2013中考数学试题分类汇编----一元二次方程
2013年中考数学精选——一元二次方程精题及答案

中考数学压轴题专集——一元二次方程1.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.(1)当k为何值时,△ABC是以BC为斜边的直角三角形;(2)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.解:(1)∵AB、AC方程x2-(2k+3)x+k2+3k+2=0的两个实数根∴AB+AC=2k+3,AB·AC=k2+3k+2∵△ABC是以BC为斜边的直角三角形,且BC=5∴AB2+AC2=BC2,(AB+AC)-2AB·AC=25即(2k+3)2-2(k2+3k+2)=25∴k2+3k-10=0,∴k1=-5,k,2=2当k=-5时,方程为x2+7x+12=0,解得x1=-3,x2=-4(均不合题意,舍去)当k=2时,方程为x2-7x+12=0,解得x1=3,x2=4∴当k=2时,△ABC是以BC为斜边的直角三角形(2)若△ABC是等腰三角形,则有①AB=AC;②AB=BC;③AC=BC三种情况∵△=(2k+3)2-4(k2+3k+2)=1>0∴AB≠AC,故第①种情况不成立∴当AB=BC或AC=BC时,5是方程x2-(2k+3)x+k2+3k+2=0的根∴52-5(2k+3)+k2+3k+2=0即k2-7k+12=0,解得k1=3,k2=4当k=3时,方程为x2-9x+20=0,解得x1=4,x2=5此时△ABC的三边长分别为5、5、4,周长为14当k=4时,方程为x2-11x+30=0,解得x1=5,x2=6此时△ABC的三边长分别为5、5、6,周长为162.已知△ABC的三边长为a、b、c,关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根,又sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根.(1)求m的值;(2)若△ABC的外接圆面积为25π,求△ABC的内接正方形的边长.解:(1)∵关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根∴△=4(a+b)2-4(c2+2ab)=0,即a2+b2=c2∴△ABC是直角三角形∵sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根∴sin A+sin B=2m-5m+5,sin A·sin B=m-8m+5∵在Rt△ABC中,sin2A+sin2B=sin2A+cos2A=1 ∴(sin A+sin B)2-2sin A·sin B=1即(2m-5m+5)2-2×m-8m+5=1∴m2-24m+80=0,解得m1=4,m2=20当m=4时,方程为9x2-3x-4=0,解得x1=3+15318,x2=3-15318<0∵在Rt△ABC中,sin A>0,sin B>0 ∴m=4不合题意,舍去当m=20时,方程为25x2-35x+12=0,解得x1=35,x2=45,符合题意∴m=20(2)∵△ABC的外接圆面积为25π∴外接圆半径为5,∴c=10由(1)知,sin A=35或sin A=45∴△ABC的两条直角边长分别为6,8 设△ABC的内接正方形的边长为t①若正方形的两边在△ABC的两直角边上,则8-t8=t6解得t=24 7②若正方形的一条边在△ABC的斜边上,易得斜边上的高为245,则t10=245-t245解得t=120 373.已知关于x的方程x2-(m+n+1)x+m=0(n≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示m和n;(2)求证:α≤1≤β;(3)若点P(α,β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(12,1),C(1,1),问是否存在点P,使m+n=54?若存在,求出点P的坐标;若不存在,请说明理由.ABCttA BCttt(1)解:∵α、β为方程x2-(m +n +1)x +m =0(n ≥0)的两个实数根∴△=(m +n +1)2-4m =(m +n -1)2+4n ≥0,且α+β=m +n +1,αβ=m∴m =αβ,n =α+β-m -1=α+β-αβ-1 ··················································· 2分(2)证明:∵(1-α)(1-β)=1-(α+β)+αβ=-n ≤0(n ≥0),又α≤β∴α≤1≤β ································································································ 4分(3)解:要使m +n =54成立,只需α+β=m +n +1=94①当点P (α,β)在BC 边上运动时由B (1 2,1),C (1,1),得12α≤1,β=1而α=94-β=9 4-1=54>1 ∴在BC 边上不存在满足条件的点 ···························································· 6分 ②当点P (α,β)在AC 边上运动时 由A (1,2),C (1,1),得α=1,1≤β≤2 此时β=94-α=9 4-1=5 4,又∵1<54<2 ∴在AC 边上存在满足条件的点,其坐标为(1,54)································· 8分③当点P (α,β)在AB 边上运动时由A (1,2),B (1 2,1),得12≤α≤1,1≤β≤2由对应线段成比例得1-α1-1 2=2-β2-1β=2α 由 ⎩⎪⎨⎪⎧α+β=9 4β=2α解得α= 3 4 ,β=3 2又∵1 2<3 4<1,1<3 2<2∴在AB 边上存在满足条件的点,其坐标为(3 4,3 2)综上所述,当点点P (α,β)在△ABC 的三条边上运动时,存在点(1,54)和点(3 4,3 2 ),使m +n =5 4成立 ·······························································10分4.请阅读下列材料:问题:已知方程x 2+x -1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式);(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:___________________;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.解:(1)y2-y-2=0 ··································································································· 2分(2)设所求方程的根为y,则y=1x(x≠0),于是x=1y(y≠0) ····················· 3分把x=1y代入方程ax2+bx+c=0,得a(1y)2+b·1y+c=0 ·························· 4分去分母,得a+b y+c y2=0 ········································································ 5分若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意∴c≠0,故所求方程为c y2+b y+a=0(c≠0)··········································· 6分5.