华大随机试卷答案

合集下载

华大新2025届高三第二次模拟考试英语试卷含解析

华大新2025届高三第二次模拟考试英语试卷含解析

华大新2025届高三第二次模拟考试英语试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分(共20小题,每小题1.5分,满分30分)1.Breaking up is the business of the two lovers, ________ no other person should be involved.A.which B.in thatC.that D.in which2.The company needs to _____ its outdated image to promote its newly-released product.A.lay out B.call upC.shake off D.give away3.The teacher told the children ______ quiet in the museum.A.keep B.kept C.keeping D.to keep4.With the nuclear crisis worsening in Iran, the world’s attention is fixed again on ________is called the Middle East. A.which B.what C.that D.it5.After nine years working to protect Siberian tigers, Yang Jun _____ his efforts recognized at the annual award ceremony in Beijing where he was named a "wildlife protector".A.had B.had hadC.has had D.has6.We sell a lot of products offshore and the opportunity to open up markets in regions ________ we don't currently sell a lot to is a great one.A.where B.thatC.what D.when7.Nobody knows why the boy can tell what’s written on the paper in another room without looking at it. It really_______ explanation.A.prevents B.challenges C.interrupts D.confuses8.______me tomorrow and I’ll let you know the lab result.A.Calling B.Call C.To call D.Having called9.This semester our school offers many optional courses for the students, _______ appeals to many students. A.each of which B.all of whomC.each of whom D.all of which10.More often than not, the enterprise around us are getting even richer, ________ recipe is don’t put all your eggs in one basket.A.of which B.whichC.whose D.of whom11.Some experts fear that too-early ________ to computers will have harmfu l consequences for children’s development. A.exposure B.extensionC.exhibition D.expansion12.We could have done something meaningful in the time it ________ to watch that boring movie.A.has taken B.took C.had taken D.takes13.Obama didn’t explain ______ any larger principles have guided him through the historic convulsions of the 2011 Arab Spring.A.what B.that C.where D.whether14.— When did Tom come to Qingdao?