的值为( ). A.-2B.2C.-5D.55. 要使()23254x x a x b x x ++-=++成立,则a ,b 的值分别是( ).A. 22a b =-=-,B. 22a b ==,C. 22a b ==-,D. 22a b =-=,6.设M =()()37x x --,N =()()28x x --,则M 与N 的关系为( ). A.M <N B.M >NC.M =ND.不能确定二.填空题7. 已知三角形的底边为(62)a b -,高是(26)b a -+,则三角形的面积是_________. 8. 计算:①()()23x x ++=________;②()()37x x ++=______;③()()710x x +-=_______;④()()56x x --=______.9. 方程()()212512x x x x ---=的解为________. 10. ()()()_______x y z y x z z x y ---+-=.11. 计算:()()22582x xy yx y -+-=________________________.12. 若2xy =,3x y +=,则()()11x y ++=____________.三.解答题13. 请计算下图中阴影部分的面积.14. 解下列各方程.(1)222(1)(32)22y y y y y y +--+=- (2)25(3)4(6)(4)0x x x x x x +--++-+= 15. 化简求值:(1)11112323x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭,其中4x =-.(2)22323(21)(342)x x x x x x x -+--+,其中1x =-.整式的除法【学习目标】1. 会用同底数幂的除法性质进行计算.2. 会进行单项式除以单项式的计算.3. 会进行多项式除以单项式的计算. 【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点四、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.类型二、单项式除以单项式 2、计算:(1)342222(4)(2)x y x y ÷;(2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭;(3)22[()()]()()x y x y x y x y +-÷+÷-;(4)2[12()()][4()()]a b b c a b b c ++÷++.【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷;(3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯.类型三、多项式除以单项式 4、计算:(1)324(67)x y x y xy -÷;(2)42(342)(2)x x x x -+-÷-;(3)22222(1284)(4)x y xy y y -+÷-;(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭.【变式】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦;(2)2[(2)(2)4()]6x y x y x y x +-+-÷.一.选择题1. 下列计算不正确的是( ) A. 331mm xx -÷=xB.1262x x x÷=C. ()21035x x x x ÷-÷= D.()33mm x x÷=12. 423287a b a b ÷的结果是 ( ) A.24abB.44a bC. 224a bD. 4ab3. ()232255a b ab ÷的结果是 ( )A.aB.5aC. 25a bD.25a4. 如果□×3ab =23a b ,则□内应填的代数式是( ) A.ab B.3abC.aD.3a5.下列计算正确的是( ).A.()13n n x y z +-÷()13n nx y z +- =0B.()()221510532x y xy xy x y -÷-=-C.x xy xy y x 216)63(2=÷- D.231123931)3(x x x x xn n n +=÷+-++ 6. 太阳的质量约为2.1×2710t ,地球的质量约为6×2110t ,则太阳的质量约是地球质量的( )A.3.5×610倍B.2.9×510倍C.3.5×510倍D.2.9×610-倍 二.填空题 7. 若35k -=1,则k =________.8. 计算()()34432322396332x y x y x y x y x y xy -+÷=-+-.9.直接写出结果:(1)()()35aa -÷-=_______;(2)()24a a -÷-=_______;(3)1042x x x ÷÷=_______; (4)10n ÷210n -=_______;(5)()3mm aa ÷=_______;(6)()()21nn y x x y --÷-=_______.10.直接写出结果:(1)()()()32222a a a a ⎡⎤---÷-⎢⎥⎣⎦=____________; (2)(51181153n n n xx x ++--+-)÷(13n x --)=_____________;(3)(____________)·(234x y -)=5445278212x y x y x y --.11. 若()022x -有意义,则x ______________.12.学校图书馆藏书约3.6×410册,学校现有师生约1.8×310人,每个教师或学生假期平均最多可以借阅______册图书.三.解答题 13.计算:(1)6334533693().45105a x a x ax ax -+-÷(2)()()2337353532728217m n m m n m n m n ⎡⎤+-÷-⎢⎥⎣⎦14. 先化简,再求值:()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦,其中a =-5.乘法公式【学习目标】1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算. 【要点梳理】要点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 要点二、完全平方公式完全平方公式:()2222a b a ab b +=++2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+要点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 要点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++. 【典型例题】类型一、平方差公式的应用1、下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果.(1)()()2332a b b a --; (2) ()()2323a b a b -++;(3) ()()2323a b a b ---+; (4) ()()2323a b a b +-;(5) ()()2323a b a b ---; (6) ()()2323a b a b +--.【变式】计算:(1)332222x x y y ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭; (2)(2)(2)x x -+--;2、计算:(1)59.9×60.1; (2)102×98.