已知关于x的一元二次方程x2-2x-a2-a=0(a>0).(1)证明这个方程的一个根比2大,另一个根比2小;(2)如果当a=1,2,3,…,2011时,对应的一元二次方程的两个根分别为α1、β1,α2、β2,α3、β3,…,α2011、β2011,求1α 1+1β 1+1α2+1β 2+1α3+1β 3+…+1α2011+1β2011的值.6.已知关于x的一元二次方程x2-(a+b+c)x+ab+bc+ca=0,且a>b>c>0.(1)若方程有实数根,求证:a,b,c不能构成一个三角形的三边长;(2)若方程有实数根x0,求证:b+c<x0<a;(3)若方程的实数根为6和9,求正整数a,b,c的值.解:(1)∵方程有实数根,∴△=(a+b+c)2-4(ab+bc+ca)≥0∴a2+b2+c2-2ab -2bc -2ca ≥0∴a (a -b -c )-b (a +c -b )-c (a +b -c )≥0∴0≤a (a -b -c )-b (a +c -b )-c (a +b -c )<a (a -b -c ) ∵a >0,∴a -b -c >0,即a >b +c∴a ,b ,c 不能构成一个三角形的三边长 ·············································· 4分 (2)设y =x2-(a +b +c )x +ab +bc +ca则当x =b +c 时,y =bc >0;当x =a 时,y =bc >0函数y =x2-(a +b +c )x +ab +bc +ca 图象的顶点坐标为(a +b +c 2,-△ 4当x =a +b +c 2 时,y =-△4≤0 由(1)知a >b +c ,∴b +c <a +b +c2<a ∴方程的实数根在b +c 与a 之间,即b +c <x 0<a ································ 7分 (3)∵方程x2-(a +b +c )x +ab +bc +ca =0的实数根为6和9∴a +b +c =6+9=15,ab +bc +ca =6×9=54∴a2+b2+c2=(a +b +c )2-2(ab +bc +ca )=152-2×54=117<112由(2)知a >9,∴92<a2<112∵a 为正整数,∴a =10 ········································································ 8分 ∴b +c =5,∴10b +bc +10c =54 ∴bc =54-10(b +c )=54-10×5=4由b +c =5,bc =4及b >c ,解得b =4,c =1 ······································10分7.已知方程x 2+2ax +a -4=0有两个不同的实数根,方程x 2+2ax +k =0也有两个不同的实数根,且其两根介于方程x 2+2ax +a -4=0的两根之间,求k 的取值范围.解:∵方程x2+2ax +a -4=0有两个不同的实数根∴△1>0,而△1=4a2-4(a -4)=4(a -1 2)2+15≥15 ···································· 1分又∵方程x2+2ax +k =0也有两个不同的实数根∴△2=4a2-4k >0,即k<a2······································································ 3分对于二次函数y 1=x2+2ax +a -4和y 2=x2+2ax +k ,它们的对称轴相同,且与x轴都有两个不同的交点∵y 2与x 轴的两个交点都在y 1与x 轴的两个交点之间∴y 2与y 轴的交点在y 1与y 轴的交点上方,如图 ········································· 4分 ∴k>a -4 ···································································································· 5分∴k 的取值范围是:a -4<k<a2·································································· 6分8.已知关于x 的方程x 2-4|x |+3=k .(1)当k 为何值时,方程有4个互不相等的实数根?(2)当k 为何值时,方程有3个互不相等的实数根? (3)当k 为何值时,方程有2个互不相等的实数根?(4)是否存在实数k ,使得方程只有1个实数根?若存在,求k 的值和方程的根;若不存在,请说明理由.解:(1)令t =|x |,则原方程化为:t2-4t +3-k =0△=(-4)2-4(3-k )=4k +4 ·································································· 1分 要使原方程有四个互不相等的实数根,则方程t2-4t +3-k =0必须有两个不相等的实数根∴4k +4>0,∴k>-1 ·········································································· 2分同时t 1·t 2=3-k>0,∴k<3 ································································ 3分∴当-1<k<3时,原方程有4个互不相等的实数根 ····························· 4分(2)要使原方程有3个互不相等的实数根,则方程t2-4t +3-k =0必须有一个零根和一个正根∴4k +4>0,∴k>-1 ·········································································· 5分同时t 1·t 2=3-k =0,∴k =3 ································································· 6分 ∴当k =3时,原方程有3个互不相等的实数根 ····································· 7分 (3)要使原方程有2个互不相等的实数根,则方程t2-4t +3-k =0必须只有一个非零根∴4k +4=0,∴k =-1 ··········································································· 8分 且当x =0时,3-k ≠0,即k ≠3 ··························································· 9分 ∴当k =-1时,原方程有2个互不相等的实数根 ·································10分(0(4)要使原方程只有1个实数根,则方程t2-4t +3-k =0必须有两个零根∴4k +4=0,∴k =-1 ·········································································· 11分 同时t 1·t 2=3-k =0,∴k =3 ································································12分 ∴不存在符合条件的k 值 ·····································································13分9.