— It was in July,2006 and he a trip in China with his parents at thattime.A.would take B.had taken C.was taking D.had been taking15.Decades ago, scientists believed that how the brain develops when you are a kid ______ determines your brain structure for the rest of your life.A.sooner or later B.more or less C.to and from D.up and down16.Locals lived in rather ________ conditions until the founding of the People’s Republic of China in 1949. A.precious B.primitiveC.precise D.prior17.The inner strength of the girl allows her _____ going when she gets into trouble.A.keep B.keeping C.to keep D.kept18.The course about Chinese food attracts over 100 students per year, _______ up to half are from overseas.A.in which B.of whomC.with which D.for whom19.---What do you do, Susan?---I am a clerk in a foreign company now. But I __________English in a high school for 8 years.A.teach B.had taughtC.have taught D.taught20.--- My God! I haven’t prepared the files for the new project yet!--- _______. The boss won’t need it until next Friday.A.There’s no doubt B.There’s no panic C.Good luck D.Sounds good第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。

【新结构】华大新高考联盟2024届高三下学期3月教学质量测评数学试卷+答案解析

【新结构】华大新高考联盟2024届高三下学期3月教学质量测评数学试卷+答案解析

【新结构】华大新高考联盟2024届高三下学期3月教学质量测评数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若,则z的虚部为()A. B. C. D.12.已知集合,,则图中阴影部分表示的集合为()A. B. C. D.3.对A,B两地国企员工的上班迟到情况进行统计,可知两地国企员工的上班迟到时间均符合正态分布,其中A地员工的上班迟到时间为单位:,,对应的曲线为,B地员工的上班迟到时间为单位:,,对应的曲线为,则下列图象正确的是()A. B.C. D.4.已知,,若,则()A. B. C. D.5.若,则()A. B. C. D.6.已知抛物线的焦点为F,准线l与x轴的交点为P,过点F的直线与C交于M,N两点,若,且,则()A. B. C. D.7.已知实数a,b满足,则的最小值与最大值之和为()A.4B.5C.6D.78.已知正方体的边长为4,其中点E为线段的中点,点F,G分别在线段,上运动,若恒成立,则实数的取值范围为()A. B. C. D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知正数m,n满足,则()A.B.C.D.,,10.六氟化硫,化学式为,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫结构为正八面体结构,如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点,若相邻两个氟原子之间的距离为m,则()A.该正八面体结构的表面积为B.该正八面体结构的体积为C.该正八面体结构的外接球表面积为D.该正八面体结构的内切球表面积为11.若关于x的不等式在上恒成立,则实数a的值可以是()A. B. C. D.2三、填空题:本题共3小题,每小题5分,共15分。

12.若函数的图象关于原点对称,则__________.13.已知平面凸四边形ABCD的对角线分别为AC,BD,其中,,则__________;若,则四边形ABCD 的面积的最大值为__________.14.已知双曲线的左、右焦点分别为,,点P在双曲线C上,且,,若点Q也在双曲线C上,则双曲线C的离心率为__________.四、解答题:本题共5小题,共77分。

华大新高考联盟2024届高三4月教学质量测评理科数学试题(老教材全国卷)(含答案与解析)_5736

华大新高考联盟2024届高三4月教学质量测评理科数学试题(老教材全国卷)(含答案与解析)_5736

