2018广东中考数学基础训练1
(完整版)2018年广东省中考数学试卷(含答案解析版)-(1)

2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2018•广东)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3。
14 D.22.(3分)(2018•广东)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A.1.442×107B.0.1442×107C.1.442×108D.0。
1442×1083.(3分)(2018•广东)如图,由5个相同正方体组合而成的几何体,它的主视图是()A. B.C.D.4.(3分)(2018•广东)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)(2018•广东)下列所述图形中,是轴对称图形但不是中心对称图形的是() A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)(2018•广东)不等式3x﹣1≥x+3的解集是( )A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)(2018•广东)分解因式:x2﹣2x+1= .13.(3分)(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)(2018•广东)已知+|b﹣1|=0,则a+1= .15.(3分)(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B 2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)(2018•广东)计算:|﹣2|﹣20180+()﹣118.(6分)(2018•广东)先化简,再求值:•,其中a=.19.(6分)(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)(2018•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)(2018•广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)(2018•广东)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C 路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1。
广东省2018年中考数学试题(含答案)

广东省2018年中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数、、、中,最小的数是A.B.C.D.2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A.B.C.D.3.如图,由个相同正方体组合而成的几何体,它的主视图是A.B.C.D.4.数据、、、、的中位数是A.B.C.D.5.下列所述图形中,是轴对称图形但不是..中心对称图形的是A.圆B.菱形C.平行四边形D.等腰三角形6.不等式的解集是A.B.C.D.7.在△中,点、分别为边、的中点,则与△的面积之比为A.B.C.D.8.如图,∥,则,,则的大小是A.30°B.40°C.50°D.60°9.关于的一元二次方程有两个不相等的实数根,则实数的取值范围为A.B.C.D.10.如图,点是菱形边上的一动点,它从点出发沿路径匀速运动到点,设△的面积为,点的运动时间为,则关于的函数图象大致为同圆中,已知弧AB所对的圆心角是,则弧AB所对的圆周角是.分解因式:.一个正数的平方根分别是,则x= .已知,则.15.如图,矩形中,,以为直径的半圆O与相切于点,连接,则阴影部分的面积为.(结果保留π)16.如图,已知等边△,顶点在双曲线上,点的坐标为(2,0).过作交双曲线于点,过作交x轴于点,得到第二个等边△;过作交双曲线于点,过作交x轴于点,得到第三个等边△;以此类推,…,则点的坐标为三、解答题(一)17.计算:18.先化简,再求值:19.如图,是菱形的对角线,,请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接,求的度数.20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。
2018年广东省中考数学72分基础训练1

、选择题(本题共 1. | - 6|的值是( 2.十九大报告中提到: 2018年广东省中考数学 72分基础训练1(时间:分钟分值:72分得分: 10小题,每小题3分,共30 分))A. - 6 B. 6 C. 在未来的三年里,城镇每年需要安排的就业人员数量仍超过 生•这里15000000,可以用科学记数法记为( D.15000000人,大多是青年学A. 1.5 x 108B. 15 x 106C. 1.5 x 106D. 1.5 x 107 3.下列运算中正确的是( 4. 5. 6. A. (x 4) 2=x 6 B. x+x=x 2 C. 2 3 5 X ?X=XD. 如图,小明从正面观察一个圆柱体邮筒和一个正方体箱子, A. B.C. iE® 观察下列图案,是轴对称而不是中心对称的是( A. 看到的是( 4x 2 (-2x ) 2D.A B. O X D.直线y=2x - 1不经过的象限是( A.第一象限 B. 第二象限C. 第三象限D. 