PWM控制技术在逆变电路中的应用
双极性模式PWM逆变电路

电力电子系统计算机仿真题目:双极性模式PWM逆变电路班级:姓名:学号:指导老师:日期:摘要PWM控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。
PWM控制技术在逆变电路中的应用最为广泛,现在大量应用的逆变电路中绝大部分都是PWM型逆变电路。
本设计为双极性PWM方式下的单相全桥逆变电路,主要包括双极性SPWM控制信号的发生电路和带反并联二极管的IGBT作为开关器件的单相全桥电路。
设计的重点在于运用MATLAB中的SIMULINK建立电路模型,对电路进行仿真,并对仿真结果进行分析,得出系统参数对输出的影响规律。
关键字:双极性PWM控制逆变电路 SIMULINK仿真目录一、主电路工作原理 (3)1.1 PWM控制技术及SPWM波的生成 (3)1.1.1 PWM控制的基本原理 (3)1.1.2 SPWM法的基本原理 (4)1.1.3规则采样法 (4)1.2 单极性和双极性PWM控制逆变电路分析 (5)1.2.1 单极性PWM控制方式 (6)1.2.2 双极性PWM控制方式 (6)二、MATLAB仿真及结论分析 (7)2.1 建立仿真模型 (7)2.1.1 双极性SPWM控制信号的仿真模型 (7)2.1.2 双极性模式PWM逆变电路仿真模型 (10)2.2 双极性模式PWM逆变电路仿真结果及分析 (13)三、PSIM仿真及结论分析 (20)3.1 建立仿真模型 (20)3.2 仿真结果及分析 (21)四、总结与体会 (26)五、参考文献 (27)一、主电路工作原理1.1 PWM控制技术及SPWM波的生成1.1.1 PWM控制的基本原理PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。
PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。
PWM控制的基本原理

PWM控制的基本原理PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。
理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。
效果基本相同,是指环节的输出响应波形基本相同。
低频段非常接近,仅在高频段略有差异。
图1形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。
其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。
从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。
脉冲越窄,各i(t)响应波形的差异也越小。
如果周期性地施加上述脉冲,则响应i(t)也是周期性的。
用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
图2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。
SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。
图3 用PWM波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。
PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。
PWM波形可等效的各种波形:直流斩波电路:等效直流波形SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。
随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。
电力电子技术WM控制技术

图7-8 三相桥式PWM 逆变电路波形
10
7.2.1 计算法和调制法
图7-7 三相桥式PWM 型逆变电路
◆电路工作过程(U相为例)
? 当urU>uc时,上桥臂V1导通,下桥臂V4
关断,则U相相对于直流电源假想中点N' 的
