激光原理简答题(西南科技大学)
激光原理与技术复习——简答题精编版

激光原理复习题----填空简答论述1.什么是光波模式?答:光波模式:在一个有边界条件限制的空间内,只能存在一系列独立的具有特定波矢的平面单色驻波。
这种能够存在于腔内的驻波(以某一波矢为标志)称为光波模式。
2.如何理解光的相干性?何谓相干时间、相干长度?答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。
相干时间:光沿传播方向通过相干长度所需的时间,称为相干时间。
相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。
3.何谓光子简并度,有几种相同的含义?激光源的光子简并度与它的相干性什么联系?答:光子简并度:处于同一光子态的光子数称为光子简并度。
光子简并度有以下几种相同含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
联系:激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。
4.什么是黑体辐射?写出公式,并说明它的物理意义。
答:黑体辐射:当黑体处于某一温度的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。
物理意义:在单位体积内,频率处于附近的单位频率间隔中黑体的电磁辐射能量。
.5.描述能级的光学跃迁的三大过程,并写出它们的特征和跃迁几率。
Page10答:(1)自发辐射:处于高能级的一个原子自发的向跃迁,并发射一个能量为的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。
特征:a) 自发辐射是一种只与原子本身性质有关而与辐射场无关的自发过程,无需外来光。
b) 每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。
激光原理习题答案

激光原理习题答案激光是一种特殊的光源,它具有高度的单色性、相干性、方向性和亮度。
激光的产生基于受激辐射原理,即当原子或分子被激发到高能级状态后,受到外部光子的激发,以相同的频率、相位和方向释放出光子。
以下是一些激光原理习题的答案:1. 激光的产生条件:- 粒子数反转:在激光介质中,高能级上的粒子数必须大于低能级上的粒子数。
- 光学谐振腔:激光器内部需要有一个反射镜和一个半反射镜构成的谐振腔,以形成反馈机制。
2. 激光的分类:- 固体激光器:如红宝石激光器、Nd:YAG激光器等。
- 气体激光器:如氦氖激光器、CO2激光器等。
- 半导体激光器:也称为激光二极管,广泛应用于通信和数据存储。
3. 激光的特性:- 单色性:激光的波长非常窄,颜色非常纯净。
- 相干性:激光的光波具有相同的频率和相位。
- 方向性:激光束具有很好的方向性,发散角很小。
4. 激光的应用:- 医学:用于手术切割、治疗等。
- 工业:用于材料加工,如焊接、切割、打标等。
- 通信:光纤通信中使用激光作为信号载体。
5. 激光的安全问题:- 激光可能对眼睛造成损伤,使用时应采取适当的防护措施。
- 激光器应按照安全等级分类,并遵守相应的操作规程。
6. 激光器的工作原理:- 泵浦源提供能量,将介质中的粒子激发到高能级。
- 高能级粒子在受到外部光子的激发下,通过受激辐射释放出光子。
- 释放的光子在谐振腔中来回反射,不断被放大,最终形成激光束输出。
7. 激光的调制和调Q技术:- 调制:通过改变激光的参数(如频率、强度)来传输信息。
- 调Q:通过改变谐振腔的品质因数,实现激光脉冲的压缩和放大。
8. 激光的光谱特性:- 激光的光谱非常窄,通常用线宽来描述。
- 线宽越窄,激光的单色性越好。
9. 激光的相干长度:- 相干长度是激光在保持相干性的情况下能够传播的最大距离。
10. 激光的发散角:- 发散角是激光束在传播过程中的扩散程度,与激光的模式有关。