第四象限第8题图7.不等式组 汀;;的解集在数轴上表示为( A.… B. —壬总C. 8.如图, 已知a // b ,直角三角板的直角顶点在直线 a 上, 若/ 仁30°,则/ 2等于( A. 30° B. 40° C. 50°D. 60° 9.如图, AB 为O O 的直径,PD 切O O 于点 C,交AB 的延长线于 D,且 CO=CD 则/ PCA=( A. 30 B. 45 C. 60D. 67.5 10.如图所示,△ ABC 为等腰直角三角形,/ ACB=90 , AC=BC=2正方形DEFG 边长也为2,且AC 与DE 在同一直线上,△ ABC 从 C 点与D 点重合开始, 沿直线DE 向右平移,直到点A 与点E 重合为止,设CD 的长为X , △ ABC 与正方形DEFG 重合部分(图中阴影部分) 的面积为y ,则y 与x 之间的函数关系的图象大致是(11 rJ'丫U|24 XQ24<J| 2 4nxAwBCD二、填空题(本大题共6小题,每小题4分,共24分)11. 当a=3, a- b=1时,代数式a2- ab的值是___________________ .k12. 如图:点A在双曲线y 上,AB丄x轴于B,且△ AOB的面积 0AO=2,贝U k=x13. 某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是__________________第12题图14. 在一周内,小明坚持自测体温,每天3次•测量结果统计如下表:体温(C)36.136.236.336.436.536.636.7次数2346312则这些体温的中位数是 C.15. 用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______________ c m.16•将正方形A的一个顶点与正方形B的对角线交叉重合,如图1位置,则阴影部分面积是正方形A面积的,8将正方形A与B按图2放置,则阴影部分面积是正方形B面积的_______________ .三、解答题(本大题3小题,每小题6分,共18 分)17.计算:|1 - 3|+ (n - 3)0- . -(- )-2丄18.先化简,再求值: ,其中x=. 第16题图19.如图,在平行四边形ABCD中, AB< BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB, AD的距离相等(不写作法,保留作图痕迹)(2 )若BC=7, CD=5 贝U CE= ___ .。
广东省2018年中考数学试题(有答案)(精品推荐)

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14、2中,最小的数是A .0 B .13 C . 3.14 D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210B .70.144210C .81.44210 D.80.1442103.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4 B .5 C .6 D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是A .圆 B.菱形 C .平行四边形 D .等腰三角形6.不等式313x x 的解集是A .4x B .4x C .2x D .2x 7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ,40C ,则B 的大小是A .30° B .40°C .50°D .60°9.关于x 的一元二次方程230xx m 有两个不相等的实数根,则实数m 的取值范围为A .94m B .94m C .94m D .94m 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11.同圆中,已知弧AB 所对的圆心角是100,则弧AB 所对的圆周角是 . 12.分解因式:122x x . 13.一个正数的平方根分别是51xx 和,则x= . 14.已知01b b a ,则1a .15.如图,矩形ABCD 中,2,4CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为.(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3x x y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-18.先化简,再求值:.2341642222a a a a a a,其中19.如图,BD 是菱形ABCD 的对角线,75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF 的度数.20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。
2018年广东省中考数学试卷及答案

