最新小学五年级奥数常考题型:包含于排除.doc

合集下载

奥数讲义计数专题:4 包含与排除

奥数讲义计数专题:4 包含与排除

华杯赛计数专题:4包含与排除基础知识:1.包含与排除的思想,是为了解决计数分类的过程中,出现重复计数的情况.2.基本的想法:减去重复计算的,多算了几次,就减几次,常用工具文氏图.3.两个对象及三个对象的容斥原理,利用文氏图帮助理解.4.容斥原理中的最值问题,可以利用线段图.引子:从7本不同的数学书和8本不同的语文书中,选出6本书,不能全是同一种的书,那么有多少种不同的选法?用前面学的知识能解决吗?还有别的方法吗?总结:当正面计数比较繁琐、困难时,可以从反面考虑,即从总的数量减去不符合要求的数量.例1.学生要从八门课中选学三门,如果数学课与钢琴课时间冲突,不能同时学,那么共有几种选课的方法?【答案】50(种)【解答】所有的选课方法一共有种,数学课和钢琴课都选学的方法有种,其中代表数学课和钢琴课都选学,其中代表从剩余的课程中再选学1门.所以符合题意的选课方法一共有种.例2.从4台不同型号的TCL电视机和5台不同型号的Haier电视机中任意取出3台,其中至少要有TCL与Haier电视机各1台,不同的取法共有多少种?【答案】70(种)【解答】9台不同的电视,随意选取3台,一共有种方法.其中包括只选取Haier的方法一共种,还包括只选取TCL的方法一共种.所以符合题意的方法一共有84-10-4=70种.例3.7个同学站成一排,要求其中的甲不排头,乙不排尾,有多少种排法?思考:答案是吗?为什么【答案】3720(种)【解答】7个同学随意排列,共有种排法,若甲排在头,则剩下的6个同学全排列,一共有种排法,同理,若乙排在尾,一共有种排法,若同时满足甲在排头、乙在排尾,共有种排法,根据容斥原理,符合题意的排法共有种.例4.板报组有10名同学,每个人至少擅长绘画或写文章中的一种,已知其中7个人擅长绘画,5个人擅长写文章,要从中选出两个人担任组长,要求其中既有擅长绘画的也有擅长写文章的,那么有多少种选组长的方法?如果要从中选出两名同学去参赛,分别参加绘画比赛和作文比赛,那么有多少种参赛方法?【答案】32(种)【解答】因为10名同学中7个人擅长绘画,5个人擅长写文章,所以既擅长绘画又擅长写文章的有5+7-10=2个人,所以只擅长绘画的有5个人,只擅长写文章的有3个人, 选组长可以分为三类:第一类:先从擅长绘画的人中选1个,再从剩下的人中选1个,共有5×5=25种选法;第二类:从既擅长绘画又擅长写文章的2个人选1个,再从擅长写文章的3个人中选1个,共有2×3=6种选法;第三类:选2个既擅长绘画又擅长写文章的,共有1种选法;综合共有25+6++1=32种.例5.一次考试共有A、B、C三道题,一共有100个人参加了这次考试.其中,答对A 题的有50人,答对B题的有60人,答对C题的有20人.已知答对C题的人在A、B两道题中至少还答对了一道题,且只答对A题的有24人,只答对A题和B题的有10人,还有10个人A、B均未答对.那么有________个人只答对了B题.【答案】36(人)【解答】因为100人中有10人A、B两题均未答对,所以有90人至少答对A,B中的一道.又因为50人答对A题,60人答对B题,所以至少答对A、B两题的有50+60-90=20人.即答对AB两题或答对ABC三题的人合起来有20个.而只答对AB两题的人有10个,所以ABC三个题全答对的人有20-10=10个.由于有24人只答对A题,所以还有50-24=26人答对A题和至少另外一道题.这26人答对的题目只有3种可能:AB、AC和ABC.由上面的结论知只答对AC两题的应该有26-20=6个人.由于答对C的人在A、B两题中至少答对一道,所以答对C的20个人答对的题目也只有三种可能:AC、BC和ABC.那么只答对BC两题的有20-6-10=4人.现在已知答对AB两题的有10人,答对BC两题的有4人,答对ABC的有10人,而至少答对B一个题目的一共有60人,所以只答对B一个题的有60-10-4-10=36人.例6.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有种.【答案】14(种)【解答】6个人中选4个,共有种选法,选4个男生,共有种选法,所以符合题意的选法共有种.例7.从6双手套中取出4只,则至少取出一双的方法有种.【答案】255(只)【解答】有6双手套,即12只,从12只中任选4只,共有种,若选出的4只均不同双,则分步进行,第一步,从6双中选出4双,共有种;第二步,在选出的4双中分别选出左手或右手,共有,根据乘法原理:若选出的4只均不同双的选法共有种,所以符合题意的选法共有种.例8.在4×4的方格表里写上两个A和两个B(每个方格里至多写一个字母),那么相同字母既不同行也不同列的写法有多少种?【答案】3960(种)【解答】写入两个A既不同行也不同列的写法共有种,同理写入两个B既不同行也不同列的写法共有种,依次写入A、B,共有种写法.若A、B写入同一个方格中,可以分为两类考虑,第一类:A、B有两个格子均重合,共有72种写法;第二类,A、B中有一个格子重合,共有种写法;所以若A、B写入同一个方格中共有种写法,综上符合题意的共有种写法。