以上是一些基本的激光原理习题答案,希望能够帮助理解激光的基本原理和特性。
激光原理简答题整理

1.什么是光波模式答:光波模式:在一个有边界条件限制的空间内,只能存在一系列独立的具有特定波矢的平面单色驻波。
这种能够存在于腔内的驻波(以某一波矢为标志)称为光波模式。
2.如何理解光的相干性何谓相干时间、相干长度答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。
相干时间: 光沿传播方向通过相干长度所需的时间,称为相干时间。
相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。
3.何谓光子简并度,有几种相同的含义激光源的光子简并度与它的相干性什么联系答:光子简并度:处于同一光子态的光子数称为光子简并度。
光子简并度有以下几种相同含义: 同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
联系: 激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。
4.什么是黑体辐射写出公式,并说明它的物理意义。
答:黑体辐射:当黑体处于某一温度的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。
物理意义:在单位体积内,频率处于附近的单位频率间隔中黑体的电磁辐射能量。
5.描述能级的光学跃迁的二大过程,并写出它们的特征和跃迁几率。
答:(1)自发辐射:处于高能级的一个原子自发的向跃迁,并发射一个能量为hv的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。
特征:a)自发辐射是一种只与原子本身性质有关而与辐射场无关的自发过程,无需外来光。
b)每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为V,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。
激光原理简答题(西南科技大学)

光学谐振腔的作用1、提供正反馈(放大)作用(1)腔镜的反射率(吸收、透射少,反射率大;反之亦然);(2)腔镜的形状及组合方式。
2、控制振荡光束,表现在三个方面(1)控制纵模的数目—光的模式少,光子的简并度高(2)控制高阶横模—基模光强大、光斑小、发散角小(3)控制各种损耗—在增益一定的条件下,通过控制损耗来控制激光的输出。
横模的形成a 、谐振腔中稳定的激光等效于任何波面的光通过一系相同列光栏后形成的自再现光场b 、光栏有衍射,因此在光束的不同位置光将形成干涉叠加,这种稳定的叠加就形成了横模c 、不同位置稳定场形成的条件不同,故而有不同频率。
不同频率的横模的光场有不同的横向分布,它们是重叠在激光腔的同一空间内。
1、损耗的种类(1)几何损耗:非平行轴的光线,折、反出腔外的损耗。
① 光腔结构和尺寸影响的损耗;② 横模阶次的高低不同损耗不同。
一般,高阶模的损耗大。
(2)衍射损耗:反射镜尺寸有限、腔中有插件,必有衍射。
① 损耗与菲涅尔数N=a2/Lλ有关,该常数越小,损耗越大。
② 与腔的几何结构有关,参数g=1-L/R 越小损耗越大。
③ 与横模的阶次有关,阶次越高损耗越大。
(3)腔镜反射不完全引起的损耗① 反射镜吸收、散射引起的损耗;②反射镜的部分出射引起的损耗(对固体激光器可达50%)(4)非激活吸收、散射引起的损耗① 腔内加插件引起的损耗a 、产生偏振光的布儒斯特窗口b 、提高激光瞬间强输出功率的调Q 元件c 、各种用途的加载调制元件② 非激活介质的吸收、散射两个相同腔面共振漠视的积分方程 意义腔内可能存在着得稳定的共振光波场,他们由一个腔面传播到另一个腔面的过程中虽然经受了衍射效应,但这些光波场在两个腔面处得相应振幅分布和相位分布保持不变,亦即共振光波场在腔内多次往返过程中始终保持自洽或自再现的条件。