2018年广东省中考数学试卷一、选择题(每小题3分,共30分)1.四个实数10 3.1423-、、、中,最小的数是( ).A 0 .B 13.C 3.14- .D 22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学计数法表示为( ).A 71.44210⨯ .B 70.144210⨯ .C 81.44210⨯ .D 90.144210⨯ 3.如图,由5个相同正方体组合而成的几何体,它的主视图是( )(第3题) (第8题)4.数据15748、、、、的中位数是( ).A 4 .B 5 .C 6 .D 75.下列所述图形中,是轴对称图形但不是中心对称图形的是( ).A 圆 .B 菱形 .C 平行四边形 .D 等腰三角形6.不等式313x x -≥+的解集是( ).A 4x ≤ .B 4x ≥ .C 2x ≤ .D 2x ≥7.在ABC ∆中,点D E 、分别为边AB AC 、的中点,则ADE ∆与ABC ∆的面积之比为( ).A 12 .B 13 .C 14 .D 168.如图,AB CD ∥,且=100=40DEC C ∠︒,∠︒,则B ∠大小是( ).A 30︒ .B 40︒ .C 50︒ .D 60︒C D AB BD ACE9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( ).A 94m <.B 94m ≤ .C 94m > .D 94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设PAD ∆的面积为y ,点P 的运动时间为x ,则y 关于x 的函数图象大致为( )二、填空题(每小题4分,共24分)11.同圆中,已知弧AB 所对的圆心角是100︒,则弧AB 所对的圆周角是 .12.分解因式:221x x -+= .13.一个正数的平方根分别是1x +和5x -,则x = .14.10b -=,则1a += .15.如图,矩形ABCD 中,42BC CD =,=,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 (结果保留π).16.如图,已知等边11OA B ∆,顶点1A 在双曲线()0y x x=>上,点1B 的坐标为()20,,过B 作B A OA ∥交双曲线于点A ,过A 作A B A B ∥交x 轴与点B ,得到第PABD.C.B.A.DC三、解答题(每小题6分,共18分)17.计算:11220182-⎛⎫--+ ⎪⎝⎭18.先化简,再求值:22221644a a a a a-⋅+-,其中a =19.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹) (2)在(1)条件下,连接BF ,求DBF ∠的度数.四、解答题(每小题7分,共21分)20.某公司购买了一批A B 、型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买A B 、型芯片的单价各是多少? (2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?.CDAB21.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图所示的不完整统计图. (1)被调查员工的人数为 人; (2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.如图,矩形ABCD 中,AB AD >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADE CED ∆∆≌; (2)求证:DEF ∆是等腰三角形.不剩剩一半剩少量剩大量类型ADCFE五、解答题(每小题9分,共27分)23.如图,已知顶点为()03C ,-的抛物线()20y ax b a =+≠与x 轴交于A B 、两点,直线y x m =+过顶点C 和点B .(1)求m 的值; (2)求函数2y ax =+(3)抛物线上是否存在点M ,使得MCB ∠存在,请说明理由.24.如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的O Θ经过点C ,连接AC OD 、交于点E .(1)证明:OD BC ∥; (2)若tan 2ABC ∠=,证明:DA 与O Θ相切; (3)在(2)条件下,连接BD 交O Θ于点F ,连接EF ,若1BC =,求EF 的长.O BDA CFE25.已知9030Rt OAB OAB ABO ∆,∠=︒,∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,连接BC .(1)填空:OBC ∠= ;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M N 、同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,但两点相遇时运动停止.已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒.设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?参考答案备用图备用图图2图1A OCBD NM A O C B D A O CB D O B D A CP()21. 2. 3. 4. 5. 6.7.8.9.10.11.5012.113.214.215.16.C A B B D D C B A B x ︒-π()()()()()20222217.1220182212318.21644442442219.1275150180180150=30.a a a a aa a a a a a a a EF AB ABCD AD BC ABD CBD ABC ABD CBD A ABC EF -⎛⎫--+ ⎪⎝⎭=-+=-:⋅+-+-=⋅+-==,==:,,∴,∠=∠=︒,∠=∠+∠=︒∠=︒-∠=︒-︒︒解:解当原式解尺规作图如图是的垂直平分线.