离心泵的安装高度

合集下载

离心泵的安装技术间隙标准

离心泵的安装技术间隙标准
0.70-1.00
减压环与轴套直径间隙
0.50-1.20
填料环外径小于填料函孔径
0.30-0.50
填料环内径大于轴径
0.10-0.20
填料切口角度
45°
切口错角
大于90°
转子
单级转子
叶轮密封环径向跳动
0.05
(0-50)
0.06
(50-120)
0.07
(120-260)
0.08
(260-)
轴套径向跳动
轴颈120-180
轴承侧间隙(中分面)
顶部间隙的1/2
滚动轴承
轴承与轴配合
H7/js6(受轴向、径向载荷)
H7/k6(仅受径向载荷)
轴承与轴承座配合
Js7/h6
止推轴承外圈间隙
0.02-0.06
密封
机械密封
压盖与轴套间隙
0.75-1.00
压盖与密封腔间垫片厚度
1.00-2.00
压盖与静环密封圈接触面粗糙度
一、离心泵的关键安装技术
管道离心泵的安装技术关键在于确定水泵安装高度(即吸程)。这个高度是指水源水面到水泵叶轮中心线的垂直距离,它与允许吸上真空高度不能混为一谈,水泵产品说明书或铭牌上标示的允许吸上真空高度是指水泵进水口断面上的真空值,而且是在1标准大气压下、水温20摄氏度情况下,进行试验而测定得的。它并没有考虑吸水管道配套以后的水流状况。而水泵安装高度应该是允许吸上真空高度扣除了吸水管道损失扬程以后,所剩下的那部分数值,它要克服实际地形吸水高度。水泵安装高度不能超过计算值,否则,水泵将会抽不上水来。另外,影响计算值的大小是吸水管道的阻力损失扬程,因此,宜采用最短的管路布置,并尽量少装弯头等配件,也可考虑适当配大一些口径的水管,以减管内流速。

离心泵的安装高度

离心泵的安装高度

离心泵的汽蚀现象与安装高度一、离心泵的汽蚀现象离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。

避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。

二、离心泵的安装高度Hg允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。

位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为×105Pa时的值,当操作条件及工作介质不同时,需进行换算。

(1) 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+(Ha--(Hυ-(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。

若输送其它液体,亦需进行校正,详查有关书籍。

从安全角度考虑,泵的实际安装高度值应小于计算值。

又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。

例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。

已知吸入管路的全部阻力为,当地大气压为×104Pa,液体在吸入管路中的动压头可忽略。

试计算:(1) 输送20℃清水时泵的安装;(2) 改为输送80℃水时泵的安装高度。

解:(1) 输送20℃清水时泵的安装高度已知:Hs=5.7mHf0-1=1.5mu12/2g≈0当地大气压为×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=4.2 m。

离心泵的安装高度

离心泵的安装高度
4、离心泵的实际安装高度
离心泵的实际安装高度应小于允许安装高度,一般比允许值小0.5~1m。
2021/10/24
注意: 1)离心泵的允许吸上真空度和允许气蚀余量值是与其流量有关的,大流量下△h 较大而HS’较小,因此,必须注意使用最大额定流量值进行计算。 2)离心泵安装时,应注意选用较大的吸入管路,减少吸入管路的弯头、阀门等 管件,以减少吸入管路的阻力。 3)当液体输送温度较高或液体沸点较低时,可能出现允许安装高度为负值的情 况,此时,应将离心泵安装于贮槽液面以下,使液体利用位差自流入泵内。
1.97 10 5
钢管绝对粗糙度取 相对粗糙度取
0.35mm
0.35 0.0043
d 80.5
2021/10/24
查图、局部当量长度
0.028
截止阀(全开)
le 300 d
两个90度弯头
le 35 2 70
d
带滤水器的底阀(全开)
le 420
d
管出口突然扩大
1
管路的压头 扬程