华大新高考联盟2024届高三4月教学质量测评数学(理科)本试题卷共4页.满分150分,考试用时120分钟.注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卷指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卷上的指定位置. 2.选择题的作答:选出答案后,用2B 铅笔把答题卷.上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.非选择题的作答:用黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内.答在试题卷上或答题卷指定区域外无效.4.考试结束,监考人员将答题卷收回,考生自己保管好试题卷,评讲时带来.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有—项是符合题目要求的.1. 若集合{}2|3160,{|ln(52)}A x x xB x y x =-≤==-,则A B = ( )A. 5|02⎧⎫⎨⎬⎩⎭≤<x x B. 516|23x x ⎧⎫<≤⎨⎬⎩⎭ C. 2|05x x ⎧⎫≤<⎨⎬⎩⎭D. 216|53x x ⎧⎫<≤⎨⎬⎩⎭2. 已知(21)(1)i()z a a a =-++∈R ,则“||z =”是“25a =”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3. 如图所示,已知一质点在外力的作用下,从原点O 出发,每次向左移动的概率为23,向右移动的概率为13.若该质点每次移动一个单位长度,设经过5次移动后,该质点位于X 的位置,则(0)P X >=( )A.50243B.52243C.29D.17814. 青少年视力问题是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足5lg L V =+.已知小明和小李视力的五分记录法的数据分别为4.5和4.9,记小明和小李视力的小数记录法的数据分别为12,V V ,则21V V ∈( ) A. (1.5,2)B. (2,2.5)C. (2.5,3)D. (3,3.5)5. 某公司有营销部门、宣传部门以及人事部门,其中营销部门有50人,平均工资为5千元,方差为4,宣传部门有40人,平均工资为3千元,方差为8,人事部门有10人,平均工资为3千元,方差为6,则该公司所有员工工资的方差为( ) A.6.2B. 6.4C. 6.6D. 6.86. 已知正方体1111ABCD A B C D -中,点E 是线段1BB 上靠近1B 的三等分点,点F 是线段11D C 上靠近1D 的三等分点,则平面AEF 截正方体1111ABCD A B C D -形成的截面图形为( ) A 三角形B. 四边形C. 五边形D. 六边形7. 1tan1902cos 701tan 370sin 40︒︒︒︒+-=-( ) A tan 20︒B. tan 70︒C. tan10︒-D. tan 40︒-8. 已知圆柱12O O 中,AD ,BC 分别是上、下底面的两条直径,且//,4AD BC AB BC ==,若M 是弧BC 的中点,N 是线段AB 的中点,则( ) A. ,,,,AM CN A C M N =四点不共面 B. ,,,,AM CN A C M N ≠四点共面 C. ,AM BD ACM ⊥△直角三角形 D. ,AM CN ACM ≠△为直角三角形9. 若函数2()(2)1f x x m x =--+在11,22⎡⎤-⎢⎥⎣⎦上单调,则实数m 的取值范围为( ) A. 19,13,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦B. 19,23,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C. 19,13,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦ D. 19,23,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦10 已知函数()sin()(0)f x x ωϕω=+>,现有如下说法:..为.①若π3ϕ=,函数()f x 在ππ,63⎛⎫⎪⎝⎭上有最小值,无最大值,且ππ63f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则5ω=; ②若直线π4x =为函数()f x 图象的一条对称轴,5π,03⎛⎫⎪⎝⎭为函数()f x 图象的一个对称中心,且()f x 在π5π46,⎛⎫⎪⎝⎭上单调递减,则ω的最大值为1817; ③若1()2f x =在π3π,44x ⎡⎤∈⎢⎥⎣⎦上至少有2个解,至多有3个解,则164,3ω⎡⎫∈⎪⎢⎣⎭; 则正确的个数为( ) A. 0B. 1C. 2D. 311. 若关于x 的不等式2(ln ln )2e x a x a +≤在(0,)+∞上恒成立,则实数a 的取值范围为( )A. B. (20,e ⎤⎦ C (0,e]D. (0,2e]12. 已知抛物线2:2(0)C y px p =>的焦点为F ,点,,(2,2)M N A 在抛物线C 上,0AM AN k k +=,其中1AM k >,则|sin sin |FMN FNM ∠-∠的最大值为( )A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13. 