■PWM 控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深 刻,现在大量应用的逆变电路中,绝大部分都是 PWM 型逆变电路。
2
7.1 PWM控制的基本原理
■面积等效原理 ◆是PWM 控制技术的重要理论基础。 ◆原理内容:冲量相等而形状不同的窄脉冲加在具有惯性的环节上
时,其效果基本相同。 ? 冲量即指窄脉冲的面积。 ? 效果基本相同,是指环节的输出响应波形基本相同。 ? 如果把各输出波形用傅里叶变换分析,则其低频段非常接近,
◆对于正弦波的负半周,也可以用同样的方
法得到PWM 波形。
◆脉冲的宽度按正弦规律变化而和正弦波等
效的PWM 波形,也称SPWM (Sinusoidal
PWM )波形。
■PWM 波形可分为等幅PWM 波和不等幅
图7-3 用PWM 波代替正弦半波
PWM 波两种,由直流电源产生的 PWM 波通常
是等幅PWM 波。
■基于等效面积原理, PWM 波形还可以等效
4
7.2 PWM逆变电路及其控制方法
7.2.1 计算法和调制法 7.2.2 异步调制和同步调制 7.2.3 规则采样法 7.2.4 PWM逆变电路的谐波分析
5
7.2.1 计算法和调制法
■计算法 ◆根据逆变电路的正弦波输出频率、幅值和半个周期内
的脉冲数,将PWM 波形中各脉冲的宽度和间隔准确计算 出来,按照计算结果控制逆变电路中各开关器件的通断, 就可以得到所需要的PWM 波形,这种方法称之为计算法。
PWM波的原理和应用

PWM波的原理和应用1. 原理概述脉冲宽度调制(PWM)是一种调制技术,通过调整脉冲信号的宽度来控制输出信号的平均功率。
PWM波的形式类似于脉冲信号,但它的周期固定,只有脉冲宽度发生变化。
PWM波能够利用数字信号来模拟连续的模拟信号,被广泛应用在电力电子领域、自动化控制系统等领域。
2. PWM波的生成方式在数字电路中,PWM波通常通过计数器和比较器来生成。
生成PWM波的基本步骤如下: 1. 设置计数器的初始值。
2. 计数器不断递增,当计数器的值小于比较器的值时,输出逻辑高电平;当计数器的值大于或等于比较器的值时,输出逻辑低电平。
3. 当计数器的值达到设定的周期时,重新设置计数器的初始值。
3. PWM波的应用3.1 电力电子领域PWM波在电力电子领域发挥着重要的作用,常见应用有: - 变频调速控制:将PWM波直接应用在交流电动机上,可以通过改变PWM波的占空比控制电机转速,实现变频调速。
- 逆变器:逆变器中利用PWM波控制电路的开关状态,将直流电源输出转换为交流电源输出。
- 电力转换器:PWM波可以应用在各种电力转换器中,如交流电压调节器、直流电源和电焊机等。
3.2 自动化控制系统PWM波在自动化控制系统中也有广泛的应用,例如: - 数字-模拟转换器(DAC):PWM波可以通过滤波电路转换为模拟信号,用于输出到模拟设备。
- 舵机控制:舵机通常使用PWM波进行控制,通过改变PWM波的占空比控制舵机转角。
- LED调光:PWM波可以用于控制LED的亮度,通过改变PWM波的占空比来实现亮度调节。
3.3 在音频和视频领域的应用•音频信号处理:PWM波可以模拟模拟音频信号,通过改变PWM波的占空比来实现音频信号的调节,例如音量控制。
•音频放大器:PWM波可以应用在音频放大器中,将输入音频信号转换为PWM波,再通过滤波电路得到模拟音频信号输出。
•数字电视和显示器:PWM波可以用于控制LED背光的亮度,通过改变PWM波的占空比来实现灰度调制。
PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM(Pulse Width Modulation)逆变电路是一种通过改变电压或电流波形的占空比来实现电能转换的技术。
它广泛应用于各种电源逆变器、交流电机驱动器、太阳能逆变器、UPS(不间断电源系统)等领域。
本文将介绍PWM逆变电路的基本原理、常见的控制方法以及应用实例。
PWM逆变电路的基本原理是通过将直流电压转换为交流电压,使得输出波形的频率和幅值可以根据需求进行调节。
其核心部件是逆变器,通常由开关元件(如功率开关管)和输出变压器组成。
逆变器通过快速开关开关闭合,产生一系列电压脉冲,然后经过输出变压器将直流电压转换为交流电压。