四边形是菱形∥.30753045.AB BE BE ABF A DBF ABD ABF ,∴=∴∠=∠=︒,∠=∠-∠=︒-︒=︒是的垂直平分线BDACFE()()()()20.13120420092626.935.263521.18002.3?”80800“”40800“”15053510000353500A x x x x x x A B =+,=,=∴+=∴::÷=10%:÷=5%:-%-10%-%=%∴⨯%=解:设该公司购买型芯片的单价是元.根据题意,得解这个方程得经检验是原方程的解该公司购买、型芯片的单价各是元、元.解如图所示剩一半是样本的;剩大量是样本的;剩少量是样本的;()“”3500.∴人剩少量的员工有人不剩剩一半剩少量剩大量类型400()()()1..21...ABCD AC AD BC CE AE AB CD DE ED ADE CED ADE CED FDE FED DEF :,∴==,===,∴∆∆∆∆∴∠=∠∴∆证明矩形沿对角线所在直线折叠≌由得≌是等腰三角形A DCFE()()()()()()())11222451560tan 6001033230 3.30.03301313309333313..3C y x m m y x y x B C B y ax b M x CM D OCODC OD DCM y y b a y x a b b y x :,-=+,=-=-,=,=,,-,=+,⎧-=,=,⎧⎪∴=-⎨,.∠=︒+︒=︒,==︒∴⎨=+⎩,:=-=-,⎪=-=-⎩解将代入得在中当时则将、分别代入①当在轴的上得解得方时设交轴于则为由()()12121222203 6.36.451530tan 300 3.x x y y M M x CM D OCOEC OE E CM y ⎧⎧=,⎧=⎪⎪⎨⎨⎨=-=⎪⎩⎪⎩⎩∴,.∠=︒-︒=︒,==︒∴,:=-解得;②当在轴的下方时设交轴于则为() ())2222221....112.tan2222.252525242OCOA OC AD CD OD AC OD ACAB O AC BC OD BCBC a OE BC a AC BC ABC a AE aAD AB OA DE aOD OE DE a OD a OA AD:=,=,∴,⊥Θ,∴⊥∴:===,=∠=,=, ===,=,==⎛⎫∴=+=,=,+=+=⎪⎪⎝⎭证明连接是垂直平分线是的直径∥证明设则()222.490..3.90.90...1a OAD DA OAFAB O AFD BADAD BDADF BDA ADF BDA AD FD BDFD ADAED OAD EDA ADOAD ODEDA ADO AD ED ODED ADFD ODED BDEF ODEDF BDO EDF BDOBO BDBC∴∠=︒∴ΘΘ,∴∠=∠=︒∠=∠,∴∆∆,=,=⋅∠=∠=︒,∠=∠,∴∆∆,=,=⋅∴=∠=∠,∴∆∆,==,与相切连接是的直径∽∽∽由52258BO OD BDEF==,===得COBDAFE()()()11602604.sin302cos3011227830 1.53AOCOB OC BOCBOC BC OBRt OAB OA OB AB OBRt OAB ACOA ABS OA AB AC OP OPACx M N OC OB OM xOMN OM h∆︒:=,∠=︒,∴∆,==∆,=︒=,=︒=∆,==⋅=⋅=⋅,===<≤,=,∆=解是等边三角形在中在中①当时点、分别在、上.则的边上的高))2221sin60 1.5.2883833848 1.531sin608 1.58 1.5.2834 4.812 2.5ON x y xx yx M N CB OB BM xOMN ON h BM x y x xx y yx M N CB MN x︒=,=⨯⨯=⎛⎫=,=⨯=⎪⎝⎭<<,=-,∆=︒=-,=-=,=∴<≤≤,=-最大值最大值当时②当时点、分别在、上.则的边上的高当时③当时点、都在上.则())3112 2.512 2.5.2483OMN MN h AB y x xx yx y,∆===-⋅=-=,=∴=,,最大值的边上的高当时当时取得最大值备用图备用图图2图1A OCBDNMA OCBDNMAOC BDNOBDAC PM。
广东省2018年中考数学试题(WORD版,有答案)

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13 C . 3.14- D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
广东省2018年中考数学试题(有答案)【精品】.doc

2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .2 2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为 A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x . 13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
2018年广东省中考数学试卷及答案