关于双曲线2222:1(0,0)x y C a b a b -=>>,四位同学给出了四个说法:小明:双曲线C 的实轴长为8;小红:双曲线C 的焦点到渐近线的距离为3; 小强:双曲线C 的离心率为32; 小同:双曲线C 上的点到焦点距离的最小值为1;若这4位同学中只有1位同学的说法错误,则说法错误的是______.(横线上填“小明”、“小红”、“小强”或“小同”)14. 已知在ABC 中,点M 在线段BC 上,且π10,14,6,4AM AC MC ABC ===∠=,则AB =______..15. 已知等边ABC 的外接圆O 的面积为36π,动点M 在圆O 上,若MA MB MB MC λ⋅+⋅≤,则实数λ的取值范围为______.16. 已知空间四面体ABCD 满足,26AB AC DB DC AD BC =====,则该四面体外接球体积的最小值为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答. (一)必考题:共5小题,每小题12分,共60分.17. 某农业大学组织部分学生进行作物栽培试验,由于土壤相对贫瘠,前期作物生长较为缓慢,为了增加作物的生长速度,达到预期标准,小明对自己培育的一株作物使用了营养液,现统计了使用营养液十天之内该作物的高度变化天数x 1 2 3 4 5 6 7 8 9 10 作物高度y /cm 9101011121313141414(1)观察散点图可知,天数x 与作物高度y 之间具有较强的线性相关性,用最小二乘法求出作物高度y 关于天数x 的线性回归方程ˆˆˆy bx a =+(其中ˆˆ,ab 用分数表示); (2)小明测得使用营养液后第22天该作物的高度为21.3cm ,请根据(1)中的结果预测第22天该作物的高度的残差.参考公式:()()()121ˆˆˆ,niii ni i x x y y ba y bx x x ==--==--∑∑.参考数据:101710i ii x y ==∑. 18. 已知数列{}n a 的前n 项和为n S ,且()23,22n n a S n a ==+. (1)求数列{}n a 的通项公式;(2)若存在*n ∈N ,使得112231111n n n a a a a a a a λ+++++≥ 成立,求实数λ的取值范围. 19. 已知四棱柱1111ABCD A B C D -如图所示,底面ABCD 为平行四边形,其中点D 在平面1111D C B A 内的投影为点1A ,且1AB AA ==2,120AD ABC ︒∠=.(1)求证:平面1A BD ⊥平面11ADD A ;(2)已知点E 在线段1C D 上(不含端点位置),且平面1A BE 与平面11BCC B,求1DEEC 的值. 20.已知函数()ln(1)f x x =+-. (1)求曲线()y f x =在(0,(0))f 处的切线方程;(2)若(1,π)x ∈-,讨论曲线()y f x =与曲线2cos y x =-的交点个数.21. 已知椭圆2222:1(0)x y C a b a b+=>>短轴长为2,左、右焦点分别为12,F F ,过点2F 的直线l 与椭圆C交于M ,N 两点,其中M ,N 分别在x 轴上方和下方,11,MP PF NQ QF ==,直线2PF 与直线MO 交于点1G ,直线2QF 与直线NO 交于点2G .(1)若1G 坐标为11,36⎛⎫⎪⎝⎭,求椭圆C 的方程; (2)若2112435MNG NF G MNG S S S ≤≤ ,求实数a 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22. 已知在平面直角坐标系xOy 中,曲线C 的参数方程为222sin 2sin cos x y ααα⎧=-⎨=⎩(α为参数),以坐标原点O为极点,x 轴的非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为3πcos 04a ρθ⎛⎫--= ⎪⎝⎭,且直线l 与曲线C 交于A ,B 两点.(1)求曲线C 的极坐标方程以及直线l 的一般方程; (2)若π4AOB ∠=,求a 的值以及曲线C 上的点到直线l 距离的最大值. [选修4—5:不等式选讲](10分)23. 已知函数()|24||3|f x x x =-++.(1)求不等式()112128f x ⎛⎫≤⎪⎝⎭的解集; (2)若()1f x kx >+恒成立,求实数k 的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有—项是符合题目要求的.1. 若集合{}2|3160,{|ln(52)}A x x xB x y x =-≤==-,则A B = ( )A. 5|02⎧⎫⎨⎬⎩⎭≤<x x B. 516|23x x ⎧⎫<≤⎨⎬⎩⎭ C. 2|05x x ⎧⎫≤<⎨⎬⎩⎭D. 216|53x x ⎧⎫<≤⎨⎬⎩⎭【答案】D 【解析】【分析】根据一元二次不等式的解集确定集合A ,根据对数函数的定义域确定集合B ,再根据集合的交集运算得结果.【详解】因为集合{}()2162|3160|0,{|ln 52}35A x x x x x B x y x x x ⎧⎫⎧⎫=-≤=≤≤==-=⎨⎬⎨⎬⎩⎭⎩⎭, 则A B = 216|53x x ⎧⎫<≤⎨⎬⎩⎭.故选:D .2. 