已知x 1,x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,则x 1与x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由.解:∵关于x 的一元二次方程4x2+4(m -1)x +m2=0有两个非零实数根∴△=[4(m -1)]2-4×4m2=-32m +16≥0∴m ≤12又x 1+x 2=1-m ,x 1x 2=14m2 当x +3=0时,-m =0,m =0假设x 1,x 2能同号,则有以下两种可能: ①若x 1>0,x 2>0,则:⎩⎪⎨⎪⎧x 1+x 2>0x 1x 2>0 即⎩⎪⎨⎪⎧1-m >01 4m2>0 解得m <1且m ≠0 此时m 的取值范围是m ≤12且m ≠0②若x 1<0,x 2<0,则:⎩⎪⎨⎪⎧x 1+x 2<0x 1x 2>0 即⎩⎪⎨⎪⎧1-m <01 4m2>0解得m >1(不合题意,舍去) 故当m ≤12且m ≠0时,方程的两个实数根同号10.已知α、β为关于x 的方程x 2-2mx +3m =0的两个实数根,且(α-β)2=16,如果关于x 的另一个方程x 2-2mx +6m -9=0的两个实数根都在α和β之间,求m 的值.解:∵α、β为方程x2-2mx +3m =0的两个实数根∴α+β=2m ,αβ=3m∵(α-β)2=16,∴(α+β)2-4αβ=16 ∴4m2-12m =16,解得m 1=-1,m 2=4方法一:①当m 1=-1时方程x2-2mx +3m =0化为:x2+2x -3=0,解得:α=-3,β=1方程x2-2mx +6m -9=0化为:x2+2x -15=0,解得:x 1=-5,x 2=3∵-5和3都不在-3和1之间,∴m =-1不合题意,舍去 ②当m =4时方程x2-2mx +3m =0化为:x2-8x +12=0,解得:α=2,β=6方程x2-2mx +6m -9=0化为:x2-8x +15=0,解得:x 1=3,x 2=5∵3和5都在2和6之间,∴m =4 综合①②可得m =4 方法二:设y =x2-2mx +6m -9,则该函数的图象为开口向上的抛物线∵方程x2-2mx +6m -9=0的两个实数根都在α和β之间∴⎩⎨⎧α2-2m α+6m -9>0β2-2m β+6m -9>0两式相加得α2+β2-2m (α+β)+12m -18>0 即(α+β)2-2αβ-2m (α+β)+12m -18>0 ∴4m2-6m -4m2+12m -18>0,∴m >3∴m =411.已知a 为实数,且关于x 的二次方程ax 2+(a 2+1)x -a =0的两个实数根都小于1,求这两个实数根的最大值.解:∵a 为实数,∴关于a 的二次方程xa2+(x2-1)a +x =0有实数根∴△=(x2-1)2-4x2≥0,即x4-6x2+1≥0解得x2≤3-22或x2≥3+2 2由x2≤3-22得1-2≤x ≤2-1∵2-1<1,∴1-2≤x ≤2-1 由x2≥3+22得x ≤-2-1或x ≥2+1∵2+1>1,∴x ≥2+1不合题意,舍去 综上所述,这两个实数根的最大值为2-112.求实数a 的取值范围,使关于x 的方程x 2+2(a -1)x +2a +6=0 (1)有两个实根x 1、x 2,且满足0<x 1<1<x 2<4; (2)至少有一个正根.解:(1)设y =x2+2(a -1)x +2a +6∵0<x 1<1<x 2<4∴△=4(a -1)2-4(2a +6)>0,∴a <-1或a >5且当x =0时,y >0,即2a +6>0,∴a >-3当x =1时,y <0,即1+2(a -1)+2a +6<0,∴a <-54当x =4时,y >0,即16+8(a -1)+2a +6>0,∴a >-75综上,-7 5 <a <-54············································································· 5分(2)∵x2+2(a -1)x +2a +6=0∴x 1+x 2=2(1-a ),x 1x 2=2a +6△=4(a -1)2-4(2a +6)≥0,∴a ≤-1或a ≥5若方程有一个正根,则2a +6≤0,∴a ≤-3 若方程有两个正根,则⎩⎪⎨⎪⎧2(1-a )>02a +6>0,∴-3<a <1综上,a ≤-110分13.已知x 1、x 2是方程x 2-mx -1=0的两个实数根,满足x 1<x 2,且x 2≥2.(1)求m 的取值范围;(2)若 x 2+m x 1-m + x 1+mx 2-m=2,求m 的值.解:(1)∵x2-mx -1=0的两个实数根满足x 1<x 2∴x 1=m -m2+4 2,x 2=m +m2+42∵x 2≥2,∴m +m2+42≥2解得m ≥32··························································································· 4分(2)∵x2-mx -1=0,∴x 1+x 2=m ,x 1x 2=-1∵x 2+mx 1-m+x 1+mx 2-m=x 12+x 22-2m 2x 1x 2-m (x 1+x 2)+m2(x 1+x 2)2-2x 1x 2-2m2x 1x 2-m (x 1+x 2)+m2=m2+2-2m2-1-m2+m2 =m2-2x 2+mx 1-m+x 1+mx 2-m=2 ∴m2-2=2,∴m =±2 ········································································· 8分14.已知关于x 的方程x 2-(m -2)x -m24=0(m ≠0)(1)求证:这个方程总有两个异号实根;(2)若这个方程的两个实根x 1、x 2满足| x 2|=| x 1|+2,求m 的值及相应的x 1、x 2.(1)证明:∵△=(m -2)2-4×(-m24)=(m -2)2+m2>0∴原方程总有两个不相等的实根 又∵x 1x 2=-m24,m ≠0,∴x 1x 2<0,∴x 1、x 2异号∴原方程总有两个异号实根 ······························································· 3分(2)解:∵x 1、x 2异号,若x 1<0<x 2则由已知|x 2|=|x 1|+2,得x 2=-x 1+2∴x 1+x 2=2,即m -2=2 ∴m =4将m =4代入原方程并整理,得x2-2x -4=0解得x 1=1-5,x 2=1+5若x 2<0<x 1,则由已知|x 2|=|x 1|+2,得-x 2=x 1+2∴x 1+x 2=-2,即m -2=-2 ∴m =0(与题设m ≠0矛盾,舍去)综上所述,m =4,x 1=1-5,x 2=1+5 ········································10分15.已知△ABC 的一边长为5,另两边长恰是方程2x 2-12x +m =0的两个根,求m 的取值范围.解:设△ABC 的三边分别为a ,b ,c ,且a =5∵另两边长恰是方程2x2-12x +m =0的两个根∴△=144-8m ≥0,得m ≤18由根与系数的关系,得b +c =6>a ,bc =m2>0,即m >0 由三角形三边关系,得b -c <a ∴(b -c )2<a2,即(b +c )2-4bc <a2∴36-2m <25,得m >112综上,112<m ≤1816.