方形镜共焦腔: 长椭球函数,在N 很大的情况,可以表示成厄米多项式与高斯函数乘积的形式。
圆形镜共焦腔: 超椭球函数,在N 很大的情况,可以表示成拉盖尔多项式与高斯函数乘积的形式。
激光原理复习题(含参考答案)

激光原理复习题(含参考答案)1. 自发辐射爱因斯坦系数与激发态E2平均寿命τ的关系为(B)2. 爱因斯坦系数A21和B21之间的关系为( C)3. 自然增宽谱线为(C)(A)高斯线型(B)抛物线型(C)洛仑兹线型(D)双曲线型4. 对称共焦腔在稳定图上的坐标为( B )(A)(-1,-1)(B)(0,0)(C)(1,1)(D)(0,1)5. 阈值条件是形成激光的(C)(A)充分条件(B)必要条件(C)充分必要条件(D)不确定6. 谐振腔的纵模间隔为( B )7. 对称共焦腔基模的远场发散角为(C)8. 谐振腔的品质因数Q衡量腔的( C )(A)质量优劣(B)稳定性(C)储存信号的能力(D)抗干扰性9. 锁模激光器通常可获得( A)量级短脉冲10. YAG激光器是典型的(C)系统(A)二能级(B)三能级(C)四能级(D)多能级11. 任何一个共焦腔与无穷多个稳定球面腔等价,而任何一个满足稳定条件的球面腔唯一地等价于一个共焦腔。
12. 激光器的基本结构包括三部分,即工作物质、激励物质光学谐振腔。
13. 有一个谐振腔,腔长L=1m,在1500MHz的范围内所包含的纵模个数为10 个(设μ=1)。
14. 激光的特点是相干性强、单色性佳、方向性好高亮度。
15 调Q 技术产生激光脉冲主要有 、 两种方法,调Q 激光器通常可获得ns 量级短脉冲,锁模有 和 两种锁模方式。
锁模 、 调Q 主动锁模 被动锁模16. 受激辐射激励发射出的光子与外来光完全相同,即 , , , 。
传播方向相同,相位相同,偏振态相同,频率相同17写出光与物质相互作用的爱因斯坦关系式,说明其物理含义。
答:(1)自发辐射跃迁几率2121211sp s dn A dt n τ⎛⎫== ⎪⎝⎭,表示了单位时间内从高能级向低能级跃迁的原子数与高能级原有粒子数的比例。
(2)受激吸收跃迁几率121211st dn W dt n ⎛⎫= ⎪⎝⎭,表示单位时间内由于受激跃迁引起的由低能级向高能级跃迁的原子数和低能级原子数的比例。
最新激光原理简整理

1.什么是光波模式?答:光波模式:在一个有边界条件限制的空间内,只能存在一系列独立的具有特定波矢的平面单色驻波。
这种能够存在于腔内的驻波(以某一波矢为标志)称为光波模式。
2.如何理解光的相干性?何谓相干时间、相干长度?答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。
相干时间: 光沿传播方向通过相干长度所需的时间,称为相干时间。
相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。
3.何谓光子简并度,有几种相同的含义?激光源的光子简并度与它的相干性什么联系?答:光子简并度:处于同一光子态的光子数称为光子简并度。
光子简并度有以下几种相同含义: 同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
联系: 激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。
4.什么是黑体辐射?写出公式,并说明它的物理意义。
答:黑体辐射:当黑体处于某一温度的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。
物理意义:在单位体积内,频率处于附近的单位频率间隔中黑体的电磁辐射能量。
5.描述能级的光学跃迁的二大过程,并写出它们的特征和跃迁几率。
答:(1)自发辐射:处于高能级的一个原子自发的向跃迁,并发射一个能量为hv的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。
特征:a)自发辐射是一种只与原子本身性质有关而与辐射场无关的自发过程,无需外来光。