绝密★启用前广东省初中学业水平考试数 学(考试时间100分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四个实数0,13, 3.14-,2中,最小的数是( )A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一”小长假期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为 ( )A .71.44210´B .70.144210´C .81.44210´D .80.144210´3.如图,由5个相同正方体组合成的几何体,它的主视图是 ( )A B C D (第3题)4.数据1,5,7,4,8的中位数是( )A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是中心对称图形的是 ( )A .圆B .菱形C .平行四边形D .等腰三角形6.不等式313x x -+≥的解集是( )A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在ABC △中,点D ,E 分别为边AB ,AC 的中点,则ADE △与ABC △的面积之比为( )A .12B .13C .14D .168.如图,AB CD ∥,且100DEC Ð=o ,40C Ð=o ,则B Ð的大小是( )A .30oB .40oC .50oD .60o(第8题)9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m <B .94m ≤C .94m >D .94m ≥10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D ®®®路径匀速运动到点D ,设PAD △的面积为y ,点P 的运动时间为x ,则y 关于x 的函数图象大致为( )ABCD(第10题)二、填空题(本大题共6小题,每小题4分,共24分)11.同圆中,已知»AB 所对的圆心角是100o ,则»AB 所对的圆周角是 o .12.分解因式: .13.一个正数的平方根分别是1x +和5x -,则x = .14.已知01=-+-b b a ,则=+1a .15.如图,在矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)(第15题)(第16.如图,已知等边三角形11OA B ,顶点1A 在双曲线0)y x =>上,点1B 的坐标为(2,0).过点1B 作121B A OA ∥交双曲线于点2A ,过点2A 作2211A B A B ∥交x 轴于点2B ,得到第二个等边三角形122B A B ;过点2B 作2312B A B A ∥交双曲线于点3A ,过点3A 作3322A B A B∥交x轴于点3B ,得到第三个等边三角形233B A B ;……以此类推,则点6B 的坐标为 .=+-122x x 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------三、解答题(本大题共3小题,共18分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:101220182-æö--+ç÷èø.18.(本小题满分6分)先化简,再求值:22221644a a a a a -+-g,其中a 19.(本小题满分6分)如图,BD 是菱形ABCD 的对角线,75CBD Ð=o .(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为点E ,交AD 于点F .(不要求写作法,但保留作图痕迹)(2)在(1)的条件下,连接BF ,求DBF Ð的度数.(第19题)四、解答题(本大题共3小题,共21分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分7分)某公司购买了一批A,B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3 120元购买A 型芯片的条数与用4 200元购买B 型芯片的条数相等.(1)求:该公司购买的A,B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6 280元,求:购买了多少条A 型芯片?21.(本小题满分7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 人.(2)把条形统计图补充完整.(3)若该企业有员工10 000人,请估计该企业这周的工作量完成情况为“剩少量”的员工有多少人.(第21题)22.(本小题满分7分)如图,在矩形中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADF CED △≌△.(2)求证:DEF △是等腰三角形.(第22题)五、解答题(本大题共3小题,共27分.解答应写出文字说明、证明过程或演算步骤)ABCD -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------23.(本小题满分9分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+¹与x 轴交于,A B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值.(2)求函数2(0)y ax b a =+¹的解析式.(3)抛物线上是否存在点M ,使得15MCB Ð=o?若存在,请求出点M 的坐标;若不存在,请说明理由.(第23题)24.(本小题满分9分)如图,在四边形ABCD 中,AB AD CD ==,以AB 为直径的O e 经过点C ,连接,AC OD 交于点E .(1)求证:OD BC ∥.(2)若tan 2ABC Ð=,求证:DA 与O e 相切.(3)在(2)条件下,连接BD 交于O e 于点F ,连接EF ,若1BC =,求EF 的长.(第24题)25.