2018年秋八年级数学上册第13章13.2命题与证明第1课时命题作业(新版)沪科版
《13.2命题与证明》作业设计方案-初中数学沪科版12八年级上册

《命题与证明》作业设计方案(第一课时)一、作业目标本次作业的目的是帮助学生更好地理解和掌握《命题与证明》的基本概念,明确命题的结构、定义以及证明的逻辑过程,培养学生初步运用所学知识进行简单命题的判断和证明能力,同时增强学生的逻辑思维能力和解决问题的能力。
二、作业内容作业内容主要围绕初中数学《命题与证明》的第一课时展开,具体包括以下方面:1. 命题的基本概念和结构:学生需掌握命题的定义、分类及结构,并能够根据给定的语句判断其是否为命题,以及是何种类型的命题。
2. 命题的真假判断:学生需根据所学的逻辑规则,对给定的命题进行真假判断,并说明理由。
3. 简单的命题证明:学生需通过所学知识,尝试对一些简单的命题进行证明。
这一部分可以让学生尝试自主探究,寻找不同的证明方法。
4. 思考与探讨:鼓励学生就《命题与证明》这一章节的学习内容展开思考与探讨,如:什么是有效的证明?在证明过程中应遵循哪些原则?等。
三、作业要求1. 学生需独立完成作业,并保证作业的整洁、规范。
2. 对于每个命题的真假判断和证明过程,学生需详细阐述理由和步骤。
3. 在思考与探讨部分,学生需结合所学知识,提出自己的见解和思考。
4. 作业需在规定时间内提交,并按时参加课堂讲解和讨论。
四、作业评价教师将根据学生的作业完成情况、理解程度、证明过程及思考与探讨部分的内容进行评价。
评价标准包括:1. 学生对命题基本概念的掌握程度。
2. 学生对命题的真假判断能力及理由阐述的准确性。
3. 学生的证明过程是否清晰、逻辑是否严密。
4. 学生在思考与探讨部分的表现及见解的深度和广度。
五、作业反馈教师将对每位学生的作业进行批改,并在课堂上进行讲解和讨论。
对于学生在作业中出现的错误和不足,教师将给予指导和纠正。
同时,教师将根据学生的作业情况,对《命题与证明》这一章节的学习内容进行总结和拓展,帮助学生更好地掌握和运用所学知识。
此外,教师还将鼓励学生之间的交流和合作,共同进步。
2018年秋八年级数学上册作业第13章三角形中的边角关系命题与证明13.2命题与证明第2课时命题的证明

第2课时命题的证明知识要点基础练知识点1基本事实与定理1.“两点之间,线段最短”是(B)A.定义B.基本事实C.定理D.只是命题2.下列叙述错误的是(B)A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题知识点2推理与证明3.下列推理中,错误的是(D)A.∵AB=CD,CD=EF,∴AB=EFB.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥cD.∵AB⊥EF,EF⊥CD,∴AB⊥CD4.如图所示,OA⊥OC,OB⊥OD,证明∠AOB=∠COD的理论依据是(C)A.垂直的定义B.同角的补角相等C.同角的余角相等D.角平分线的定义5.如图,已知∠EDC=∠A,∠1=∠3,求证:BD平分∠ABC.证明:∵∠EDC=∠A(已知),∴DC∥AB(同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等).又∠1=∠3(已知),∴∠1=∠2(等量代换),∴BD平分∠ABC(角平分线的定义).综合能力提升练6.在证明过程中,对已学过的基本事实、定义、定理以及题设,可用来作为推理的依据的是(D)A.基本事实、题设与定义B.定义、定理与基本事实C.基本事实、定理与假设推理D.基本事实、定理、定义与题设7.如图,已知∠1=∠2,有以下结论:①∠3=∠4;②AB∥CD;③AD∥BC,则(B)A.三个都正确B.只有一个正确C.三个都不正确D.有两个正确8.(1)已知:如图,AB∥CD,∠A=∠C,求证:BC∥AD.证明:∵AB∥CD(已知),∴∠ABE=∠C(两直线平行,同位角相等).∵∠A=∠C(已知),∴∠ABE=∠A(等量代换).∴BC∥AD(内错角相等,两直线平行).(2)请写出问题(1)的逆命题并判断它是真命题还是假命题,真命题请写出证明过程,假命题举出反例.(2)解:(1)的逆命题为:已知:如图,BC∥AD,∠A=∠C,求证:AB∥CD.(它为真命题)证明:∵BC∥AD(已知),∴∠ABE=∠A(两直线平行,内错角相等).∵∠A=∠C(已知),∴∠ABE=∠C(等量代换).∴AB∥CD(同位角相等,两直线平行).拓展探究突破练9.已知:如图,∠BAE+∠AED=180°,∠1=∠2,求证:∠M=∠N.证明:∵∠BAE+∠AED=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAE=∠AEC(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠BAE-∠1=∠AEC-∠2(等式的性质),即∠MAE=∠NEA,∴AM∥NE(内错角相等,两直线平行),∴∠M=∠N(两直线平行,内错角相等).。