代入

2021/10/24
——允许吸上高度的计算式
HS’值越大,表示该泵在一定操作条件下抗气蚀性能好, 安装高度Hg越高。 HS’与泵的结构、流量、被输送液体的物理性质及当地大气 压等因素有关。通常由泵的制造工厂试验测定,实验在大气压为10mH2O (9.81Pa)下,以20℃清水为介质进行的。
•HS ’ 随 Q增大而减小 •确定离心泵安装高度时应使用泵最大流量下的HS’ 进行计算 若输送其它液体,且操作条件与上述实验条件不符时,需对HS’ 进行校正。
2021/10/24
3、气蚀余量
为防止气蚀现象发生,在离心泵入口处液柱的静压头

离心泵的安装高度允许汽蚀余量法

离心泵的安装高度允许汽蚀余量法
知 p 0 =l00kPa,h =2.0m, hf122m
H gp g 0p g v h H f,0 1
1 0 10 0 1 .3 0 2 1 4 00 2 .0 0 2 0 5 .0 m 4 9.1 8 9 .8 81
因此,泵的安装高度不应高于5.04m
课堂小结
1、离心泵汽蚀现象产生的原因; 2、排除离心泵汽蚀现象的措施; 3、离心泵安装高度的确定。5、下列说法正确的是( )
A、灌泵是为了防止汽蚀现象的发生 B、气缚是离心泵的正常现象 C、降低泵的安装高度时为了防止汽蚀
现象的发生
D、汽蚀是离心泵的正常现象
6、某泵在运行的时候发现有汽 蚀现象应( )
A、停泵,向泵内管液 B、降低泵的安装高度 C、检查进口管路是否漏液 D、检查出口管阻力是否过大
书面作业
1、阐述离心泵汽蚀现象产生的原 因及排除的措施
2、使用某离心泵在海拔1500m的 高原上将水从敞口贮水池送入某 设备中,设当地大气压为 8.6mH2O,水温为15℃,工作 点下流量为60m3/h,允许汽蚀 余量为3.5m,吸入管路的总阻 力损失为2.3 mH2O。试计算允 许安装高度。
uk2 2g
Hf
,1k
由离心泵允许安装高度方程, 又可得到
H g p 0 g p 1 2 u 1 g 2 H f , 0 - 1 p g 0 (p g 1 2 u 1 g 2 p g v ) p g v H f , 0 1

Hgpg 0 hpg v Hf,01 ——离心泵允许安装高度方程
(一)离心泵的汽蚀现象
3、预防措施
根据气蚀现象的定义, 易知泵内发生气蚀的临界条件是叶
轮入口附近最低压强等于液体的饱和蒸汽压,
为避免发生汽蚀,应该使p1>pv

水泵最大安装高度是什么,又应该如何计算?

水泵最大安装高度是什么,又应该如何计算?

水泵最大安装高度是什么,又应该如何计算?
如有侵权,请联系删除
离心泵是输水中最常用的泵之一,泵房内的地坪标高取决于水泵的安装高度,正确地计算水泵的最大允许安装高度,使泵站既能安全供水,又能节省土建造价,具有很重要的意义。

为了避免汽蚀现象的发生,离心泵的安装高度需要进行非常仔细的校核计算。

水泵进水侧装置形式示意图如下:
泵的允许几何安装高度与多方面条件有关,公式如下:
式中:[Hg]—泵的允许几何安装高度,m;(计算结果供设计时利用,实际安装高度需低于允许安装高度)
pe—吸水水面压力,Pa;(为吸水水面的大气压,海拔越高大气压越低)pv—饱和蒸汽压力,Pa;(与水温有关,水温越高,饱和蒸汽压力越高)ρ—流体的密度,kg/m3;g—重力加速度,9.81m/s2;[NPSHr]—水泵的允许汽蚀余量,m;(与水泵性能有关,由水泵厂家提供)hw—吸入管路中的水头损失,m。