【小学数学】小学五年级奥数重点题型(含答案)

【小学数学】小学五年级奥数重点题型(含答案)

五年级数学奥数题1、一批零件;甲乙两人合做 5.5天可以超额完成这批零件的0.1;现在先由甲做2天;后由甲乙合作两天;最后再由乙接着做4天完成任务;这批零件如果由乙单独做几天可以完成?2、一项工程甲独完成要10天;乙独做需15天;丙队要20天;3队一起干;甲队因事走了;结果共用了六天;甲队实际干了多少天?3、一项工程;由甲先做;再由甲乙两队合作;又做了16天完成。

已知甲乙两队的工效比是2:3;甲乙两队独立完成这项工程各需多少天?4、一项工程;甲队单独做20天完成;乙队单独做30天完成;现在乙队先做5天后;剩下的由甲、乙两队合作;还需要多少天完成?5、在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(右图);求这个立体图形的表面积。

6、一项工程;甲队20人单独做要25天;如果要20天完成;还需再加多少人?7、张师傅每工作6天休息1天;王师傅每工作5天休息2天。

现有一项工程;张师傅独做需97天;李师傅需75天;如果两人合作;一共需多少天?8、加工一个零件;甲需要4小时;乙需要 2.5小时;丙需要5小时。

现在有187个零件需要加工;如果规定三人用同样多的时间完成;那么各应该加工多少个?9、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行;相遇后二人继续往前走;如果甲从相遇点到达B地又行2小时;A、B 两地相距多少千米?10、工程队30天完成一项工程;先由18人做;12天完成了工程的;如果按时完成还要增加多少人?11、甲乙两人加工一批零件;甲先加工 1.5小时;乙再加工;完成任务时;甲完成这批零件的。

已知甲乙的工效比是3:2.问:甲单独加工完成着批零件需多少小时?参考答案1、解:将全部零件看作单位1那么甲乙的工作效率和=(1+0.1)÷5.5=整个过程是甲工作2+2=4天乙工作2+4=6天相当于甲乙合作4天;完成×4=那么乙单独做6-4=2天完成1-=所以乙单独完成需要2÷=10天2、解:乙丙的工作效率和=乙丙都做6天;完成甲完成全部的那么甲实际干了天3、解:甲乙的工作效率和=(1-)÷16=÷16=甲的工作效率=÷(2+3)×2=乙的工作效率=-=那么甲单独完成需要1÷=50天乙单独完成需要1÷=天=33天4、解:乙5天完成5×甲乙合作的工作效率=那么还需要(1-)÷=5天5、这个立体图形的表面积为214平方分米。