b)每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为V,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。
激光物理简答题

第一章激光器的基本原理1、问:产生激光的条件是什么?(戴大鹏)答: 1.受激辐射是激光产生的必要条件; 2.要形成激光,工作物质必须具有亚稳态能级,这是产生激光的第二个条件; 3.选择适当的物质,使其在亚稳态能级上的电子比低能级上的电子还多,即形成粒子束反转,这是形成激光的第三个条件;4.激光中开始产生的光子是自发辐射产生的,其频率和方向是杂乱无章的。
要使得频率单纯,方向集中,就必须有一个谐振腔,这是形成激光的第四个条件;5. 只有使光子在腔中振荡一次产生的光子数比损耗掉的光子要多得多,才能有放大作用,这是产生激光的第五个条件。
2、问:什么是粒子数反转?(钟双金)粒子数反转 (population inversion )是激光产生的前提。
两能级间受激辐射几率与两能级粒子数差有关。
在热平衡状态下,粒子数按能态的分布遵循玻耳兹曼分布律,这种情况得不到激光。
为了得到激光,就必须使高能级 E2 上的原子数目大于低能级 E1 上的原子数目,因为 E2 上的原子多,发生受激辐射,使光增强(也叫做光放大) 。
为了达到这个目的,必须设法把处于基态的原子大量激发到亚稳态 E2,处于高能级 E2 的原子数就可以大大超过处于低能级 E1 的原子数。
这样就在能级 E2 和 E1 之间实现了粒子数的反转。
实现粒子数反转的条件:通常实现粒子数反转要依靠两个以上的能级:低能级的粒子通过比高能级还要高一些的泵浦能级抽运到高能级。
一般可以用气体放电的办法来利用具有动能的电子去激发激光材料,称为电激励;也可用脉冲光源来照射光学谐振腔内的介质原子,称为光激励;还有热激励、化学激励等。
各种激发方式被形象化地称为泵浦或抽运。
为了使激光持续输出,必须不断地“泵浦”以补充高能级的粒子向下跃迁的消耗量。
3、什么叫纵模、横模?由谱线宽度和腔长来估算可能振荡的纵模数目答案:光场在腔内的纵向和横向分布分别叫做纵模和横模。
横模数目 n=谱线宽度/c纵模数目 n=谱线宽度/ (c/2*腔长 L)第二章激光器的速率方程理论答案:第三章 密度矩阵1:考虑衰减过程、原子的泵浦或激发过程,写出在初始光场为零时的光学布洛 赫方程并说明各项含义。
西南科技大学 激光原理重点

1. 开放式光学谐振腔损耗种类描述:(1).几何损耗:不平行于光轴的光线在某些几何结构腔的腔内经有限次往返传播后,有肯能从腔的侧面偏折出去,即使平行于光轴的光线仍然也存在有偏折出腔外的可能。
其大小首先取决于腔的类型和几何尺寸。
其次,几何损耗的高低依横膜阶次的不同而异。
(2).衍射损耗:由于反射镜几何尺寸有限,因而光波在腔内往返传播时必然因腔镜边缘的衍射效应而产生损耗。
当在腔内插入其他光学元件,还应考虑其边缘或孔径的引起的损耗。
(3).腔镜反射不完全引起的损耗:包括镜中的吸收、散射以及镜的透射损耗。
(4).非激活吸收散射等其他损耗:因为激光通过腔内光学元件和反射镜发生非激活吸收、散射等引起。
前两种损耗常称为选择性损耗,它随不同横膜而异。
后两种损耗称为非选择性损耗,与光波的模式无关。
2. 传输矩阵对谐振腔稳定区域的判定:按照光线传播通过的光学器件和空间将谐振腔从左至右相乘:⎥⎦⎤⎢⎣⎡1 11 1D C B A ⎥⎦⎤⎢⎣⎡2 22 2D C B A ⎥⎦⎤⎢⎣⎡3 33 3D C B A ⎥⎦⎤⎢⎣⎡4 44 4D C B A =⎥⎦⎤⎢⎣⎡D C B A可得A B C D,稳定性条件为:-1<1/2(A+D )<1将矩阵带入,可得:0<(1-L/R 1)(1-L/R 2)<13. 传输矩阵计算:取某一光学元件传输矩阵为M=⎥⎦⎤⎢⎣⎡D C B A , 则一束初始坐标为x 1,方向θ1的光束通过该光学元件后的坐标参数与方向:⎥⎦⎤⎢⎣⎡θ22x = ⎥⎦⎤⎢⎣⎡D C B A ⎥⎦⎤⎢⎣⎡θ11x =M (L )⎥⎦⎤⎢⎣⎡θ11x4. 