已知:α,β(α>β)是一元二次方程x 2-x -1=0的两个实数根,设s 1=α+β,s 2=α 2+β 2,…,s n =α n +β n .根据根的定义,有α 2-α-1=0,β 2-β-1=0,将两式相加,得(α 2+β 2)-(α+β)-2=0,于是,得s 2-s 1-2=0.根据以上信息,解答下列问题:(1)利用配方法求α,β的值,并直接写出s1,s2的值;(2)猜想:当n≥3时,s n,s n-1,s n-2之间满足的数量关系,并证明你的猜想的正确性;(3)根据(2)中的猜想,求(1+52)8+(1-52)8的值.解:(1)移项,得x2-x=1配方,得x2-2×x×12+(12)2=1+(12)2即(x-12)2=54开平方,得x-12=±52,即x=1±52∵α>β,∴α=1+52,β=1-52·························································· 3分于是s1=α+β=1,s2=s1+2=3 ······························································ 5分(2)猜想:s n=s n-1+s n-2················································································· 6分证明:根据根的定义,有α2-α-1=0两边都乘以αn-2,得αn-αn-1-αn-2=0 ①同理,βn-βn-1-βn-2=0 ②①+②,得(αn+βn)-(αn-1+βn-1)-(αn-2+βn-2)=0∵s n=αn+βn,s n-1=αn-1+βn-1,s n-2=αn-2+βn-2∴s n-s n-1-s n-2=0,即s n=s n-1+s n-2 ························································10分(3)由(1)知,s1=1,s2=3由(2)中的关系式可得:s3=s2+s1=4,s4=s3+s2=7,s5=s4+s3=11,s6=s5+s4=18s7=s6+s5=29,s8=s7+s6=47即(1+52)8+(1-52)8=47 ································································12分17.已知方程(x-1)(x2-2x+m)=0的三个实数根恰好构成△ABC的三条边长.(1)求实数m的取值范围;(2)当△ABC为直角三角形时,求m的值和△ABC的面积.解:(1)由已知x1=1,设另两根为x2,x3,且x2≤x3则x2+x3=2,x2x3=m∵x3-x2<x1,∴(x3-x2)2=(x3+x2)2-4x2x3=4-4m<1解得m>3 4又∵△=(-2)2-4m ≥0,∴m ≤1∴34<m ≤1 ··························································································· 4分 (2)若Rt △ABC 的一条直角边长为1则x 22+1=x 32,即x 32-x 22=1,∴(x 3+x 2)(x 3-x 2)=1 ∴24-4m =1,∴m =1516····································································· 6分 由x2-2x +1516=0,解得x 2=34,x 3=54∴S △ABC=12×1×x 2=12 m =34······························································ 7分 若Rt △ABC 的斜边长为1则x 22+x 32=1,即(x 2+x 3)2-2x 2x 3=1 ∴22-2m =1,∴m =32(不合题意,舍去) ············································ 8分 所以当△ABC 为直角三角形时,m =1516,△ABC 的面积为34。
2013全国各地中考数学试题分类汇编

2013全国各地中考数学试题分类汇编
2013年全国各地中考数学试卷分类汇编:等腰三角形
2013年全国各地中考数学试卷分类汇编:直角三角形
2013年全国各地中考数学试卷分类汇编:全等三角形
2013年全国各地中考数学试卷分类汇编:三角形的边与角
2013年全国各地中考数学试卷分类汇编:矩形菱形与正方形
2013年全国各地中考数学试题分类汇编:圆
2013年全国各地中考数学试卷分类汇编:圆的有关性质
2013年全国各地中考数学试卷分类汇编:点直线与圆的位置关系
2013年全国各地中考数学试卷分类汇编:有理数
2013年全国各地中考数学试卷分类汇编:函数与一次函数
2013年全国各地中考数学试卷分类汇编:二次函数
2013年全国各地中考数学试卷分类汇编:反比例函数
2013年全国各地中考数学试卷分类汇编:二次根式
2013年全国各地中考数学试卷分类汇编:不等式(组)
2013年全国各地中考数学试卷分类汇编:动态问题
2013年全国各地中考数学试卷分类汇编:规律探索
精心整理,仅供学习参考。
2013年全国中考数学试题分类解析汇编专题9一元二次方程修改

2013年全国中考数学试题分类解析汇编 专题:一元二次方程一、选择题1. (2012天津市3分)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1≠x 2,有下列结论:①x 1=2,x 2=3; ②1m 4>-;③二次函数y=(x -x 1)(x -x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【 】 (A )0 (B )1 (C )2(D )32. (2012广东佛山3分)用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是【 】 A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=75. (2012湖北武汉3分)若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是【 】 A .-2 B .2 C .3 D .16. (2012湖北荆门3分)用配方法解关于x 的一元二次方程x 2﹣2x ﹣3=0,配方后的方程可以是【 】 A .(x ﹣1)2=4 B .(x+1)2=4 C .(x ﹣1)2=16 D .(x+1)2=167. (2012湖北天门、仙桃、潜江、江汉油田3分)如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,那么a 的值为【 】 A .3 B .﹣3 C .13 D .﹣139. (2012湖北襄阳3分)如果关于x 的一元二次方程2kx 10+=有两个不相等的实数根,那么k 的取值范围是【 】 A .k <12 B .k <12且k≠0 C .﹣12≤k<12 D .﹣12≤k<12且k≠010. (2012湖南常德3分)若一元二次方程2x 2x m 0++=有实数解,则m 的取值范围是【 】 A. m 1≤- B. m 1≤ C. m 4≤ D.m 12≤11. (2012湖南株洲3分)已知关于x 的一元二次方程x 2﹣bx+c=0的两根分别为x 1=1,x 2=﹣2,则b 与c 的值分别为【 】 A .b=﹣1,c=2 B .b=1,c=﹣2 C .b=1,c=2 D .b=﹣1,c=﹣212. (2012四川攀枝花3分)已知一元二次方程:x 2﹣3x ﹣1=0的两个根分别是x 1、x 2,则x 12x 2+x 1x 22的值为【 】 A . ﹣3B . 