沪科版八年级数学上册 13.2命题与证明专题训练(含答案)

沪科版八年级数学上册 13.2 命题与证明专题一 三角形中的计算与证明题1.已知△ABC 的高为AD ,∠BAD =70º,∠CAD =20º,求∠BAC 的度数。
2.如图,已知AB ∥DE ,试求证:∠A +∠ACD +∠D =3600(你有几种证法?)3.在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法. 小明:在△ABC 中,延长BC 到D ,∴∠ACD =∠A +∠B (三角形一个外角等于和它不相邻的两个内角的和).又∵∠ACD +∠ACB =180°(平角定义), ∴∠A +∠B +∠ACB =180°(等式的性质).小虎:在△ABC 中,作CD ⊥AB (如图9), ∵CD ⊥AB (已知),∴∠ADC =∠BDC =90°(直角定义).∴∠A +∠ACD =90°,∠B +∠BCD =90°(直角三角形两锐角互余). ∴∠A +∠ACD +∠B +∠BCD =180°(等式的性质). ∴∠A +∠B +∠ACB =180°.请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.专题二 证明中的探究题4.(1)如图①∠1+∠2与∠B +∠C 有什么关系?为什么?(2)把图①△ABC 沿DE 折叠,得到图②,填空:∠1+∠2_______∠B +∠C (填“>”A B CD“<”“=”),当∠A =40°时,∠B +∠C +∠1+∠2=______.(3)如图③,是由图①的△ABC 沿DE 折叠得到的,如果∠A =30°,则x +y =360°-(∠B +∠C +∠1+∠2)=360°- = ,猜想∠BDA+∠CEA 与∠A 的关系为 .5.如图,已知AB CD ∥,探究123∠,∠,∠之间的关系,并写出证明过程.【知识要点】1.判断一件事情的语句叫命题,命题都由题设和结论两部分构成,分为真命题和假命题,都可以改写成“如果……那么……”的形式,任何一个命题都有逆命题.2.三角形内角和等于180°,可利用平行线的有关知识证明.三角形三个外角的和等于360°,每个外角等于和其不相邻的两个内角的和,因此三角形的外角大于和它不相邻的任一个内角.【温馨提示】1.命题有逆命题,但定理不一定有逆定理.2.要说明一个命题不成立,只要举出一个反例即可,反例满足命题的题设,但不满足结论.3.“三角形的一个外角大于与它不相邻的任何一个内角”不能说成“三角形的一个外角大于一个内角”.4.在证明一个命题的正确性时,每步都要有根据,根据可以是公理、定义、已知条件或已经证明的定理等.【方法技巧】1.要会判断一个语句是否为命题,需注意两点:(1)命题必须是一个完整的语句,通常是陈述句(包括肯定句和否定句);(2)必须对某件事情做出肯定或否定的判断.两者缺一不可.2.在证明或计算三角形的角度大小关系时,要注意“三角形三个内角的和等于180°”这一隐含条件,合理地构造方程或方程组,以便正确求解.y°x°AD CB E12AD CB E12A DCBE图① 图② 图③3.要证明角的不等关系时,经常用三角形的外角性质来证明,在证明时,如果直接证明有难度,可连接两点,或延长某边,构造三角形,使求证的大角(或它的一部分)处于某个三角形的外角的位置上,小角处在内角的位置上,再结合不等式的性质证明.参考答案1.(1)当高AD 在△ABC 的内部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD +∠CAD =70º+20º=90º;(2)当高AD 在△ABC 的外部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD -∠CAD =70º-20º=50º.综合(1)、(2)可知∠BAC 的度数为90º或50º.2.证法一:如图1,过点C 作CF ∥AB 。
【新人教版】2019-2020八年级数学上册 第13章 13.2 命题与证明 第1课时 命题与证明教案