【变式】用简便方法计算:(1)899×901+1; (2)99×101×10001; (3)22005-2006×2004;类型二、完全平方公式的应用3、计算:(1)()23a b +; (2)()232a -+; (3)()22x y -; (4)()223x y --.4、计算:(1)22002;(2)21999.(3)2999.9.5、已知7a b +=,ab =12.求下列各式的值:(1) 22a ab b -+;(2) 2()a b -.【变式】已知2()7a b +=,2()4a b -=,求22a b +和ab 的值.一.选择题1. 在下列计算中,不能用平方差公式计算的是( )A.))((n m n m +--B.()()3333x yxy -+ C.))((b a b a --- D.()()2222c ddc -+2.若x y +=6,x y -=5,则22x y -等于( ).A.11B.15C.30D.603.下列计算正确的是( ). A.()()55m m -+=225m -B. ()()1313m m -+=213m -C.()()24343916n n n ---+=-+D.( 2ab n -)(2ab n +)=224ab n-4.下列多项式不是完全平方式的是( ). A.244x x -- B.m m ++241C.2296a ab b ++D.24129t t ++5.下列等式能够成立的是( ).A.()()22a b a b -=--B.()222x y x y -=-C.()()22m n n m -=-D.(x -y)(x +y)=(-x -y)(x -y)6.下列等式不能恒成立的是( ).A.()222396x y x xy y -=-+B.()()22a b c c a b +-=--C.22241)21(n m n m n m +-=- D.()()()2244x y x y x y x y -+-=-二.填空题7.若2216x ax ++是一个完全平方式,则a =______.8. 若2294x y +=()232x y M ++,则M =______. 9. 若x y +=3,xy =1,则22x y +=_______.10.观察等式222222213,325,437-=-=-=,…用含自然数n 的等式表示它的规律为:_________.11. ()25(2)(2)21x x x -+--=___________.12.若()212x -=,则代数式225x x -+的值为________.三.解答题13. 计算下列各题:(1)33(2)(2)22x y x y +--+(2)2(4)(4)(16)x x x +-+(3)2(2)()4(2)x y x y x y -+--(4)23()(2)(2)y z y z z y --+-+14.先化简,再求值:22)1(2)1)(1(5)1(3-+-+-+a a a a ,其中3=a .15.已知:2225,7x y x y +=+=,且,x y >求x y -的值.提公因式法【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式. 【要点梳理】 要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念 1、观察下列从左到右的变形:⑴()()3322623a b a bab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+; ⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填序号)【变式】下列式子中,从左到右的变形是因式分解的是( )A .()()21232x x x x --=-+ B .()()23212x x x x -+=--C .()24444x x x x ++=++ D .()()22x y x y x y +=+-类型二、提公因式法分解因式2、(1)多项式2363x xy -+的公因式是________;(2)多项式324168mn m m --的公因式是________;(3)多项式()()()x b c a y b c a a b c +--+----的公因式是________; (4)多项式2(3)(3)x x x -+-的公因式是________.【变式】下列多项式中,能用提公因式法分解因式的是( )A .2x y -B .22x x + C .2x y 2+ D .2x xy y 2-+3、若()()()232p q q p q p E ---=-,则E 是( )A .1q p --B .q p -C .1p q +-D .1q p +-【变式】把多项式()()()111m m m +-+-提取公因式()1m -后,余下的部分是( )A .1m +B .2mC .2D .2m +4、分解因式:(1)224a a -;(2)2323664a b ab c ab +-;(3)322262a b a b ab -+-;【变式】用提公因式法分解因式正确的是( )A .()222129343abc a b c abc ab -=-B .()2233632x y xy y y x x y -+=-+ C .()2a ab ac a a b c -+-=--+ D .()2255x y xy y y x x +-=+类型三、提公因式法分解因式的应用5、若0232=-+x x ,求x x x 46223-+的值.一.选择题1. 下列各式变形中,是因式分解的是( )A.()222211a ab b a b -+-=-- B.2212221x x x x ⎛⎫+=+⎪⎝⎭C.()()2224x x x +-=- D.()()()421111x x x x -=++-2. 将多项式3222236312x y x y x y -+-分解因式时,应提取的公因式是( ) A.3xy - B. 23x y - C. 223x y - D. 333x y - 3. 多项式32nnn a aa +-+分解因式的结果是( )A.()321n a a a -+ B. ()22n n a a a -+C. ()221n n a a a -+ D. ()31n na a a -+4. 分解因式()()2552x y x -+-的结果是( )A. ()()251x y -+B. ()()251x y --C. ()()521x y -+D. ()()521x y -- 5. 下列因式分解正确的是( ) A.()()()m a b n a b a b mn -+-=- B.()()()()m x y n y x x y m n ---=-- C. ()()1mn x y mn x y mn ++=++D.()()()()232232y x x y x y x y -+-=--- 6. 把3223284x y x y xy ++提公因式得( )A .2232(42)x x xy y ++B .32232(42)x y x y xy ++C .222(42)xy x xy y ++D .22(4)xy x xy + 二.填空题7. 因式分解是把一个______________化为______________的形式.8. ,,ax ay ax -的公因式是___________;236,2,4mn m n mn -的公因式是__________. 9. 因式分解32a ab -=_________________.10. 多项式33222339a b a b a b --的公因式是______________. 11. 