(本小题满分9分)已知Rt OAB △,90OAB Ð=o ,30ABO Ð=o ,斜边4OB =,将Rt OAB △绕点O 顺时针旋转60o ,得Rt ODC △,如题1图,连接BC .(1)填空:OBC Ð= o ;(2)如题1图,连接AC ,作OP AC ^,垂足为点P ,求OP 的长度.(3)如题2图,点,M N 同时从点O 出发,在OCB △边上运动,点M 沿O C B®®路径匀速运动,点N 沿O B C ®®路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为每秒1.5个单位长度,点N 的运动速度为每秒1个单位长度,设运动时间为x s ,OMN △的面积为y .求:当x 为何值时y 取得最大值,最大值为多少?(结果分母可保留根号)(第25题)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________广东省全国中考试卷精选数学答案解析一、选择题1.【答案】C【解析】∵13.14023-<<<,∴最小的数是 3.14-.【考点】实数的比较大小.2.【答案】A【解析】714420000 1.44210=´.【考点】科学记数法.3.【答案】B【解析】从正面看这个几何体,从左边起第一列有2层,第二列有1层,第三列有1层.【考点】三视图中的主视图.4.【答案】B【解析】将数据重新排列为1、4、5、7、8,则这组数据的中位数为5.【考点】中位数.5.【答案】D【解析】A 项,是轴对称图形,也是中心对称图形,故此选项错误;B 项,是轴对称图形,也是中心对称图形,故此选项错误;C 项,不是轴对称图形,是中心对称图形,故此选项错误;D 项,是轴对称图形,不是中心对称图形,故此选项正确.故选:D .【考点】轴对称图形及中心对称图形的概念.6.【答案】D【解析】移项,得:331x x +-≥,合并同类项,得:24x ≥,系数化为1,得:2x ≥,故选:D .【考点】解不等式.7.【答案】C【解析】∵点D 、E 分别为边AB 、AC 的中点,∴DE 为ABC △的中位线,∴DE BC ∥,∴ADE ABC △∽△,∴21(4ADE ABC S DE S BC ==△△.故选:C .【考点】三角形的中位线,三角形中位线的性质,相似三角形的性质.8.【答案】B【解析】∵100DEC Ð=o ,40C Ð=o ,∴40D Ð=o ,又∵AB CD ∥,∴40B D Ð=Ð=o ,故选:B .【考点】平行四边形的性质,坐标与图形性质.9.【答案】A【解析】∵关于x 的一元二次方程230x x m +=-有两个不相等的实数根,∴224(3)410b ac m D =-=-´´->,∴94m <.故选:A .【考点】一元二次方程根的判别式.10.【答案】B【解析】当点P 沿A B ®路径匀速运动时,y 与x 成正比例关系,且y 随x 的增大而增大,运动到点B 时PAD △的面积最大;当点P 沿B C ®路径匀速运动时,y 最大且保持不变;当点P 沿C D ®路径匀速运动时,y 与x 成一次函数关系,且y 与x 的增大而减小.【考点】动点问题的函数图象.二、填空题11.【答案】50【解析】∵同圆中,同弧所对的圆周角的度数等于它所对的圆心角度数的一半,∴»AB 所对的圆周角是50o .【考点】圆周角定理.12.【答案】2(1)x -【解析】由完全平方公式,得2221(1)x x x -+=-.【考点】分解因式.13.【答案】2【解析】根据题意知150x x ++-=,解得:2x =,故答案为:2.【考点】平方根的性质,相反数的性质.14.【答案】2【解析】∵1|0|b -=,∴10b -=,0a b -=,解得:1b =,1a =,故12a +=.故答案为:2.【考点】二次根式的性质,绝对值的性质,解方程.15.【答案】π【解析】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴2OD =,OE BC ^,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积2290π224π360OECD EODS S ××=-=-=-正方形扇形,∴阴影部分的面积124(4π)π2=´´--=.故答案为π.【考点】矩形的判定与性质,切线的性质,全等三角形的判定与性质,扇形的面积公式.16.【答案】【解析】如图,作2A C x ^轴于点C ,设1B C a =,则2A C =,112OC OB B C a =+=+,2(2)A a +.∵点2A 在双曲线0)y x =>上,∴(2)a a +==g ,解得1a =-,或1a =-(舍去),∴211222OB OB B C =+=+-=,∴点2B 的坐标为;作3A D x ^轴于点D ,设2B D b =,则3A D b =,22OD OB B D b =+=+,2(2,)A b b +.∵点3A 在双曲线0)y x =>上,∴)b b +=g ,解得b =+,或b =,∴3222OB OB B D =+=-=,∴点3B 的坐标为;同理可得点4B 的坐标为即(4,0);…,∴点n B 的坐标为,∴点6B 的坐标为.故答案为.【考点】等边三角形的性质,解直角三角形,利用反比例函数的解析式求点的坐标.三、解答题17.【答案】解:原式212=3=-+【解析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【考点】实数的运算.18.【答案】解:原式22(4)(4)4(4)=2a a a a a a a+-=+-g当a原式2==.【解析】原式先因式分解,再约分即可化简,继而将a 的值代入计算.【考点】分式的化简求值.19.