(与吸水管路设计有关,由设计人员确定)由上式可知:海拔越高、水温越高、允许汽蚀余量越
大、进水管路水头损失越大,允许几何安装高度越小。

不同海拔时的大气及对应的水头高度见下表:
不同温度时水的饱和蒸汽压对应水头高度见下表:
例:某品牌VISO125X100-315-55/2水泵汽蚀余量为[NPSHr]=3.29m,欲在海拔500m高度的地方工作,该地区夏季最高水温为40℃,若吸水管的水头损失为1m,则该泵在当地的运行几何安装高度[Hg]计算如下:设:吸水水面压力为当地大气压,由表查得海拔500m处大气压头9.7m;水温40℃时,水的饱和蒸汽压头为0.752m;计算得:[Hg]=9.7-0.752-3.29-1=4.658m。

(整理)离心泵的安装高度计算方法

(整理)离心泵的安装高度计算方法

离心泵的安装高度计算方法在我们平时生活应用中,离心泵的使用非常广泛,但是大部分消费者如离心泵的正确使用方法还是很迷惑,安装的具体高度也不清楚。

本文详细讲述了离心泵的高度计算步骤,以及离心泵的启动原理,希望能够在日常生活应用中帮助到大家。

离心泵的安装高度计算允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。

而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由水泵制造厂家实验测定的值,此值附于泵样本中供用户查用。

位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。

1 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+Ha-10.33 - Hυ-0.242 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1。

第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。

若输送其它液体,亦需进行校正,详查有关书籍。

吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。

例如:某泵必需汽蚀余量为4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米从安全角度考虑,泵的实际安装高度值应小于计算值。

当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。

例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。

已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。

试计算:1 输送20℃清水时离心泵的安装。

2 改为输送80℃水时离心泵的安装高度。

解:1 输送20℃清水时泵的安装高度。

离心泵的安装高度

离心泵的安装高度

2-6 离心泵的安装高度为什么要提出安装高度问题呢?倘若吸水池液面通大气,即使泵壳内的绝压(1p )为零,即真空度为1个大气压,其安装高度g H 亦会小于或等于m 10,如图2-5所示。

若大于10米,则池中液体就不会源源不断压入泵壳内。

另外,若泵壳的绝压(1p )小于被输送液的饱和蒸汽压(v p ),则液体将发生剧烈汽化,气泡剧烈冲向叶轮,使叶轮表面剥离、破损,发生“气蚀”现象,即气泡对叶轮的腐蚀现象。

为了避免“气蚀”。

所以必须满足v p p ≥1。

所以安装高度g H 必须小于m gp p ρ10−。

那么实际安装高度Hg 应如何计算呢?图2-5 安装高度示意图在图2-5中的贮槽液面0-0与泵入口处1-1截面,列柏努利方程得,,,02201021112000===+++=++u H z z h g u g p z g u g p z g fΘρρfg h gu g p p H −−−=∴22110ρ ………………)(a(1) 气蚀余量法(h ∆)气蚀余量h ∆,是指泵入口处动压头与静压头之和⎟⎟⎠⎞⎜⎜⎝⎛+g p g u ρ1212,超过液体在操作温度下水的饱和蒸汽压具有的静压头(gp vρ之差,即g p g p g u h vρρ−⎟⎟⎠⎞⎜⎜⎝⎛+=∆1212 …………)(b改写式(a )并将式(b )代入得:f v vgh gp g p g p g u g p H −+−+−−=ρρρρ0212f vg h gp g p h H −−+∆−=∴ρρ0 (Ⅴ)式中, h ∆——由泵样本查得的气蚀余量值,m ; 0p ——泵工作处的大气压强,Pa ;v p ——操作温度下被输液的饱和蒸汽压,Pa ;(2) 允许吸上真空高度法(s H )目前出版的新的泵样本中,已没有列出s H 数值。