3C . ﹣6D . 613. (2012四川广安3分)已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l=0有两个不相等的实数根,则a 的取值范围是【 】 A .a >2 B .a <2 C .a <2且a≠l D.a <﹣214. (2012四川泸州2分)若关于x 的一元二次方程x 2-4x + 2k = 0有两个实数根,则k 的取值范围是【 】A 、k≥2B 、k≤2C 、k >-2D 、k <-215. (2012四川南充3分)方程x (x-2)+x-2=0的解是【 】 (A )2 (B )-2,1 (C )-1 (D )2,-1 16. (2012贵州安顺3分)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是【 】 A . 1B . ﹣1C . 0D . 无法确定17. (2012山东东营3分)方程()21k 1x =04-有两个实数根,则k 的取值范围是【 】.A . k≥1B . k≤1 C. k>1D . k<118. (2012山东莱芜3分)已知m 、n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为【 】 A .9 B .±3 C.3 D .520. (2012山东日照4分)已知关于x 的一元二次方程(k -2)2x 2+(2k +1)x +1=0有两个不相等的实数根,则k 的取值范围是【 】 (A) k>34且k≠2 (B)k≥34且k ≠2 (C) k >43且k≠2 (D)k≥43且k≠2 21. (2012山东烟台3分)下列一元二次方程两实数根和为﹣4的是【 】 A .x 2+2x ﹣4=0 B .x 2﹣4x+4=0 C .x 2+4x+10=0 D .x 2+4x ﹣5=0 23. (2012广西河池3分)一元二次方程2x 2x 20++=的根的情况是【 】A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根29. (2012内蒙古呼和浩特3分)已知:x 1,x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是【 】 A .a=﹣3,b=1 B .a=3,b=1 C .3a=2-,b=﹣1D .3a=2-,b=130. (2012内蒙古包头3分)关于x 的一元二次方程()2x mx+5m 5=0--的两个正实数根分别为x 1,x 2,且2x 1+x 2=7,则m 的值是【 】 A.2 B. 6 C. 2或6 D . 7 二、填空题1. (2012北京市4分)若关于x 的方程2x 2x m=0--有两个相等的实数根,则m 的值是 .2. (2012上海市4分)如果关于x 的一元二次方程x 2﹣6x+c=0(c 是常数)没有实根,那么c 的取值范围是 . 5. (2012江苏常州2分)已知关于x 的方程22x mx 6=0--的一个根是2,则m= ,另一根为 。
2013年全国各地中考数学-一元二次方程

2013年中考数学一元二次方程试题分类精编1、(2013•郴州)已知关于x 的一元二次方程x 2+bx +b ﹣1=0有两个相等的实数根,则b 的值是 .2、(2013,娄底)已知:一元二次方程021212=-++k kx x . (1)求证:不论k 为何实数时,此方程总有两个实数根;(2)设0<k ,当二次函数21212-++=k kx x y 的图象与x 轴的两个交点A 、B 间的距离为4时,求此二次函数的解析式;3.方程x 2﹣9x +18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .4、(2004•广东)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.5、(2013•达州)若方程2360x x m -+=有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是( )6.(2013。
成都)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?7、(2013•乐山)已知一元二次方程x 2-(2k +1)x +k 2+k =0 .(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值.8、(2013•泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( )A .1k >-B .1k <且0k ≠C . 1k ≥-且0k ≠D . 1k >-且0k ≠9、(2013•泸州)设12,x x 是方程2330x x +-=的两个实数根,则2112x x x x +的值为( ) A .5 B .-5 C .1 D .-110、(2013•眉山)已知关于x 的一元二次方程032=--x x 的两个实数根分别为α、β,则(α+3)(β+3)=______11、(2013•绵阳)已知整数k <5,若△ABC 的边长均满足关于x的方程280x -+=,则△ABC的周长是 。
中考数学专题复习分类练习 一元二次方程组综合解答题含答案解析

中考数学专题复习分类练习一元二次方程组综合解答题含答案解析一、一元二次方程1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.5.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.6.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.7.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.(1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.8.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.【答案】(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174; (2)由(1)可知a ≤174, ∴a 的最大整数值为4,此时方程为x 2﹣3x +2=0,解得x =1或x =2. 【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x 米2, 根据题意得:4600022000x -﹣46000220001.5x-= 4 解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=56 解得:x=2或x=263(不合题意,舍去). 答:人行道的宽为2米.10.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n 个;(1)61;3n 2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.12.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m﹣m2=12,60m﹣3m2=192,m2﹣20m+64=0,m1=4,m2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.13.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a 、b 、c 为等腰三角形的三边,∴2k ﹣1=2或2k ﹣1=3,∴k =32或2. 【点睛】 本题考查了根的判别式以及等腰三角形的性质,分a 是等腰三角形的底和腰两种情况是解题的关键.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.【详解】(1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