13.2命题与证明第1课时命题与证明◇教学目标◇【知识与技能】1.了解命题、真命题、假命题的意义,了解公理、定理、证明的概念;2.了解原命题、逆命题的意义;3.会判断一个命题的真假,能用举反例的方法判断命题的真假,会写出一个命题的逆命题.【过程与方法】通过一些简单命题的证明,训练学生的逻辑思维.【情感、态度与价值观】通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.让学生积极参与教学活动,对数学定理、命题的由来产生好奇心和求知欲.◇教学重难点◇【教学重点】学习命题的概念和命题、公理、定理的区别.【教学难点】严密完整地写出推理过程.◇教学过程◇一、情境导入上一节课中,我们研究三角形的性质是通过折叠、剪拼或度量得到三角形的内角和为180°的,但这些做法都会出现很多误差,会存在疑问.有没有更准确更严格的方法得出结论呢?二、合作探究问题1:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.例如:(1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等;(3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.判断哪些是正确的,哪些是错误的?结论:(1)(2)(4)是正确的,(3)是错误的.问题2:什么叫命题?什么叫真命题?什么叫假命题?结论:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,其中正确的命题称为真命题,错误的命题称为假命题.典例1判断下面语句中哪些是命题?(1)请关上窗户;(2)你明天上学吗?(3)天真冷啊!(4)昨天我们去旅游了。
[解析](4)是命题,(1)(2)(3)不是命题问题3:(1)命题的一般形式是什么?(2)什么叫原命题、逆命题?(3)什么叫反例?结论:(1)命题的一般形式是“如果p,那么q”或“如果p,则q”.(2)将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个就叫做原命题的逆命题.(3)符合命题条件,但不满足命题结论的例子,我们称之为反例.典例2指出下列命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行;(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.[解析](1)“两条直线都平行于同一条直线”是条件,“两条直线平行”是结论.(2)“∠A=∠B”是条件,“∠A的补角与∠B的补角相等”是结论.写出下列命题的逆命题,并判断所得逆命题的真假,如果是假命题,请举一个反例:(1)内错角相等,两直线平行;(2)如果a=0,那么ab=0.[解析](1)逆命题是“两直线平行,内错角相等”,是真命题.(2)逆命题是“如果ab=0,那么a=0”,是假命题.反例,当a=1,b=0时,ab=0.典例3已知:如图,直线c与直线a,b相交,且∠1=∠2.求证:a∥b.[解析]∵∠1=∠2,(已知)又∵∠1=∠3,(对顶角相等)∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.[解析]∵OE平分∠AOB,OF平分∠BOC,(已知)∴∠1=错误!未找到引用源。
八年级数学上册三角形中的边角关系、命题与证明 . 命题与证明三角形的外角

12.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸 见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∠BDC等于 140°才算合格,小明通过测量得∠A=90°,∠B=19°,∠C=40°后就下结论说此零件不合格,于是爸爸 让小明解释(jiěshì)这是为什么,小明很轻松地说出了原因,并用如下的三种方法解出此题.请你分别说 出不合格的理由. ( 1 )如图1,连接AD并延长. ( 2 )如图2,延长CD交AB于点E. ( 3 )如图3,连接BC.
( 2 )∵∠BAC+∠B+∠C=180°,∠BAC=70°,∠B=40°,
∴∠C=70°.
第六页,共十四页。
6.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一 点(yī diǎn),FG∥CE,交AB于点G,下列说法正确的是 ( C )
A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1 D.无法(wúfǎ)判断
你的结论.