小学奥数教案-第24讲-包含与排除(教)

小学奥数教案-第24讲-包含与排除(教)
5、光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?
【解析】由题意知,24幅作品是一、二、三、四、六年级参展作品的总数,22幅是一、二、三、四、五年级参展作品的总数。24+22=46幅,这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六两个年级共参展的10幅作品,即得到两个一、二、三、四年级参展作品的总数,再除以2,即可求出其他年级参展作品的总数。(24+22-10)÷2=18幅。
全组人数 完成了两项制作的人数,
即 完成了两项制作的人数.
所以,完成了两项制作的人数为: (人).
3、五年级一班共有 人,每人参加一个兴趣小组,共有 、 、 、 、 五个小组,若参加 组的有 人,参加 组的人数仅次于 组,参加 组、 组的人数相同,参加 组的人数最少,只有 人.那么,参加 组的有_______人.
那也就是说五年级的画比六年级多1幅,我们还知道五、六年级共展出25幅画,
进而可以求出五年级画作有13幅,六年级画作有12幅,
那么就可以求出其他年级的画作共有3幅.
考点二:三量重叠问题
例1、全班有 个学生,其中 人会骑自行车, 人会游泳, 人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有 个人数学不及格,那么,
教数:3
学员姓名:
辅导科目:奥数
教师:
授课主题
第24讲——包含与排除
授课类型
T同步课堂
P实战演练
S归纳总结
教学目标
1了解容斥原理二量重叠和三量重叠的内容
2掌握容斥原理在组合计数等各个方面的应用

【免费】小学五年级奥数必考重点题型+答案解析(全)

【免费】小学五年级奥数必考重点题型+答案解析(全)

小学五年级奥数必考重点题型+答案解析(全)1、一批零件,甲乙两人合做5.5天可以超额完成这批零件的0.1,现在先由甲做2天,后由甲乙合作两天,最后再由乙接着做4天完成任务,这批零件如果由乙单独做几天可以完成?2、一项工程甲独完成要10天,乙独做需15天,丙队要20天,3队一起干,甲队因事走了,结果共用了六天,甲队实际干了多少天?3、一项工程,由甲先做,再由甲乙两队合作,又做了16天完成。

已知甲乙两队的工效比是2:3,甲乙两队独立完成这项工程各需多少天?4、一项工程,甲队单独做20天完成,乙队单独做30天完成,现在乙队先做5天后,剩下的由甲、乙两队合作,还需要多少天完成?5、在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(右图),求这个立体图形的表面积。

6、一项工程,甲队20人单独做要25天,如果要20天完成,还需再加多少人?7、张师傅每工作6天休息1天,王师傅每工作5天休息2天。

现有一项工程,张师傅独做需97天,李师傅需75天,如果两人合作,一共需多少天?8、加工一个零件,甲需要4小时,乙需要2.5小时,丙需要5小时。

现在有187个零件需要加工,如果规定三人用同样多的时间完成,那么各应该加工多少个?9、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行,相遇后二人继续往前走,如果甲从相遇点到达B地又行2小时,A、B两地相距多少千米?10、工程队30天完成一项工程,先由18人做,12天完成了工程的,如果按时完成还要增加多少人?11、甲乙两人加工一批零件,甲先加工1.5小时,乙再加工,完成任务时,甲完成这批零件的。

已知甲乙的工效比是3:2.问:甲单独加工完成着批零件需多少小时?参考答案1、解:将全部零件看作单位1那么甲乙的工作效率和=(1+0.1)÷5.5=整个过程是甲工作2+2=4天乙工作2+4=6天相当于甲乙合作4天,完成×4=那么乙单独做6-4=2天完成1-=所以乙单独完成需要2÷=10天2、解:乙丙的工作效率和=乙丙都做6天,完成甲完成全部的那么甲实际干了天3、解:甲乙的工作效率和=(1-)÷16=÷16=甲的工作效率=÷(2+3)×2=乙的工作效率=-=那么甲单独完成需要1÷=50天乙单独完成需要1÷=天=33天4、解:乙5天完成5×甲乙合作的工作效率=那么还需要(1-)÷=5天5、这个立体图形的表面积为214平方分米。