【中考宝典】2013年中考数学真题分类汇编(Word版,含答案)

第一单元数与式一、实数1、绝对值、相反数、倒数2、科学记数法3、实数的概念及其运算二、整式1.幂的运算、整式的乘除2.因式分解三、分式四、二次根式第二单元方程(组)与不等式组一、一次方程(方程组)二、一元一次不等式与一元一次不等式组三、一元二次方程四、分式方程第三单元函数及其图像一、函数及其图像二、一次函数三、反比例函数四、二次函数五、函数的应用第四单元图形的认识与三角形一、角、相交线与平行线二、三角形与全等三角形三、等腰三角形与直角三角形第五单元四边形一、多边形与平行四边形二、矩形、菱形、正方形三、梯形第六单元圆一、圆的有关概念及性质二、点、直线、圆和圆的位置关系三、和圆有关的计算第七单元图形与变换一、尺规作图、视图与投影二、图形的对称、平移与旋转三、图形的相似与位似四.锐角三角函数和解直角三角形第八单元概率与统计一、统计二、概率第二单元 方程(组)与不等式组一、一次方程(方程组) 1、(2013黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有( )A .1种B .11种C .6种D .9种解析:设6人的帐篷有x 顶,4人的帐篷有y 顶,依题意,有:6x+4y=60,整理得y=15-1.5x ,因为x 、y 均为非负整数,所以15-1.5x≥0,解得:0≤x≤10,从2到10的偶数共有5个,所以x 的取值共有6种可能,即共有6种搭建方案. 答案:C2.(2013广安)如果y x b a 321与12+-x y b a 使同类项,则( )A. ⎩⎨⎧=-=32y xB.⎩⎨⎧==3-2y xC.⎩⎨⎧=-=3-2y xD.⎩⎨⎧==32y x解析:y x b a 321 与12+-x y b a 是同类项,∴⎩⎨⎧+==123x y y x ,解得:⎩⎨⎧==32y x 。
答案:D3、(2013凉山州)已知方程组⎩⎨⎧=+=+5242y x y x ,则y x +的值为 ( )A .-1B .0C .2D .3 解析:利用两式相加得:9)(3=+y x ,3=+y x .答案:D4、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多 ( )A .60元B .80元C .120元D .180元 解析:设衣服的进价为x 元,依题意得300×80%-x=60,解得x=180.因此这款服装每件的标价比进价多300-180=120(元).答案:C5、(2013淄博)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是 ( )+=20.35+70=1225x y A x y ⎧⎨⎩ +y=20.70+35=1225x B x y ⎧⎨⎩ +=1225.70+35=20x y C x y ⎧⎨⎩ +=1225.35+70=20x y D x y ⎧⎨⎩ 解析:确定等量关系:总票数=承认票数+儿童票数,总票钱数=成人票钱数+儿童票钱数.依据等量关系列出方程组即可.答案:B6、(2013•永州)已知(x-y+3)2+y x +2=0,则x+y 的值为( ) A .0 B .-1 C .1 D .5解析:∵ 02)3(2=+++-y x y x ,∴⎩⎨⎧=+=+-0203y x y x ,解得⎩⎨⎧=-=21y x∴121=+-=+y x 答案:C7、(2013南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .15解析:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得,解得:2x+2y=16.答案:C答案:B8、(2013毕节)二元一次方程组⎩⎨⎧=-=+112312y x y x 的解是_。
2013年中考数学试题按章节考点分类:第20章一元二次方

(最新最全)2013年全国各地中考数学解析汇编(按章节考点整理)第二十章 一元二次方程20.1一元二次方程(2013江苏泰州市,4,3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。
设平均每次降价的百分率为x ,根据题意所列方程正确的是 A.36(1-x )2=36-25 B.36(1-2x )=25 C.36(1-x )2=25 D.36(1-x 2)=25【解析】解题的关键是连续两次降价,一次降价可表示为36(1-x),再次降价既再乘(1-x),则可列方程为:36(1-x )2=25. 【答案】C【点评】本题是以实际问题为背景考查学生对一元二次方程应用的掌握情况,(连续降价两次)降价率问题的固定模式是M(1-x )2=N ,M 为原始数据,N 为(连续增长两次)最后数据.(2013四川成都,10,3分)一件商品的原价是100元,经过两次提价后的价格为121元, 如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x += D . 2100(1)121x -=解析:原价是100元,第一次提价后变为100(1)x -元,第二次提价后变为2100(1)x -元,所以本题的方程为2100(1)121x -=。
答案:C点评:增长率问题,也是考得比较勤的考点,若原来为a ,增长率为b%,则结果为a(1+b%),而不是a+b%。
20.2 解一元二次方程 (2013山东省临沂市,7,3分)用配方法解一元二次方程54-x 2=x 时,此方程可变形为( )A.12x 2=+)(B. 12-x 2=)(C. 92x 2=+)(D. 92-x 2=)(【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算. 配方法得,,4544-x 2+=+x 92)-(x 2=.【答案】选D.【点评】本题考查了学生的应用能力,解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,难度适中.(2013山东省聊城,13,3分)一元二次方程022=-x x 的解是 . 解析:用分解因式法解得,x(x-2)=0,即x=0或x-2=0,所以0,221==x x答案:0,221==x x点评:解一元二次方程解法思路,一般先考虑直接开平方法,再考虑分解因式法,最后考虑配方法与公式法.(2013贵州铜仁,17,4分一元二次方程0322=--x x 的解为____________; 【解析】运用分解因式法容易得出.由0322=--x x , 得 (x+1)(x-3)=0 ∴x+1=0 或 x-3=0 解得11-=x ,32=x 【解答】11-=x ,32=x【点评】此题考查一元二次方程的解法,一元二次方程有直接开平方法、配方法、公式法、因式分解法四种解法,要能够根据方程的不同特点,进行比较、鉴别, 灵活选用适当的方法解方程.(2013四川省南充市,5,3分) 方程x(x-2)+x-2=0的解是( ) A .2B .-2,1C .-1D .2,-1解析:x(x-2)+x-2=0,化简得220x x --=,解得122,1x x ==-. 答案:D点评:针对方程特点选用适宜的解法是正确解答一元二次方程的关键。
2013年中考数学真题

A.