【答案】解:(1)如图,EF 即为所求.(2)如图,∵BD 是菱形ABCD 的对角线,75CBD Ð=o ,∴75ABD CBD Ð=Ð=o ,∴2150ABC CBD Ð=Ð=o .∵AD BC ∥,∴18030A ABC Ð=-Ð=o o .∵EF 是AB 的垂直平分线,∴FA FB =,∴30FBA A Ð=Ð=o ,∴753045DBF ABD ABF Ð=Ð-Ð=-=o o o .【解析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可;(2)根据DBF ABD ABF Ð=Ð-Ð计算即可.【考点】基本作图,线段垂直平分线的性质,菱形的性质.四、解答题20.【答案】解:(1)设A 型芯片的单价为x 元,则B 型芯片的单价为(9)x +元,根据题意,得312042009x x =+,解得26x =.经检验,26x =是原方程的解.∴26935+=(元).∴A ,B 型芯片的单价分别是26元,35元.(2)设购买A 型芯片a 条,则购买B 型芯片(200)a -条,根据题意,得2635(200)6280a a +-=,解得80a =.∴购买了80条A 型芯片.【解析】(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.【考点】分式方程的应用,一元一次方程的应用.21.【答案】(1)800(2)补全条形统计图如图.(3)估计该企业这周的工作量完成情况为“剩少量”的员工有280100003500800´=(人).【解析】1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【考点】条形统计图和扇形统计图的综合运用.22.【答案】证明:(1)∵四边形ABCD 是矩形,且矩形沿AC 折叠,∴AD BC CE AE AB CD ====,,DAC ACB ECA Ð=Ð=Ð,EAC BAC DCA Ð=Ð=Ð.∴DAC EAC ECA DCA Ð-Ð=Ð-Ð,即DAE ECD Ð=Ð,∴(SAS)ADE CED △≌△.(2)由(1)知,ADE CED △≌△,∴DEF EDF Ð=Ð∴DF EF =.∴DEF △是等腰三角形.【解析】(1)根据矩形的性质结合折叠的性质找出AD CE =、AE CD =;(2)利用全等三角形的性质找出DEF EDF Ð=Ð.【考点】全等三角形的判定与性质,翻折变换,矩形的性质.五、解答题23.【答案】解:(1)∵直线y x m =+过点(0,3)C -,∴3m =-.(2)由(1)知,直线的解析式为3y x =-,∴令3y =,得3x =.∴(3,0)B .∵点(3,0)B ,(0,3)C -在抛物线上,90,3,a b b +=ì\í=-î解得1,33.a b ì=ïíï=-î∴2133y x =-.(3)存在.当点M 在点B 上方时,设CM 交OB 于点D ,如图1.∵点(0,3)C -,(3,0)B ,∴3OB OC ==,∴45OCB OBC Ð=Ð=o .∵15MCB Ð=o ,∴30tan OCD OD OC OCD Ð=\=Ð=o g ,∴D .∴可得直线CD3y =-.联立方程组23,13,3y y xì=-ïí=-ïî解得12120,3, 6.x x y y ì=ì=ïíí=-=ïîî∴M .当点M 在点B 下方时,设CM 与x 轴交于点D ,如图2.∵15,45MCB OCB Ð=Ð=oo ,∴60OCD Ð=o ,∴tanOD OC OCD =Ð=g∴D ∴可得直线CD 的解析式为3y =-.联立方程组23,13,3y y x ì=-ïïíï=-ïî解得12120,3, 2.x x y y ì=ì=ïíí=-=-ïîî∴2)M -.综上所述,抛物线上存在点M ,使得15MCB Ð=o ,点M 的坐标为M 或2)M -.【解析】(1)把(0,3)C -代入直线y x m =+中解答即可;(2)把0y =代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可;(3)分M 在BC 上方和下方两种情况进行解答即可.【考点】二次函数综合题.24.【答案】(1)证明:如图1,连接OC .∵,,OA OC AD CD OD OD ===,∴OAD OCD △≌△,∴ADO CDO Ð=Ð.又∵AD CD =,∴,AE CE OD AC =^,∴OE 是ABC △的中位线,∴OD BC ∥.(2)证明:如图1,连接OC .∵AB 为O e 的直径,∴90ACB Ð=o .∵tan 2,2AC ABC BCÐ=\=.又由(1)知,OD BC ∥,∴,tan 2AOD ABC AOD Ð=Ð\Ð=.∵2AD CD AB OA ===,∴2,2,2AD AD CD AD AC OA OB OC OB BC==\===,∴DAC OBC △∽△.∴ACD BCO Ð=Ð.∵AB 是O e 的直径,∴90ACB Ð=o ,即90,90BCO OCA ACD OCA Ð+Ð=\Ð+Ð=o o ,即90OCD Ð=o .由(1)知,,90OAD OCD OAD OCD \Ð=Ð=o △≌△,∴OA DA ^.又∵OA 为O e 的半径,∴DA 与O e 相切.(3)解:如图2,连接,OC AF .∵AB 是O e 的直径,∴90AFB Ð=o ,∴90AFD Ð=o .由(1)知,90AED Ð=o ,∴点,,,A E F D 在以AD 为直径的圆上.易知ABD △是等腰直角三角形,∴AFD △是等腰直角三角形,∴45DEF DAF ABD Ð=Ð==Ðo .∵FDE ODB Ð=Ð,∴FDE ODB △∽△,∴EF DE BO DB=.