解:( 1 )延长(yáncháng)BD交AC于点E. ∵∠BDC是△CDE的外角,∴∠BDC=∠ACD+∠CED,
∵∠CED是△ABE的外角,∴∠CED=∠A+∠ABD.
∴∠BDC=∠A+∠ABD+∠ACD. ( 2 )∠D+∠A+∠ABD+∠ACD=360°. ( 3 )令BD,AC交于点E, ∵∠AED是△ABE的外角,∴∠AED=∠A+∠ABD, ∵∠AED是△CDE的外角,∴∠AED=∠D+∠ACD,
第四页,共十四页。
知识点2 三角形外角(wài jiǎo)的性质
八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。
八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。
初中数学冀教版八年级上册第十三章 全等三角形13.2 全等图形-章节测试习题(1)

章节测试题1.【题文】已知以下基本事实:①对顶角相等;②一条直线截两条平行线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④经过直线外一点,有且只有一条直线平行于已知直线.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有____(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”,已知:如图,_____________________________.求证:________.证明:____________________.【答案】详见解析.【分析】(1)利用图示:根据平行线的性质,证明“两直线平行,内错角相等”的过程解答;(2)根据“两直线a∥b,判定同位角∠1=∠3”,然后由对顶角∠3=∠2及等量代换证得∠1=∠2.【解答】解:(1)①②;(2)已知:a∥b,直线a、b被直线c所截.求证:∠1=∠2.证明:∵a∥b,∴∠1=∠3.∵∠3 =∠2,∴∠1 =∠2.2.【题文】如图,在△ABC中,∠B≠∠C.求证:AB≠AC.【答案】见解析【分析】首先假设AB=AC,从而得出与已知条件矛盾,从而得出答案.【解答】解:假设AB=AC,则∠B=∠C,∴与已知矛盾,∴AB≠AC.3.【题文】如图所示,D、E分别为△ABC的边AB、AC上点,•BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号)(2)证明你写的命题.【答案】(1)条件①、③结论②、④,(2)证明见解析【分析】(1)选①③作为题设时,可证明②④正确;(2)用ASA证明△ABE≌△ACD可得BE=CD,在△OBC,证∠OBC=∠OCB可得OB=OC.【解答】解:(1)∵∠A=∠A,AB=AC,∠ABE=∠ACD,∴△ABE≌△ACD,∴BE=CD.故④正确.∵AB=AC,∴∠ABC=∠ACB.∵∠ABE=∠ACD,∴∠OBC=∠OCB,∴OB=OC,故②正确.4.【题文】下列语句哪些是命题?对于命题,请先将它改写为“如果……那么……”的形式,再找出命题的条件和结论,并指出是真命题还是假命题,并说明为什么是假命题.(1)小亮今年上八年级,明年一定上九年级;(2)作一条线段的垂直平分线;(3)互为倒数的两个数的积为1;(4)内错角相等;(5)不等式的两边同时乘以一个数,不等号的方向改变.【答案】(2)不是命题,(1)(3)(4)(5)都是命题,(3)是真命题.【分析】命题是具有判断语句的陈述句,任何一个命题都可以改写成,”如果…那么…”的形式, 如果后面为题设,那么后面为结论,正确的命题称为真命题,错误的命题称为假命题.【解答】 (2)不是命题,(1)(3)(4)(5)都是命题,(1)如果小亮今年上八年级,那么明年一定上九年级,条件是小亮今年上八年级,结论是明年一定上九年级,有可能留级,所以是假命题,(3)如果两个数互为倒数,那么它们的积为1,条件是,两个数互为倒数,结论是它们的积为1,是真命题,(4)如果两个角是内错角,那么它们相等,条件是两个角是内错角,结论是它们相等,因为两直线不一定平行,所以是假命题,(5)如果不等式的两边同时乘以一个数,那么不等号的方向改变,条件是不等式的两边同时乘以一个数,结论是不等号的方向改变,只有乘以的是负数才改变,乘以正数不改变,所以是假命题.方法总结:本题考查了命题,真命题的概念,解决本题的关键是要熟练掌握命题和真命题的概念.5.