高思竞赛数学导引-五年级第四讲-包含与排除学生版

高思竞赛数学导引-五年级第四讲-包含与排除学生版

第4讲包含与排除容概述有重叠部分酌若干对象的计数问题.能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合文氏图理解两个对象和三个对象酌容斥原理;灵活处理具有一些不确定性酌计数问题,以及其他形式的重复计数问题.典型问题兴趣篇1.暑假里,小悦和冬冬一起讨论“金陵十八景”.他们发现十八景中的每一处都有人去过,而且有五处是两人都去过的.如果小悦去过其中的卜二景,那么冬冬去过其中的几景?2.在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过.请问:至少看过其中一部的小朋友有多少人?3.五年级一班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.请问:语文成绩得满分的有多少人?4.某餐馆有27道招牌菜.小悦吃过其中的13道,冬冬吃过其中的7道,而且有2道菜是两人都吃过的.请问:有多少道招牌菜是两人都没有吃过的?5.如图4-I,已知甲、乙、丙三个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6、8、5,同时被这三个圆覆盖的部分的面积为2.请问:(1)只被甲或乙覆盖,却不被丙覆盖的部分的面积是多少?(2)只被这3个圆中某一个圆覆盖的部分的面积是多少?6.在一个由30人组成的合唱队中,每个人都爱喝红茶、绿茶、花茶中的一种或者几种,其中有10个人爱喝红茶,12个人不爱喝红茶却爱喝绿茶,请问:只爱喝花茶的有多少人?7.光明小学五年级课外活动有体育、音乐、书法三个小组,参加的人数分别是54人、46人、36人.同时参加体育小组和音乐小组的有4人,同时参加体育小组和书法小组的有7人,同时参加音乐小组和书法小组的有10人,三组都参加的有2人.光明小学五年级参加课外活动的一共有多少人?8.卫生部对120种食物是否含有维生素A、C、E进行调查,结果发现:含维生素A的有62种,含维生素C的有90种,含维生素E的有68种,同时含维生素A和C的有48种,同时含维生素A和E的有36种,同时含维生素C和E的有50种,同时含这三种维生素的有25种.请问:(1)这三种维生素都不含的食物有多少种?(2)仅含维生素A的食物有多少种?9.操场上有50名同学在跑步或跳绳,其中女生有18名,跳绳的同学有31名,跑步的男生有14名.跳绳的女生有多少名?10.学校举行棋类比赛,分为象棋、围棋和军棋三项,每人最多参加其中两项.根据报名的人数,学校决定对象棋的前9名、围棋的前10名和军棋的前11名发放奖品.请问:最少有几人获得奖品?拓展篇1.在一个办公室中,有7个人爱喝茶,10个人爱喝咖啡,3个人既爱喝茶又爱喝咖啡,如果每个人都至少爱喝茶或咖啡中的一种,那么这个办公室里共有多少人?2.五年级二班有40名同学,其中有25:人没参加数学小组,有18人参加航模小组,有10人两个小组都参加.那么只参加了这两个小组之一的学生共有多少人?3.在1至100这100个自然数中,既不能被2整除也不能被3整除的数有多少个?4.渔乡小学举行长跑和游泳比赛,共305人参加.参加长跑比赛的有150名男生和90名女生,参加游泳比赛的有120名男生和70名女生,有110名男生两项比赛都参加了,请问:只参加游泳比赛而没有参加长跑比赛的女生有多少人?5.森林里住着一群小白兔,每只小白兔都爱吃萝卜、白菜和青草中的一种或者几种.爱吃萝卜的小白兔中有12只不爱吃白菜;爱吃白菜的小白兔中有23只不爱吃青草;爱吃青草的小白兔中有34只不爱吃萝卜.如果三种食物都爱吃的小白兔有5只,那么这群小白兔一共有多少只?6.三位基金经理投资若干只股票.经理买过其中66只,王经理买过其中40只,经理买过其中23只.经理和王经理都买过的有17只,王经理和经理都买过的有13只,经理和经理都买过的有9只,三个人都买过的有6只.请问:这三位经理一共买过多少只股票?7.