PWM逆变电路的控制方法有多种,常见的包括:固定频率脉宽调制(Fixed Frequency Pulse Width Modulation,FFPWM)、固定频率电压脉宽调制(Constant Frequency Voltage Pulse Width Modulation,CFVPWM)、固定频率电流脉宽调制(Constant Frequency Current Pulse Width Modulation,CFCPWM)以及多重脉冲脉宽调制(Multiple Pulse Width Modulation,MPWM)等。
固定频率脉宽调制是PWM逆变电路中最简单的控制方法之一,其特点是输出频率和开关频率固定,可以通过调节脉宽来实现输出波形的幅值控制。
固定频率电压脉宽调制在固定频率脉宽调制的基础上增加了电压控制环节,通过反馈控制使输出电压达到设定值。
固定频率电流脉宽调制则在固定频率脉宽调制的基础上增加了电流控制环节,通过反馈控制使输出电流达到设定值。
多重脉冲脉宽调制是在固定频率脉宽调制的基础上引入多个脉冲周期,通过交错控制来改善输出波形的谐波含量。
1.电力电子逆变器:将直流电能转换为交流电能。
通过控制PWM逆变电路的开关元件,可以实现交流电压的频率和幅值的调节,广泛应用于电力系统、电动机驱动器及电力调速系统等。
电力电子技术试题库答案

电力电子技术试题库一、题填空。
1、变流技术也称为电力电子器件的应用技术。
2、电力电子技术诞生于1957 年,是以美国通用电气公司研制出第一个晶闸管为标志的。
3、通常所用的电力有直流和交流两种。
4、1947 年,美国著名的贝尔实验室发明了晶体管。
5、迄今为止,用于制造电力电子器件的半导体材料仍然是硅。
6、在电化学工业中,电解铝、电解实验室等都需要大容量的整流电源。
7、经多年研究,能够制造电力电子器件的新材料,有碳化硅、氮化镓、砷化镓、金刚石等。
8、在磁悬浮列车中,技术是一项关键技术。
9、相位控制方式和斩波控制方式分别简称为相控和斩控。
10、目前,碳化硅二极管以其优越的性能已经获得了广泛的应用。
11、在电气机车中,直流机车采用装置,交流机车采用装置。
12、通常把交流电变成直流电称为整流,而把直流电变成交流电称为逆变。
13、有源逆变和无源逆变的区别仅仅在于变流电路的交流侧是否与电网连接。
14、以前的电梯大都采用直流调速系统,而近年来变频调速已成为主流。
15、电力电子电路的换流方式可分为以下四种:换流、换流、换流、换流。
16、逆变电路根据直流侧电源的性质分类,可以分为电压型逆变电路和电流型逆变电路。
17、变频空调器是家用电器中应用电力电子技术的典型例子。
18、软开关技术解决了电力电子电路中开关损耗和开关噪声问题。
19、电力电子器件按照被控制的程度可分为三类:不可控器件,半控型器件,全控型器件。
20、超导储能是未来的一种储能方式,它需要你强大的直流电源供电。
21、电力电子装置的发展趋势是小型化、轻量化。
22、在电气设备或电力系统中,直接承担电能的变换或控制任务的电路被称为。
23、在电力电子电路中,器件的开关损耗和开关频率之间呈现线性关系。
24、PWM控制技术在逆变电路中的应用最为广泛。
25、器件换流只适用于全控型器件,其余三种方式重要是针对晶闸管而言的。
26、晶闸管电路的主要控制方式是相控方式,而全控型器件电路的主要控制方式是斩控方式。
PWM控制技术

┊
控制方法即可使电压与频率协调变化.相对于 PAM 法,该方法的优点是简化了电
┊
路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含
┊
┊
较大的谐波分量。
┊
(2)随机 PWM
┊
在上世纪 70 年代开始至上世纪 80 年代初,由于当时大功率晶体管主要为双
极性达林顿三极管,载波频率一般不超过 5kHz,电机绕组的电磁噪音及谐波造成
┊
Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的
┊
方波电压而不能调压.等脉宽 PWM 法正是为了克服 PAM 法的这个缺点发展而来的,
┊
是 PWM 法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为 PWM 波,
┊
┊
通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当
┊
电流波形,降低电源系统谐波的多重 PWM 技术在大功率变频器中有其独特的优