【题文】写出下列命题的条件与结论.(1)两条直线平行,同位角相等;(2)同角或等角的补角相等;(3)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【答案】答案见解析.【分析】(1),(2)把命题改写为”如果…那么…”的形式,则如果后面的为题设,那么后面的为结论,(3)如果后面为题设,那么后面为结论.【解答】(1)条件:两条直线平行,结论:同位角相等(2)条件:同角或等角的补角,结论:相等(3)条件:两条直线被第三条直线所截,内错角相等,结论:两条直线平行.6.【答题】下列说法正确的是( )A. 两个周长相等的长方形全等B. 两个周长相等的三角形全等C. 两个面积相等的长方形全等D. 两个周长相等的圆全等【答案】D【分析】能够完全重合的两个图形叫做全等形,D、两个周长相等的圆的半径必然相等,半径相等则两圆重合,故全等.【解答】A.长方形周长相等,但面积、长、宽不一定相等,错;B.三角形周长相等,但不一定对应边完全相等,错;C.长方形面积相等,但长、宽不一定相等,错;D.圆的周长相等,就可知道半径相等,两圆可完全重合,正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2命题与证明
第1课时命题
知识要点基础练
知识点1命题及真命题、假命题的概念
1.下列语句中,属于命题的是(A)
A.等角的余角相等
B.两点之间,线段最短吗
C.连接P,Q两点
D.花儿会不会在春天开放
2.下列命题:①两点确定一条直线;②两点之间,线段最短;③对顶角相等;④内错角相等.其中真命题的个数有(C) A.1个B.2个
C.3个
D.4个
3.有下列命题:①同角的补角相等;②三角形的两边之和小于第三边;③两个锐角的和是锐角;
④同旁内角互补.其中是假命题的有②③④.(只填序号)
知识点2命题的构成及改写
4.把命题“平行于同一条直线的两条直线平行”写成“如果…,那么…”的形式为:如果
两条直线平行于同一条直线,那么这两条直线平行.
5.下列各语句中,哪些是命题,哪些不是命题?是命题的,请先将它改写为“如果…,那么…”的形式,再指出命题的条件和结论.
(1)同号两数的和一定不是负数;
(2)若x=2,则1-5x=0;
(3)延长线段AB至点C,使B是AC的中点.
解:(1)如果两个数是同号,那么这两个数的和一定不是负数,条件:两个数是同号,结论:这两个数的和一定不是负数.(2)如果x=2,那么1-5x=0,条件:x=2,结论:1-5x=0.(3)不是命题.
知识点3互逆命题及反例
6.下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则错误!未找到引用源。
=0.它们的逆命题一定成立的有(C) A.①②③④B.①④
C.②④
D.②
7.下列选项中,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是(A)
A.a=-2,b=1
B.a=3,b=-2
C.a=0,b=1
D.a=2,b=1
综合能力提升练
8.下列不是命题的是(A)
A.过一点作已知直线的垂线
B.两点确定一条直线
C.钝角大于90°
D.凡是直角都相等
9.下列命题中,真命题有(B)
①等腰三角形两边长分别为2和5,则它的周长是9或12;
②无理数-错误!未找到引用源。
在-2和-1之间;
③若a-b>0,则a>b;
④北偏东30°与南偏东50°的两条射线的夹角为80°.
A.1个
B.2个
C.3个
D.4个
10.写出下列命题的逆命题,并判断原命题和逆命题的真假:
(1)若m2≠n2,则m≠n;
(2)如果一个三角形有一个内角是钝角,那么它的另外两个内角是锐角.
解:(1)逆命题:若m≠n,则m2≠n2;
原命题是真命题,逆命题是假命题.
(2)逆命题:如果一个三角形有两个内角是锐角,那么这个三角形的另一个内角是钝角.
原命题是真命题,逆命题是假命题.
拓展探究突破练
11.一个命题是真命题,它的逆命题也是真命题吗?一个命题是假命题,它的逆命题也是假命题吗?举例说明你的观点的正确性.
解:一个命题是真命题,它的逆命题不一定是真命题.如“对顶角相等”是真命题,它的逆命题“相等的角是对顶角”是假命题.
一个命题是假命题,它的逆命题不一定是假命题.如“相等的角是直角”是假命题,它的逆命题“直角都相等”是真命题.。