唐僧西天取经共经历了81难,其中单独渡过了3难,与悟空一起渡过了77难,与猪八戒一起渡过了65难,与沙和尚一起渡过了62难,同时与悟空和猪八戒一起渡过了64难,同时与悟空和沙和尚一起渡过了61难,同时与猪八戒和沙和尚一起渡过了60难.请问:师徒四人共同渡过的有多少难?8.培英学校有学生1000人,其中有500人订阅了《中国少年报》,有350人订阅了《少年文艺》,有250人订阅了《数学报》,至少订阅两种报刊的有400人,订阅了三种报刊的有100人.请问:培英学校有多少人没有订报?9.五年级一班有46名学生参加数学、语文、文艺三项课外小组.其中有24人参加了数学小组,20人参加了语文小组,既参加数学小组又参加语文小组的有10人.参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,还是三项小组都参加的人数的7倍,既参加文艺小组也参加语文小组的人数等于三项小组都参加的人数的2倍.求参加文艺小组的人数.10.图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙三人签名的分别有33本、44本和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本,问:这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?11五年级三班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有22人,参加英语竞赛的有20人.如果每人最多参加两科竞赛,那么该班未参加竞赛人数最多可能有多少人?12.甲、乙、丙三人都在读同一本故事书,书中有100个故事.已知甲读了85个故事,乙读了70个故事,丙读了62个故事.请问:(1)甲、乙、丙三人共同读过的故事最少有多少个?(2)如果每个人都是从某一个故事开始,按顺序连续往后读,那么甲、乙、丙三人共同读过的故事最少有多少个?超越篇1.森林里住着100只小白兔,凡是不爱吃萝卜的小白兔都爱吃白菜.其中爱吃萝卜的小白兔数量是爱吃白菜的小白兔数量的2倍,而不爱吃白菜的小白兔数量是不爱吃萝卜的小白兔数量的3倍,它们当中有多少只小白兔既爱吃萝卜又爱吃白菜?2.育才小学匦展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画.其他年级的画共有多少幅?3.巨人学校有105名男生和75名女生参加数学竞赛,有95名女生和85名男生参加作文竞赛.已知该校一共有280名学生参加了竞赛,其中只参加数学竞赛的男生人数与只参加作文竞赛的女生人数相同.请问:只参加数学竞赛的女生有多少人?4.冬冬和爸爸妈妈去芬兰旅游,他们照了很多照片.回家后,冬冬先把所有有自己像的照片放到自己的相册里,再把剩下的有妈妈像的照片放到妈妈的相册里,最后把剩下的照片放到爸爸的相册里,爸爸认为应该把所有有自己像的照片都放到自己相册里,于是从冬冬和妈妈的相册里一共拿出了37照片放到了自己的相册,妈妈不同意,又把放在冬冬和爸爸的相册里所有有自己像的45照片都拿出来放到了自己的相册.请问:究竟是妈妈和冬冬的合影多,还是爸爸和冬冬的合影多?多几?5.一次测验共有5道试题.测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题.如果做对3道或3道以上试题的同学为考试合格,请问:这次考试的合格率最多达百分之几?最少达百分之几?6.五年级一班有22人参加语文竞赛,32人参加数学竞赛,27人参加英语竞赛,其中同时参加语文竞赛和数学竞赛的有12人,同时参加语文竞赛和英语竞赛的有14人,同时参加数学竞赛和英语竞赛的有15人.请问:五年级一班参加竞赛的总人数最少是多少?7.在明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问:(1)恰好被3个人浇过的花最少有多少盆?(2)恰好被1个人浇过的花最多有多少盆?8.一根1.8米长的木棍,从左端开始每隔2厘米划一个刻度,每隔3厘米划一个刻度,每隔5厘米划一个刻度,每隔7厘米划一个刻度,如果按刻度把木棍截断,一共可以截成多少段小木棍?。