已知(21)(1)i()z a a a =-++∈R ,则“||z =”是“25a =”( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】由||z =a 的等量关系,求解a ,从而判断选项.【详解】因为z ==2520a a -=,解得0a =或25a=,故“z =”是“25a =”的必要不充分条件. 故选:B .3. 如图所示,已知一质点在外力的作用下,从原点O 出发,每次向左移动的概率为23,向右移动的概率为13.若该质点每次移动一个单位长度,设经过5次移动后,该质点位于X 的位置,则(0)P X >=( )A.50243B.52243C.29D.1781【答案】D 【解析】【分析】由题意当0X >时,X 的可能取值为1,3,5,且2(5,)3X B ,根据二项分布的概率公式计算即可求解.【详解】依题意,当0X >时,X 的可能取值为1,3,5,且2(5,)3X B , 所以()()()()0531P X P X P X P X >==+=+=5432125511212C C 33333⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1781=. 故选:D .4. 青少年视力问题是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V满足5lg L V =+.已知小明和小李视力的五的分记录法的数据分别为4.5和4.9,记小明和小李视力的小数记录法的数据分别为12,V V ,则21V V ∈( ) A. (1.5,2) B. (2,2.5)C. (2.5,3)D. (3,3.5)【答案】C 【解析】【分析】根据题意得到方程组,求出21V V =,根据552.5981003243≈<<=()2.5,3. 【详解】依题意,214.95lg 4.55lg V V =+⎧⎨=+⎩,两式相减可得,22110.4lg lg lg V V V V =-=,故0.42110V V ==,而552.5981003243≈<<=()2.5,3. 故选:C .5. 某公司有营销部门、宣传部门以及人事部门,其中营销部门有50人,平均工资为5千元,方差为4,宣传部门有40人,平均工资为3千元,方差为8,人事部门有10人,平均工资为3千元,方差为6,则该公司所有员工工资的方差为( ) A.6.2 B. 6.4C. 6.6D. 6.8【答案】D 【解析】【分析】先求出总的平均工资,再根据分层抽样的方差公式求解即可.【详解】所有人的平均工资为5054031034100⨯+⨯+⨯=千元,故该公司所有员工工资的方差为()()(){}2221504544083410634 6.8100⎡⎤⎡⎤⎡⎤⨯+-+⨯+-+⨯+-=⎣⎦⎣⎦⎣⎦. 故选:D6. 已知正方体1111ABCD A B C D -中,点E 是线段1BB 上靠近1B 的三等分点,点F 是线段11D C 上靠近1D 的三等分点,则平面AEF 截正方体1111ABCD A B C D -形成的截面图形为( ) A. 三角形 B. 四边形C. 五边形D. 六边形【答案】C 【解析】【分析】如图,由题意,根据空间线面的位置关系、基本事实以及面面平行的性质定理可得//l AE ,进而//FI AE ,结合相似三角形的性质即可求解.【详解】如图,设6AB =,分别延长11AE A B 、交于点G ,此时13B G =, 连接FG 交11B C 于H ,连接EH ,设平面AEF 与平面11DCC D 的交线为l ,则∈F l ,因为平面11//ABB A 平面11DCC D ,平面AEF ⋂平面11ABB A AE =,平面AEF ⋂平面11DCC D l =, 所以//l AE ,设1l D D I = ,则//FI AE , 此时1FD I ABE △∽△,故1ID =43,连接A I , 所以五边形AIFHE 为所求截面图形, 故选:C .7. 1tan1902cos 701tan 370sin 40︒︒︒︒+-=-( ) A. tan 20︒ B. tan 70︒C. tan10︒-D. tan 40︒-【答案】A 【解析】【分析】根据题意,结合三角函数的基本关系式、诱导公式和倍角公式,准确化简、运算,即可求解.详解】由sin1011tan1902cos701tan102sin202sin20cos10sin101tan370sin401tan10sin402sin20cos201cos10+++-=-=----()222cos10sin1011sin201tan20cos 10sin 10cos20cos20cos20++=-=-=-. 故选:A .8. 已知圆柱12O O 中,AD ,BC 分别是上、下底面的两条直径,且//,4AD BC AB BC ==,若M 是弧BC【的中点,N 是线段AB 的中点,则( ) A. ,,,,AM CN A C M N =四点不共面 B. ,,,,AM CN A C M N ≠四点共面 C. ,AM BD ACM ⊥△为直角三角形 D. ,AM CN ACM ≠△为直角三角形【答案】D 【解析】【分析】根据圆柱中的直线与直线、直线与平面的位置关系,逐项判断即可得结论.