B.
C.
D.
21、(2013广州)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()
A B C D
22、(2013辽宁鞍山)若方程组 ,则3(x+y)﹣(3x﹣5y)的值是
23.2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是( )
17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m2,2013年同期将达到8200元/m2,假设这两年兰州市房价的平均增长率为 ,根据题意,所列方程为
A. B.
C. D.
18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.
19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)小华的问题解答: 解析: (1)解:设实现每天 800 元利润的定价为 x 元/个,根据题意,得 (x-2)(500-
x 3 ×10)=800 .………………………(2 分) 0. 1
整理得:x2-10x+24=0. 解之得:x1=4,x2=6.………………………(3 分) ∵物价局规定,售价不能超过进价的 240%,即 2×240%=4.8(元). ∴x2=6 不合题意,舍去,得 x=4. 答:应定价 4 元/个,才可获得 800 元的利润.………………………(4 分) (2)解:设每天利润为 W 元,定价为 x 元/个,得 W=(x-2)(500-x 3 ×10) 0. 1
=-100x2+1000x-1600 =-100(x-5)2+900.………………………(6 分) ∵x≤5 时 W 随 x 的增大而增大,且 x≤4.8, ∴当 x=4.8 时,W 最大, W 最大=-100×(4.8-5)2+900=896>800 .………………………(7 分) 故 800 元不是最大利润.当定价为 4.8 元/个时,每天利润最大.………………………(8 分)
245761
∴x1=3,x2=6, 当等腰三角形的三边是 3,3,6 时,3+3=6,不符合三角形的三边关系定理, ∴此时不能组成三角形, 当等腰三角形的三边是 3, 6, 6 时, 此时符合三角形的三边关系定理, 周长是 3+6+6=15, 故答案为:15. 点评: 本题考查了解一元二次方程和三角形的三边关系定理,等腰三角形的性质的应用,关 键是确定三角形的三边的长度,用的数学思想是分类讨论思想. (2004•广东) 某商场今年 2 月份的营业额为 400 万元, 3 月份的营业额比 2 月份增加 10%, 5 月份的营业额达到 633.6 万元.求 3 月份到 5 月份营业额的月平均增长率. 考点: 一元二次方程的应用. 专题: 增长率问题. 2 分析: 本题是平均增长率问题,一般形式为 a(1+x) =b,a 为起始时间的有关数量,b 为终 止时间的有关数量. 如果设平均增长率为 x, 那么结合到本题中 a 就是 400× (1+10%) , 即 3 月份的营业额,b 就是 633.6 万元即 5 月份的营业额.由此可求出 x 的值. 解答: 解:设 3 月份到 5 月份营业额的月平均增长率为 x,
2 2
)
2013•自贡)已知关于 x 的方程 x ﹣(a+b)x+ab﹣1=0,x1、x2 是此方程的两个实数根,现 给出三个结论:①x1≠x2;②x1x2<ab;③ ①② . (填上你认为正确结论的所有序号) .则正确结论的序号是
∴
,
②代入①得,3x=2(x+1) , 解得 x=2, 把 x=2 代入②得,y=2+1=3, 所以,方程组的解是 .
故选 D. 点评: 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当 未知数的系数相等或互为相反数时用加减消元法较简单,根据同类项的“两同”列出方 程组是解题的关键. (2013•广安)方程 x ﹣3x+2=0 的根是 1 或 2 . 考点: 解一元二次方程-因式分解法. 专题: 因式分解. 分析: 由题已知的方程进行因式分解, 将原式化为两式相乘的形式, 再根据两式相乘值为 0, 这两式中至少有一式值为 0,求出方程的解. 解答: 解:因式分解得, (x﹣1) (x﹣2)=0, 解得 x1=1,x2=2. 点评: 本题考查了因式分解法解一元二次方程, 当把方程通过移项把等式的右边化为 0 后方 程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为 0 的特点 解出方程的根,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.
2 2
从而对于任意正整数 n ,我们可以得到 i
4 n 1
i 4 n i i 4 i i , 同理可得
n
i 4n2 1 , i 4 n3 i , i 4 n 1 .那么 i i 2 i3 i 4 i 2012 i 2013 的值为(
245761
根据题意得,400×(1+10%) (1+x) =633.6, 解得,x1=0.2=20%,x2=﹣2.2(不合题意舍去) . 答:3 月份到 5 月份营业额的月平均增长率为 20%. 点评: 本题考查求平均变化率的方法.若设变化前的量为 a,变化后的量为 b, 平均变化率 2 为 x,则经过两次变化后的数量关系为 a(1±x) =b(当增长时中间的“±”号选“+”,当 降低时中间的“±”号选“﹣”) .
2
于 1 . 若我们规定一个新数“ i ”,使其满足 i 1 (即方程 x 1 有一个根为 i ) 。并且进一步
2 2
规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有
i1 i, i 2 1, i 3 i 2 i 1 i i, i 4 i 2 1 1 ,
3718684
2
考点: 由实际问题抽象出一元二次方程.