五年级奥数.几何.圆与扇形包含与排除和旋转对称(B级).学生版

五年级奥数.几何.圆与扇形包含与排除和旋转对称(B级).学生版

捆地球的绳子假设地球上即无山,又无海,完全像一个大圆球,现在想用一根很长很长的绳子,沿着赤道用绳子捆上一圈,问绳长多少?如果绳长加上1米,绳子围成一个大圆圈之后,就要离开赤道一段距离,形成围绕地球的一个等距离的圆环,问圆环和地球之间的间隔有多大?(已知地球半径约为6400千米,π取3.14) 答案提示:地球赤道长:22 3.14640040192r π=⨯⨯=(千米),所以绳长40192千米; 一般我们会想对于4万多千米来说,仅仅延长1米,会有多大的间隔?即使有间隔,恐怕也只能在显微镜下才能看见!让我们来计算一下吧!假如绳长加上1米变为40192001米,则有:40192001264000000.159π÷-≈(米),大约为16厘米,差不多有一支铅笔长。

简直不可思议!圆的知识:1. 当一条线段绕着它的一个端点O 在平面上旋转一周时,它的另一端点所画成的封闭曲线叫做圆,点O 叫做这个圆的圆心.2. 连结一个圆的圆心和圆周上任一点的线段叫做圆的半径.3. 连结圆上任意两点的线段叫做圆的弦;过圆心的弦叫做圆的直径.4. 圆的周长与直径的比叫做圆周率;圆周上任意两点间的部分叫做弧.5. 圆周长=直径×π=半径×2π 圆面积=π×半径2扇形的知识:1. 扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧组成的图形.顶点在圆心的角叫做圆心角. 2. 我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆课前预习知识框架包含与排除和旋转对称心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n. 3. 扇形中的弧长= 180r n π.扇形的周长= 180r n π+2r.扇形的面积=3602r n π =.弓形的知识:弦与它所对的弧所组成的图形叫做弓形。

【一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)】常用方法:1. 常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)2. 包含与排除法:重叠想减就是应用了包含与排除的思想,用包含与排除求面积时,关键是考虑重叠部分的面积如何正确处理,应该加上还是减去,要仔细思考,正确选择。

五年级数学奥数讲义-包含与排除(学生版)

五年级数学奥数讲义-包含与排除(学生版)

“包含与排除” 学生姓名授课日期 教师姓名授课时长包含与排除是小学奥数中一个非常重要的知识点,很多杯赛和小升初选拔考试中都会有相关考察内容,是考察学生逻辑思维能力,以及理解利用新知识的一个非常重要的方面,其中容斥原理更是最关键的点,而且与数论和几何的综合性题目是历年考察的重点。

一、容斥原理公式1、若已知A 、B 、C 三部分的数量(如图),其中C 为重复部分,则图中的数量等于A+B-C. 即:A ∪B=A+B- A ∩B ,其中A ∩B=C.2、若已知A 、B 、C 三部分的数量(如图), 则图中的数量等于A+B+C-(A 与B 重叠部分+ B 与C 重叠部分+ C 与A 重叠部分)+A 、B 、C 三者重叠的部分.即:A ∪B ∪C=A+B+C-(A ∩B+B ∩C+C ∩A )+ A ∩B ∩C.以上概念中符号解释:“∪”表示并集,“A ∪B ”表示A 并B ,通俗的讲表示所有或属于A 、或属于B 的元素的数量(集合),“A ∪B ∪C ” 通俗的讲表示所有或属于A 、或属于B 、或属于C 的元素数量.“∩”表示交集,“A ∪B ”表示A 交B ,通俗的讲表示所有即属于A 、又属于B 的元素的数量(集合),“A ∩B ∩C ”通俗的讲表示所有即属于A ,又属于B ,还属于C 的元素数量C B A C B A【试题来源】【题目】某小学三年级四班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。