┊
势(如 ABB ACS1000 系列和美国 ROBICON 公司的完美无谐波系列等);而优化 PWM
┊
┊
所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,
┊
及转矩脉动最小以及其它特定优化目标。
┊
在 70 年代开始至 80 年代初,由于当时大功率晶体管主要为双极性达林顿
┊
┊
内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频
┊
率和幅值.该方法的实现有以下几种方案。
┊
(4)等面积法
┊
┊
该方案实际上就是 SPWM 法原理的直接阐释,用同样数量的等幅不等宽的矩形脉
PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM逆变电路是一种将直流电能转换为交流电能的电路。
它通过以一定的频率和变化占空比的脉冲宽度调制信号,使得输入的直流电压经过逆变器变换后,输出成为一定频率和幅值可调的交流电压。
PWM逆变电路主要用于交流传动,太阳能发电系统,UPS等领域。
PWM逆变电路的基本结构包括直流输入电源、逆变器和输出滤波电路。
其中,直流输入电源将直流电压提供给逆变器,逆变器利用PWM技术将直流电压转换为交流电压,输出滤波电路对逆变器输出的脉冲波进行滤波,得到平滑的交流电压输出。
脉宽调制控制是最常用的PWM逆变电路控制方法。
它通过改变逆变器输入脉冲信号的占空比,控制逆变器输出交流电压的幅值。
具体实现方法是利用比较器将一个三角波信号与一个参考电压进行比较,产生一个PWM波形信号。
这个PWM波形信号的脉宽由比较器输出的高低电平确定,通过改变三角波信号的频率和参考电压的大小,可以改变脉冲宽度从而控制逆变器输出电压的幅值。
频率调制控制是通过改变逆变器输入脉冲信号的频率,控制逆变器输出交流电压的频率。
与脉宽调制控制不同,频率调制控制中,逆变器输出的脉冲宽度保持不变。
具体实现方法是通过改变比较器的阈值电压,或者改变三角波信号的频率,从而改变逆变器输出信号的频率。
值得注意的是,PWM逆变电路的控制方法还可以根据需要,对脉宽调制控制和频率调制控制进行组合,以实现更复杂的控制策略。
总结起来,PWM逆变电路是一种将直流电能转换为交流电能的电路,其控制方法主要有脉宽调制控制和频率调制控制两种。
通过调整脉宽和频率,可以实现对逆变器输出交流电压幅值和频率的精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWM控制技术在逆变电路中的应用
研究了PWM控制技术在单相桥式逆变电路中的应用,首先详细地阐述了PWM控制技术的基本原理,简要地介绍了单相桥式逆变电路的工作原理,然后将PWM 控制技术应用到单相桥式逆变电路中,最后通过仿真结果验证了理论分析的正确性。
1 引言
在电力电子技术发展史上,逆变电路占据非常重要的一环,而PWM控制技术在逆变电路又处于核心地位,如何将PWM控制技术应用到逆变电路当中是摆在广大科技工作者面前一大难题。
针对这个问题,本文首先阐述了PWM控制技术的基本原理,然后详细地研究了单极性SPWM和双极性SPWM实现方法,最后将PWM控制技术和单相桥式逆变电路结合起来分析并应用,并通过仿真实验验证了PWM控制技术在逆变电路的成功应用。
2 PWM控制技术的基本原理及实现方法
2.1 PWM控制技术的基本原理介绍
根据信号与系统知识可知,冲量相同而形状不一样的窄脉冲加在惯性环节上时,其输出作用相同。
如图1(a)、(b)和(c)所示的三个波形分别为矩形波脉冲、三角波形脉冲以及正弦波形脉冲,显然它们的形状完全不同,但是面积完全相同,如果把它们分别加在具有同一个惯性的环节上时,其输出作用完全相同。
(a)矩形波脉冲(b)三角波脉冲(c)正弦半波脉冲
分别将如图1所示(a)、(b)和(c)所示波形施加在同一个一阶惯性环节上,其电路图和输出电流i(t)输出分别如图2(a)和(b)所示。
从2(b)可以看出,在i(t)的上升段,i(t)的形状也稍微有点不同,但其下降段则完全相同。
值得说明的是脉冲越窄,各i(t)输出波形的差异可以忽略不计。
这种原理被称为面积等效原理,它是实现PWM 控制技术的理论基础。
如果用一系列等幅不等宽的脉冲来代替一个正弦半波,也就是说把正弦半波分成N等份,。