因式分解:323361218a b c ab c abc +-=_________________. 12. 因式分解243210515m n m n m n -+-=_____________________. 三.解答题13. 应用简便方法计算:(1)1098222--; (2)16 3.148 3.1426 3.14⨯+⨯+⨯14.已知1,3a b ab +==-,求22a b ab +和3322a b ab +的值.平方差公式【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——平方差公式1、下列各式中能用平方差公式分解因式的有________(填序号).①22a b --;②224a b -;③224x y --;④2291a b -+; ⑤22()()x y y x -+-;⑥41x -.2、分解因式:(1)229a b -; (2)22251x y -; (3)22168194a b -+; (4)214m -+.【变式1】分解因式:(1)212516m -;(2)22(2)16(1)x x -++-.【变式2】下列分解因式中,错误的是( )A .24(2)1(23)(25)x x x --=--B .22112(2)(2)22n m n m n m -+=-+- C .22216()9()(7)a b a b a b --+=-- D .219(13)(13)x x x -=+-类型二、平方差公式的应用3、对于任何整数m ,多项式2(45)81m +-都能被( )整除.A .8B .mC .2m +1D .m +1【变式1】如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形)(b a >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )A.()()22a b a b a b -=+-B. ()2222a b a ab b +=++ C. ()2222a b a ab b -=-+ D. ()()2222a b a b a ab b +-=+-【变式2】用简便方法计算:(1)2199919982000-⨯;(2)2253566465⨯-⨯.一.选择题1. 下列各式中,不能用平方差公式分解因式的是( ). A.249y - B.2149x - C.44m n -- D.()2194p q +-2. 一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是().A .46-bB .64b -C .46+bD .46--b3. ()22a b c --有一个因式是a b c +-,则另一个因式为( )A.a b c --B.a b c ++C. a b c +-D.a b c -+4. 在一个边长为12.75cm 的正方形内挖去一个边长为7.25cm 的正方形,则剩下的面积应当是( ) A .220cm B .2200cm C .2110cm D .211cm 5. 下列因式分解错误的是( )A.()()21161414a a a -=+-B.()321x x x x -=-C.()()222a b c a bc a bc -=+-D.224220.010.10.1933m n n m m n ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭6. 下列分解因式结果正确的是( )A.()223633x y xy xy x y +=+B.()()()()222233x y x y x y x y +-+=++C.()()422111x x x -=+- D.()()3312322x x x x x -=+-二.填空题7. 分解因式:224x y -=___________,223a b -=____________.8. 利用因式分解计算:22401599-=__________,2211387-=____________.9. 分解因式:42x x -=___________,()()244b a a -+-=______________.10. 若226m n -=,且2m n -=,则m n +=_________.11. 若多项式24a M +能用平方差公式分解因式,那么单项式M =________.(写出一个即可)12. 用公式简算:22200820082009+-=________________. 三. 解答题13. 把下列各式因式分解(1)2249a b - (2)4481m n -(3)622123a a b - (4)()2231a b b b -+-.14. 已知23x y +=,22415x y -=-. (1)求2x y -的值; (2)求x 和y 的值.完全平方公式【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——完全平方公式 1、 下列各式是完全平方式的是( ).A .412+-x xB .21x +C .1++xy xD .122-+x x【变式】(1)如果多项式219x kx ++是一个完全平方式,那么k 的值为 ; (2)如果多项式24x kx -+是一个完全平方式,那么k 的值为 .2、分解因式:(1)21449x x ++; (2)29124x x -+; (3)214a a ++; (4)22111162a b ab -+.【变式】分解因式:(1)29()12()4a b a b +-++; (2)222()()a a b c b c ++++;【变式】分解因式:(1)224()12()()9()x a x a x b x b ++++++.(2)22224()4()()x y x y x y +--+-.(3)2244x y xy --+;(4)322344x y x y xy ++;(5)()()2222221x x x x -+-+;一.选择题1. 将224144a a ++因式分解,结果为( ).A.()()188a a ++B.()()1212a a +-C.()212a +D.()212a -2.2()nm x y -是下列哪一个多项式分解的结果( )A .22nm x y - B .2n n m m x x y y -+ C .222nn m m xx y y -+ D .2n n m m x x y y --3. 下列各式可以化为完全平方式的是( ).A.21x x ++ B.221x x +- C.244a a ++ D.22a b +4. 如果222536a mab b ++可分解为()256a b -,那么m 的值为( ).A.30B.-30C.60D.-60 5. 如果229x kxy y ++是一个完全平方公式,那么k 是( ) A.6 B.-6 C.±6 D.18 6. 下列各式中,是完全平方式的是( )A.2991x x -- B.2691y y -++ C.2169y y -- D.2931y y -- 二.填空题7. 若()22416-=+-x mx x ,那么________m =.8. 因式分解:()()225101a b a b -+-+=____________. 9. 分解因式:214m m ---=_____________. 10. 分解因式:221n n xx -+=_____________.11. 分解因式:()()154a a +++ =_____________.12. (1)()()225=a a -+;(2)()()22412m mn -+=.三.解答题 13. 若13x x +=,求221x x+的值.14. 已知1x y +=,316xy =,求32232x y x y xy -+的值.。

相关文档
最新文档