但90年代以前出版的教材和泵样本中,是列有s H 值的。

为了便于新老样本的衔接,此处简要介绍此法。

定义 gp p H s ρ−=10 将s H 代入式)(a 得:fs g h gu H H −−=221 ………………)(c考虑到泵工作地点的大气压强不一定是一个大气压,泵所需送液体也不一定是20 o C 的水,将压力与温度校正项加进去,代入式(c )得:fv s g h g u g p g p H H −−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−+=224.010210ρρ (Ⅵ)此即允许吸上真空高度法计算泵安装高度的公式。

离心泵的安装高度

离心泵的安装高度

离心泵的汽蚀现象与安装高度一、离心泵的汽蚀现象离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。

避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。

二、离心泵的安装高度Hg允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。

位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为×105Pa时的值,当操作条件及工作介质不同时,需进行换算。

(1) 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+(Ha--(Hυ-(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。

若输送其它液体,亦需进行校正,详查有关书籍。

从安全角度考虑,泵的实际安装高度值应小于计算值。

又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。

例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。

已知吸入管路的全部阻力为,当地大气压为×104Pa,液体在吸入管路中的动压头可忽略。

试计算:(1) 输送20℃清水时泵的安装;(2) 改为输送80℃水时泵的安装高度。

解:(1) 输送20℃清水时泵的安装高度已知:Hs=5.7mHf0-1=1.5mu12/2g≈0当地大气压为×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=4.2 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾
什么是气蚀及产生的原因。 ❖ 回答:离心泵工作时,在叶轮中心区域产生的真空区压强低于液体的
饱和蒸汽压,则液体在真空区会大量汽化产生气泡。含气泡的液体随 排液过程压力增加,受到周围液体的挤压而破裂,周围的液体就以极 高的速度流向气泡中心,为气蚀现象。
Δh——允许汽蚀余量,m;
∑Hf,0-1——液体流经吸入管路的压头损失,m。
1、允许安装高度Hg

计算的得到的允许安装高度就是离心泵允许安装的最大高度。为
了离心泵的运行可靠,一般实际安装高度还应比计算值低0.5~1m。
2、允许汽蚀余量Δh
允许汽蚀余量是一个抗气蚀性能的参数。为了防止气蚀现象的发生, 在离心泵入口处液体的静压头与动压头之和必须大于液体在操作温度下的 饱和蒸汽压头某一最小值。
❖ 造成汽蚀的主要原因有: ❖ 1)进口管路阻力过大或者管路过细; ❖ 2)输送介质温度过高; ❖ 3)安装高度过高,影响泵的吸液量;
新课引入
❖ 【问题1】根据气蚀产生原因,比较下面两幅图,在液体性质、环境相 同的情况下,看看哪一种情况更容易引起气蚀现象?
(a) 图1 确定离心泵安装高度对比图
(b)
汽压,避免出现液体的汽化现象。
❖ 下面就了解一下离心泵的安装高度。
离心泵的安装高度

我们把避免离心泵出现汽蚀现象的最大安装高度称为离心泵的允
许安装高度,也叫允许吸上高度。
❖ 离心泵的允许安装高度计算式:
H g

p0 ps
g
h
H f ,01
式中
Hg——允许安装高度,m; p0——吸入液面压力,Pa; ps——操作温度下液体的饱和蒸汽压,Pa; ρ——液体的密度,kg/m3;

可见图中两台离心泵吸入管口相对于贮槽液面位置不同,(a)图
中吸入管口比液面低;(b)图中吸入管口比液面高,安装太高可能引
起气蚀现象,所以(b)图比(a)图容易引起气蚀现象。
❖ 离心泵的汽蚀现象与泵的安装高度有很大的关系,安装高度过高,
发生汽蚀现象的可能性就大。因此避免汽蚀现象的方法就是限制泵的
安装高度,以保证离心泵在运转时泵入口处的压力大于液体的饱和蒸
允许汽蚀余量也是由生产泵的工厂通过实验测定的,并将值列于泵的 性能表上。需要注意的是允许汽蚀余量也是按输送20oC的清水测定出来 的,当输送其他液体时需要予以校正。
相关文档
最新文档