这个班有多少人参加了语文或数学兴趣小组?【试题来源】【题目】在桌面上放置着三个两两重叠的圆纸片(如图,三个圆等大),它们的面积都是100cm2,并知A、B两圆重叠的面积是20cm2,A、C两圆重叠的面积为45cm2,B、C两圆重叠的面积为31cm2,三个圆共同重叠的面积为15cm2,求盖住桌子的总面积。

【试题来源】【题目】东方大学有外语老师120名,其中教英语的有50名,教日语的45名,教法语的有40名,有15名教师既教英语又教日语,有10名教师既教英语又教法语,有8名教师既教日语又教法语,有4名教师会教英语、日语和法语三门课,求不教这三门课的外教有多少名?【试题来源】【题目】五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数。

高思奥数导引小学五年级含详解答案第04讲:包含与排除

高思奥数导引小学五年级含详解答案第04讲:包含与排除

第4讲包含与排除内容概念:有重叠部分的若干对象的计数问题,能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合文氏图理解两个对象和三个对象的容斥原理;灵活处理具有一些不确定性的计数问题,以及其他形式的重复计数问题。

典型问题:兴趣篇:1.暑假里,小悦和冬冬一起讨论“金陵十八景”。

他们发现十八景中的每一处都有人去过,而且有五处是两人都去过的。

如果小悦去过其中的十二景,那么冬冬去过其中的几景?2.在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过。

请问:至少看过其中一部的小朋友有多少人?3、五年级一班45个学生参加期末考试。

成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人。

请问:语文成绩得满分的有多少人?4.某餐馆有27道招牌菜。

小悦吃过其中的13道,冬冬吃过其中的7道,而且有2道菜是两人都吃过的。

请问:有多少道招牌菜是两人都没有吃过的?5.如图4-1,已知甲、乙、丙三个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6、8、5,同时被这三个圆覆盖的部分的面积为2。

请问:(1)只被甲或乙覆盖,却不被丙覆盖的部分的面积是多少?(2)只被这3个圆中某一个圆覆盖的部分的面积是多少?6.在一个由30人组成的合唱队中,每个人都爱喝红茶、绿茶、花茶中的一种或者几种。

其中有10个人爱喝红茶,12人不爱喝红茶却爱喝绿茶。

请问:只爱喝花茶的有多少人?7.光明小学五年级课外活动有体育、音乐、书法三个小组,参加的人数分别是54人、46人、36人。

同时参加体育小组和音乐小组的有4人,同时参加体育小组和书法小组的有7人,同时参加音乐小组和书法小组的有10人,三组都参加的有2人。

光明小学五年级参加课外活动的一共有多少人?8.卫生部对120种食物是否含有维生素A、C、E进行调查,结果发现:含维生素A的有62种,含维生素C的有90种,含维生素E的有68种,同时含维生素A和C的有48种,同时含维生素A和E的有36种,同时含维生素C和E的有50种,同时含这三种维生素的有25种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新小学五年级奥数常考题型:包含于排除摘要:奥数一直都是小学生学习的重点,父母想尽办法要提高孩子的数学成绩,小学频道为大家提供了最新小学五年级奥数常考题型:包含于排除,希望对大家有所帮助。

最新小学五年级奥数常考题型:包含于排除
难度:★★★★
阳光小学六年级有253人,学校组织了数学小组、朗读小组、舞蹈小组。

规定每人至少参加一个小组,最多参加二个小组,那么至少有几个人参加的小组完全相同?
【答案解析】
每个人有6种选择
数学小组、朗读小组、舞蹈小组
数学小组+朗读小组
朗读小组+舞蹈小组
数学小组+舞蹈小组
剩下的平均分到3组(253-6)/3=821
所以至少有82+1+1=84个人参加的小组完全相同
结尾:以上小学频道为大家提供了最新小学五年级奥数常考题型:包含于排除,你学会了吗?
相关链接:
小学五年级奥数练习题及参考答案:差的变换。

相关文档
最新文档