高斯光束q 因子用法及计算公式:光束在谐振腔中循环一周的变换矩阵ABCD 为:⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡2 22 2A C B D ⎥⎦⎤⎢⎣⎡-1 2/20 1R ⎥⎦⎤⎢⎣⎡2 22 2D C B A ⎥⎦⎤⎢⎣⎡1 11 1D C B A ⎥⎦⎤⎢⎣⎡-1 2/20 1R ⎥⎦⎤⎢⎣⎡1 11 1A C B D设高斯光束从腔内某一参考面P 出发时复参数为q ,在腔内往返一周后其复参数的q ’则按复参数传输的ABCD 定律式可得:q’=Aq+B/Cq+D根据高斯光束在腔内形成自再现模的条件为:q=q’q=Aq+B/Cq+D对q求解:1/q=1/R-i(λ/πω2 )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学谐振腔的作用
1、提供正反馈(放大)作用(1)腔镜的反射率(吸收、透射少,反射率大;反之亦然);(2)腔镜的形状及组合方式。
2、控制振荡光束,表现在三个方面(1)控制纵模的数目—光的模式少,光子的简并度高
(2)控制高阶横模—基模光强大、光斑小、发散角小(3)控制各种损耗—在增益一定的条件下,通过控制损耗来控制激光的输出。
横模的形成
a 、谐振腔中稳定的激光等效于任何波面的光通过一系相同列光栏后形成的自再现光场
b 、光栏有衍射,因此在光束的不同位置光将形成干涉叠加,这种稳定的叠加就形成了横模
c 、不同位置稳定场形成的条件不同,故而有不同频率。
不同频率的横模的光场有不同的横向分布,它们是重叠在激光腔的同一空间内。
1、损耗的种类
(1)几何损耗:非平行轴的光线,折、反出腔外的损耗。
① 光腔结构和尺寸影响的损耗;② 横模阶次的高低不同损耗不同。
一般,高阶模的损耗大。
(2)衍射损耗:反射镜尺寸有限、腔中有插件,必有衍射。
① 损耗与菲涅尔数N=a2/Lλ有关,该常数越小,损耗越大。
② 与腔的几何结构有关,参数g=1-L/R 越小损耗越大。
③ 与横模的阶次有关,阶次越高损耗越大。
(3)腔镜反射不完全引起的损耗
① 反射镜吸收、散射引起的损耗;②反射镜的部分出射引起的损耗(对固体激光器可达50%)
(4)非激活吸收、散射引起的损耗① 腔内加插件引起的损耗
a 、产生偏振光的布儒斯特窗口
b 、提高激光瞬间强输出功率的调Q 元件
c 、各种用途的加载调制元件
② 非激活介质的吸收、散射
两个相同腔面共振漠视的积分方程 意义
腔内可能存在着得稳定的共振光波场,他们由一个腔面传播到另一个腔面的过程中虽然经受了衍射效应,但这些光波场在两个腔面处得相应振幅分布和相位分布保持不变,亦即共振光波场在腔内多次往返过程中始终保持自洽或自再现的条件。
方形镜共焦腔: 长椭球函数,在N 很大的情况,可以表示成厄米多项式与高斯函数乘积的形式。
圆形镜共焦腔: 超椭球函数,在N 很大的情况,可以表示成拉盖尔多项式与高斯函数乘积的形式。
单程衍射损耗
损耗随着菲涅耳系数N 的增大而迅速减小
菲涅耳系数相同时,不同横模的损耗不同,模的阶次越高,损耗越大;
共焦腔模的损耗要小于平面腔模的损耗,这是因为共焦腔对光束会聚作用的结果。
自再现模的衍射损耗小于均匀平面波的衍射损耗,因为自再现模的形成过程反应了衍射损耗的影响,从而使得边缘部分强度变小,衍射损耗的作用变小。
1 模式的损耗随菲涅耳数N 值的增大而急剧减小;
2 共焦腔损耗<共心腔损耗<平面腔损耗
3 基模的损耗<高阶模的损耗,模阶次越高,损耗越大;
稳定腔的优点:衍射损耗小
稳定腔的缺点:模体积小,利用的反转粒子数少,
平行平面腔的优点:模体积大
平行平面腔的缺点:调节精度很高
一、非稳定腔的优点和缺点:
非稳定腔的优点:大的可控模体积,通过扩大反射镜的尺寸,扩大模的横向尺寸;
可控的衍射耦合输出,输出耦合率与腔的几何参数g 有关;容易鉴别和控制横模;
易于得到单端输出和准直的平行光束。