专题: 增长率问题. 分析: 设每次降价的百分率为 x,根据降价后的价格=降价前的价格(1﹣降价的百分率) , 则第一次降价后的价格是 168(1﹣x) ,第二次后的价格是 168(1﹣x) ,据此即可 列方程求解. 2 解答: 解:根据题意得:168(1﹣x) =128, 故选 B. 点评: 此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这 种价格问题主要解决价格变化前后的平衡关系,列出方程即可. (2013,娄底)已知:一元二次方程
(2013•郴州)已知关于 x 的一元二次方程 x +bx+b﹣1=0 有两个相等的实数根,则 b 的值 是 2 . 考点: 根的判别式. 专题: 计算题. 分析: 根据方程有两个相等的实数根,得到根的判别式的值等于 0,即可求出 b 的值. 2 2 解答: 解:根据题意得:△ =b ﹣4(b﹣1)=(b﹣2) =0, 则 b 的值为 2. 故答案为:2 点评: 此题考查了根的判别式,根的判别式的值大于 0,方程有两个不相等的实数根;根的 判别式的值等于 0,方程有两个相等的实数根;根的判别式的值小于 0,方程没有实 数根. (2013•衡阳)某药品经过两次降价,每瓶零售价由 168 元降为 128 元.已知两次降价的百 分率相同,每次降价的百分率为 x,根据题意列方程得( ) 2 2 A.168(1+x) =128 B.168(1﹣x) =128 C.168(1﹣2x)=128 D.168(1﹣x2)=128
2
1 2 1 x kx k 0 . 2 2
(1)求证:不论 k 为何实数时,此方程总有两个实数根; (2)设 k 0 ,当二次函数 y
1 2 1 x kx k 的图象与 x 轴的两个交点 A 、 B 间的距 2 2
离为 4 时,求此二次函数的解析式; (3)在(2)的条件下,若抛物线的顶点为 C ,过 y 轴上一点 M (0,m) 作 y 轴的垂线 l , 当 m 为何值时,直线 l 与 △ABC 的外接圆有公共点? (2013,永州)我们知道,一元二次方程 x 1 没有实数根,即不存在一个实数的平方等
2
(2013,成都)一元二次方程 x +x-2=0 的根的情况是( (A)有两个不相等的实数根 (C)只有一个实数根
2
)
(B)有两个相等的实数根 (D)没有实数根
(2013•达州)若方程 3 x 2 6 x m 0 有两个不相等的实数根,则 m 的取值范围在数轴上
表示正确的是( )
答案:B 解析:因为方程有两个不相等的实数根,所以,△=36-12m>0,得 m<3,故选 B (2013•达州)今年,6 月 12 日为端午节。在端午节前夕,三位同学到某超市调研一种进价 为 2 元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。
(2013•广安)如果 a b 与﹣a b A. B.
3x y
2y x+1
是同类项,则( C.
) D.
考点: 解二元一次方程组;同类项. 专题: 计算题 分析: 根据同类项的定义列出方程组,然后利用代入消元法求解即可. 解答: 3x y 2y x+1 解:∵ a b 与﹣a b 是同类项,
3718684
2
的取值范围是 A. k 1 B. k 1 且 k 0
C. k 1 且 k 0
D. k 1 且 k 0
(2013•泸州)设 x1 , x2 是方程 x 3x 3 0 的两个实数根,则
2
x2 x1 的值为 x1 x2
A.5
B.-5
C.1
D.-1
(2013•眉山) 已知关于 x 的一元二次方程 x x 3 0 的两个实数根分别为α 、 β , 则(α
2
+3)(β +3)=______ (2013•绵阳)已知整数 k<5,若△ABC 的边长均满足关于 x 的方程 x2 3 k x 8 0 ,则△ ABC 的周长是 。 (2013•雅安)已知 x1,x2 是一元二次方程 x ﹣2x=0 的两根,则 x1+x2 的值是( A.0 B.2 C .﹣ 2 D.4 考点: 根与系数的关系. 专题: 计算题. 分析: 利用根与系数的关系即可求出两根之和. 2 解答: 解:∵x1,x2 是一元二次方程 x ﹣2x=0 的两根, ∴x1+x2=2. 故选 B 点评: 此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键. (2013 宜宾)若关于 x 的一元二次方程 x +2x+k=0 有两个不相等的实数根,则 k 的取值 范围是( ) A.k<1 B.k>1 C.k=1 D.k≥0 考点:根的判别式. 2 分析:判断上述方程的根的情况,只要看根的判别式△ =b ﹣4ac 的值的符号就可以了. 2 解答:解:∵关于 x 的一元二次方程 x +2x+k=0 有两个不相等的实数根,a=1,b=2,c=k, 2 2 ∴△=b ﹣4ac=2 ﹣4×1×k>0, ∴k<1, 故选:A. 点评: 此题主要考查了根的判别式, 一元二次方程根的情况与判别式△ 的关系: (1) △ >0⇔ 方程有两个不相等的实数根; (2)△ =0⇔方程有两个相等的实数根; (3)△ <0⇔方程没有 实数根. (2013 宜宾)某企业五月份的利润是 25 万元,预计七月份的利润将达到 36 万元.设平均 2 月增长率为 x,根据题意所列方程是 25(1+x) =36 . 考点:由实际问题抽象出一元二次方程. 专题:增长率问题. 分析:本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率) ,如果设这个增长 率为 x,根据“五月份的利润是 25 万元,预计七月份的利润将达到 36 万元”,即可得出方程. 解答:解:设这个增长率为 x, 2 根据题意可得:25(1+x) =36, 2 故答案为:25(1+x) =36. 2 点评:本题为增长率问题,一般形式为 a(1+x) =b,a 为起始时间的有关数量,b 为终止 时间的有关数量.