【详解】因为点M BC ∉,而BC ⊂平面ACN ,结合圆柱结构,所以M ∉平面ACN ,故,,,A C M N 四点不共面;圆柱12O O 中,AD ,BC 分别是上、下底面的两条直径,且//,4AD BC AB BC ==,若M 是弧BC 的中点,N 是线段AB 的中点,故122BM BN AB ====,所以AM CN ====,故AM CN ≠;连接2AO ,则依题有2AO 为AM 在平面ABCD 内的射影,在平面ABCD 内显然BD 与2AO 不垂直,故AM 与BD 不垂直;22MC MB AC AM MC ===+=2AC ,则ACM △为直角三角形,故选:D .9. 若函数2()(2)1f x x m x =--+在11,22⎡⎤-⎢⎥⎣⎦上单调,则实数m 的取值范围为( ) A. 19,13,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦B. 19,23,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C. 19,13,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦ D. 19,23,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦【答案】C 【解析】【分析】由题意,根据二次函数的图象与性质建立不等式组,解之即可求解. 【详解】令()()221g x x m x =--+,则21,22102m g -⎧≥⎪⎪⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩或21,22102m g -⎧≥⎪⎪⎨⎛⎫⎪-≤ ⎪⎪⎝⎭⎩或21,22102m g -⎧≤-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩或21,2210,2m g -⎧≤-⎪⎪⎨⎛⎫⎪≤ ⎪⎪⎝⎭⎩ 解得392m ≤≤或112m -≤≤, 即实数m 得取值范围为1[,1][3,229- .故选:C .10. 已知函数()sin()(0)f x x ωϕω=+>,现有如下说法: ①若π3ϕ=,函数()f x 在ππ,63⎛⎫⎪⎝⎭上有最小值,无最大值,且ππ63f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则5ω=; ②若直线π4x =为函数()f x 图象的一条对称轴,5π,03⎛⎫⎪⎝⎭为函数()f x 图象的一个对称中心,且()f x 在π5π46,⎛⎫⎪⎝⎭上单调递减,则ω的最大值为1817; ③若1()2f x =在π3π,44x ⎡⎤∈⎢⎥⎣⎦上至少有2个解,至多有3个解,则164,3ω⎡⎫∈⎪⎢⎣⎭; 则正确的个数为( ) A. 0 B. 1C. 2D. 3【答案】C 【解析】【分析】①选项,根据条件得到()1483k k ω=+∈Z ,再利用()f x 在区间ππ,63⎛⎫⎪⎝⎭上有最小值,无最大值,得出12ω≤,从而得出143ω=,即判断出选项①错误;②选项,根据条件建立,ωϕ的方程组,从而得到126,Z 171207k k ωω+⎧=-∈⎪⎪⎨⎪<≤⎪⎩,即可判断出选项②正确;③选项,根据条件,直接求出方程的解,从而建方程组2ππ28ππ32ωω⎧≤⎪⎪⎨⎪>⎪⎩,得出164,3ω⎡⎫∈⎪⎢⎣⎭,即可得出结果.【详解】对于①,因为πππ6324x +==时,()f x 有最小值,所以ππsin 143ω⎛⎫ ⎪⎝⎭+=-, 所以()ππ3π2π43Z 2k k ω+=+∈,得到()1483k k ω=+∈Z , 因为()f x 在区间ππ,63⎛⎫⎪⎝⎭上有最小值,无最大值,所以πππ34ω-≤,即12ω≤,令0k =,得143ω=,故①错误;对于②,根据题意,有()()1122ππ2πZ 425ππZ 3π5ππ7π26412k k k k T ωϕωϕω⎧+=+∈⎪⎪⎪+=∈⎨⎪⎪=≥-=⎪⎩, 得出121212(2)6,,Z 171207k k k k ωω-+⎧=-∈⎪⎪⎨⎪<≤⎪⎩,即126,Z 171207k k ωω+⎧=-∈⎪⎪⎨⎪<≤⎪⎩,得到617ω=或1817,故②正确;对于③,令()Z π2π6x k k ωϕ++∈=或()Z 5π2π6x k k ωϕ++∈=, 则()Z 2ππ6k x k ϕωω-++∈=或()Z 2π5π6k x k ϕωω-++∈=, 故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2ππ,28ππ,32ωω⎧≤⎪⎪⎨⎪>⎪⎩,解得164,3ω⎡⎫∈⎪⎢⎣⎭,故③正确, 故选:C .11. 若关于x 的不等式2(ln ln )2e x a x a +≤在(0,)+∞上恒成立,则实数a 的取值范围为( )A. B. (20,e ⎤⎦ C. (0,e] D. (0,2e]【答案】D 【解析】【分析】根据指对混合型不等式,利用指对运算将不等式2(ln ln )2e x a x a +≤转化成()2ln 2e xax ax x ≤,根据结构相同设函数()e ,xf x x x =∈R ,利用函数的单调性及取值情况,将问题转化为2e xa x≤,令()()2e ,0,xg x x x∞=∈+,求导确定最值即可得实数a 的取值范围.