非稳定腔的缺点:输出光束截面呈环状;光束强度分布是不均匀的,显示出某种衍射环。
高斯光束聚焦的方法(1)采用短焦距透镜,使f 尽量减小;(2)使入射高斯光束腰斑远离透镜焦点,满足: 若使一个稳定腔所产生的高斯光束与另一个稳定腔产生的高斯光束相匹配,需在合适的位置放置一个焦距适当的透镜,使两束高斯光束互为物象共轭光束。
该透镜称为模匹配透镜。
f z
二、光谱线的加宽机制和类型
均匀加宽:引起加宽的物理因素对每个发光粒子都是等同的。
由于均匀加宽对每个原子的辐射的影响是相同的,因此在均匀加宽的影响下,每个原子都具有相同的辐射特性,即每个原子都以整个线型函数的形式辐射光子(洛伦兹线型)
自然加宽、 寿命加宽、压力加宽(碰撞加宽)、热声子加宽
非均匀加宽:由于某种物理因素的影响,使得发光原子有不同的表观中心频率,使总的辐射谱线加宽。
(高斯线型)
多普勒加宽、晶格缺陷加宽 综合加宽
自然加宽谱线具有洛伦兹线型谱,线宽度完全由原子在能级的自发辐射寿命决定,进一步说明了自然加宽是由原子具有有限的激发态寿命而引起的。
非均匀加宽的特点是,原子体系中每个原子只对谱线内与它的表观中心频率相对应的部分有贡献。
也就是说,体系中每个原子发出的光的线型函数不尽相同,每个原子有着各自的表观频率中心和发射特性。
体系的总的辐射线型函数是这些所有原子线型函数的综合。
均匀加宽和非均匀加宽的本质差别
从谱线加宽角度看:对均匀加宽,每个粒子的自发辐射具有完全相同的线型函数、线宽、中心频率。
对非均匀加宽,介质中的发光粒子可以分类,可探测到不同的中心频率。
对均匀加宽,整个介质的线型和线宽与单个粒子相同,对非均匀加宽,某个离子的线型和线宽不等于整个介质的谱线加宽和线宽。
对均匀加宽,不能把介质线型函数上的某一特定频率与介质中某类离子建立联系和对应关系。
对非均匀加宽,某类发光粒子仅对光谱线范围内某一特定频率有贡献,对其他频率无贡献。
当某一频率的准单色光与介质相互作用,对均匀加宽,入射光场与所有的粒子发生完全相同的共振相互作用,所有粒子具有相同的受激跃迁几率和极化强度。
对非均匀加宽,只有表观中心频率与入射光场频率相应的某类粒子凡是相互作用,不同粒子的极化情况也不同。
气体介质中的均匀加宽机制主要是:自然加宽、寿命加宽、碰撞加宽
气体介质中的非均匀加宽机制主要是多普勒加宽
对于气体工作物质,若粒子系统同时存在均匀加宽和非均匀加宽因素,其加宽线型为综合加宽线型
高温下,低离子浓度掺杂的晶体激光介质主要呈现由热声子加宽所决定的强均匀加宽特性,其线型函数近似由洛仑兹函数表示。
低温下,高浓度掺杂的晶体激光介质主要呈现由晶体随机无规则局部缺陷所决定的非均匀加宽特性,其线型函数可由高斯函数表示,其线宽一般较窄。
离子掺杂玻璃基质的光谱加宽出现出强非均匀加宽特性,其线宽通常较宽
液体介质的谱线加宽通常呈现强均匀加宽特性
什么是调Q 技术
调Q 技术的出现和发展,是激光发展史上的一个重要突破,它是将激光能量压缩到宽度极窄的脉冲中发射,从而使光源的峰值功率可提高几个数量级的一种技术。
调Q 技术的目的: 压缩脉冲宽度,提高峰值功率。
调节Q 值的途径 :一般采取改变腔内损耗的办法来调节腔内的Q 值
Q 值与谐振腔的损耗成反比,要改变激光器的阈值,可以通过突变谐振腔的Q 值(或损耗a 总)来实现。
既然激光上能级最大粒子反转数受到激光器阈值的限制,那么,要使上能级积累大量的粒子,可以设法通过改变(增加)激光器的阈值来实现,就是当激光器开始泵浦初期,设法将激光器的振荡阈值调得很高,抑制激光振荡的产生,这样激光上能级的反转粒子数便可积累得很多。
当反转粒子数积累到最大时,再突然把阈值调到很低,此时,积累在上能级的大量粒子便雪崩式的跃迁到低能级,于是在极短的时间内将能量释放出来,就获得峰值功率极高的巨脉冲激光输出。
改变激光器的阈值是提高激光上能级粒子数积累的有效方法。
调Q 技术就是通过某种方法使腔的Q 值随时间按一定程序变化的技术。
或者说使腔的损耗随时间按一定程序变化的技术 总a P W Q λππ22==。