∵1,tan 2BC ABC =Ð=,∴1AC=.∴AB==.∴2OB DE =\===.∴cos AB BD ABD ===Ð∵,EF DEBO DB==EF=.【解析】(1)连接OC,证OAD OCD△≌△得ADO CDOÐ=Ð,由AD CD=知DE AC^,再由AB为直径知BC AC^,从而得OD BC∥;(2)根据tan2ABCÐ=可设BC a=、则2AC a=、AD AB===,证OE为中位线知12OE a=、12AE CE AC a===,进一步求得2DE a==,再AOD△中利用勾股定理逆定理证90OADÐ=o即可得;(3)先证AFD BAD△∽△得2DF BD AD=g①,再证AED OAD△∽△得2OD DE AD=g②,由①②得DF BD OD DE=g g,即DF DEOD BD=,结合EDF BDOÐ=Ð知EDF BDO△∽△,据此可得EF DEOB BD=,结合(2)可得相关线段的长,代入计算可得.【考点】与圆有关的位置关系,圆的综合题.25.【答案】(1)60o(2)∵60,OBC OB OCÐ==o,∴OBC△为等边三角形.∴4OC BC OB===.∵90ABC ABO OBCÐ=Ð+Ð=o,∴ABC OABÐ=Ð,∴AO BC∥.在Rt ABO△中,∵30,4ABO OBÐ==o,∴2AB AO==.∴AC==.∴1122AOCS AO AB AC OP==g g△,∴OP=(3)①当83x≤≤时,过点N作NE OC^,交OC于点E.则3,2NE OM x ==,∴21322y x x x =´=.此时,该抛物线的对称轴为y 轴,当83x =时,y 取得最大值,max y .②当843x <时,过点M 作MF OB ^,交OB 于点F ,则3),2MF x ON x =-=,∴2138))223y x x x =´-=-.此时,该抛物线的对称轴为83x =.∵0,∴当843x <时,y 随x 的增大而减小,∴y .③当2445x ≤≤时,点,M N 均在线段BC 上,则5122MN x =-,∴15(12)22y x =´-´=+.∵0,∴y 随x 的增大而减小,∴当4x =时,y 取得最大值,max y =.综上所述,当83x =时,y .【解析】(1)只要证明OBC △是等边三角形即可;(2)求出AOC △的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当803x £<时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ^且交OC 于点E .②当843x £<时,M 在BC 上运动,N 在OB 上运动.③当2445x <≤时,M 、N 都在BC 上运动,作OG BC ^于G .【考点】几何变换综合题,30度的直角三角形的性质,等边三角形的判定和性质,三角形的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东中考数学基础训练一
一、选择题
1.﹣的相反数是( ) A.2 B.12 C.-2 D. 12
- 2.如图,李师傅做了一个零件,请你告诉他这个零件的主视图是( )
A .
B .
C .
D .
3.下列运算正确的是( )
A .
=
+ B .()2=3 C.3a ﹣a=3 D .(a 2)3=a 5
4.2(4)-的算术平方根是( )
A.4
B. ±4
C.2
D. ±2
5.不等式组
的整数解共有( ) A . 1个
B . 2个
C . 3个
D . 4个 6.已知x 2﹣2x ﹣3=0,则2x 2﹣4x 的值为( )
A .﹣6
B . 6
C .﹣2或6
D .﹣2或30
7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( ).
A .中位数是8
B .众数是9
C .平均数是8
D .极差是7
8.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )
9.已知正比例函数()的图象上两点
(,)、(,),且,则下列不等式 中恒成立的是( ).
A .
B .
C .
D .
10.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.
如果∠1=20°,那么∠2的度数是( )
A .15°
B .20°
C .25°
D .30°
二、填空题。
11.分解因式:22
9ax ay -=
12.中,已知,,则的外角的度数是____ _.
13.如图,点A 、B 、C 均在⊙O 上,∠C=50°,则∠OAB= 度.
14.桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为
15. 若1a b -+
互为相反数,则2013()a b - =____________.
16.如图,在□ABCD 中,AD =2,AB =4,∠A =300,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是 (结果保留π)。
三、解答题
17、计算(π﹣3.14)0+(﹣1)2015+|1﹣
|﹣3tan30°
18、解方程组或不等式组 (1)⎩⎨⎧=+=-1732623y x y x (2)⎩⎪⎨⎪⎧5x -12≤2(4x -3),3x -12
<1
19.散花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校
参加全县汉字听写大赛.
(1)请用树形图或列表法列举出各种可能选派的结果;
(2)求恰好选派一男一女两位同学参赛的概率.
题16图 D C A B。