【详解】依题意得,()2ln 2e xax ax x ≤,故()()ln 2eln 2e ax x ax x ≤,令()e ,x f x x x =∈R ,则()()1e xf x x +'=,令()0f x '=可得=1x -,所以(),1x ∞∈--时,()0f x '<,则()f x 在(),1∞--上单调递减,()1,x ∞∈-+时,()0f x '>,则()f x 在()1,∞-+上单调递增;且当0x <时,()0f x <,当0x >时,()0f x >;则由()()()ln 20f ax f x x ≤>,得()ln 2ax x ≤,则2e xa x ≤ 令()()2e ,0,x g x x x ∞=∈+,则()()2221e x x g x x-'=, 故当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,()g x 单调递减,当1,2x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,g x g x '>单调递增,故()min 12e 2g x g ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭,则2e a ≤,则实数a 的取值范围为(]0,2e a ∈. 故选:D .12. 已知抛物线2:2(0)C y px p =>的焦点为F ,点,,(2,2)M N A 在抛物线C 上,0AM AN k k +=,其中1AM k >,则|sin sin |FMN FNM ∠-∠的最大值为( )A.B.C.D.【答案】A 【解析】【分析】先求出抛物线方程,联立,结合韦达定理求得M ,N 的坐标,从而求得直线MN 的方程,求出点F 到直线MN 的距离d , 表示出|sin sin |FMN FNM ∠-∠,利用换元,结合基本不等式从而可求答案.【详解】点(2,2)A 在抛物线C 上,把点(2,2)A 代入2:2(0)C y px p =>中得2222p =⋅,则1p =, 所以抛物线为2:2C y x =,直线()():221AM y k x k -=->, 与抛物线方程联立可得,2244ky y k -+-0=,则442M k y k -⋅=,则22M ky k-=,0AM AN k k +=,则AN k k =-,所以用k -替换可得22N k y k+=-,则2222M N M NMN N M M Ny y y y k y y x x --===--212M N y y =-+, 则()222122,k k M k k ⎛⎫--⎪ ⎪⎝⎭,故()222122,k k N k k ⎛⎫++ ⎪- ⎪⎝⎭, 直线22:k MN y k --=()222112k x k ⎡⎤---⎢⎥⎢⎥⎣⎦,即21112y x k =-+-, 则点F 到直线MN的距离1)d k >, ()()222221218M N k k x x kkk -+--=-=,()()()2222224412121M N k k k x x k kk--+=⋅=,()()222222212144M N k k k x x kk k -+++=+=, 而1111sin sin 1122M N FMN FNM dd FM FN x x ∠-∠=-=-=++()1124M N M N M N x x d x x x x -=+++==,令45=-t k k ,因为1k >,所以451t k k=->,故211sin sin 16168t FMN FNM t t t ∠-∠==≤==++, 当且仅当()161)t t t=>,即4t =时等号成立, 故选:A .【点睛】关键点点睛:本题求解的关键有两个:一是利用点线距及三角函数表示出目标式;二是利用换元法和基本不等式求解最值.二、填空题:本题共4小题,每小题5分,共20分.13. 关于双曲线2222:1(0,0)x y C a b a b -=>>,四位同学给出了四个说法:小明:双曲线C 的实轴长为8;小红:双曲线C 的焦点到渐近线的距离为3; 小强:双曲线C 的离心率为32; 小同:双曲线C 上的点到焦点距离的最小值为1;若这4位同学中只有1位同学的说法错误,则说法错误的是______.(横线上填“小明”、“小红”、“小强”或“小同”) 【答案】小强【解析】【分析】假设小明、小红的说法均正确得双曲线方程,根据双曲线的几何性质再验证小强与小同的说法即可得结论.详解】假设小明说法正确,则28a =,即4a =,又小红说法正确,则双曲线C 的焦点到渐近线的距离为3b =,则此时双曲线为22:1169x y C -=,则5c ==,双曲线的离心率为54,双曲线C 上的点到焦点距离的最小值为541c a -=-=, 综上,小明、小红、小同的说法正确的,小强的说法错误. 故答案为:小强.14. 已知在ABC 中,点M 在线段BC 上,且π10,14,6,4AM AC MC ABC ===∠=,则AB =______.【答案】【解析】【分析】由题意,根据正弦定理、余弦定理计算即可求解. 【详解】在AMC 中,由余弦定理,得361001961cos 26102AMC +-∠==-⨯⨯,则2π3AMC ∠=,即π3AMB ∠=,在ABM 中,3π10,,4πAM ABM AMB =∠=∠=, 由正弦定理得10sin sin 43ππAB=,解得AB =.故答案为:15. 已知等边ABC 的外接圆O 的面积为36π,动点M 在圆O 上,若MA MB MB MC λ⋅+⋅≤,则实数λ的取值范围为______.【【答案】[)72,+∞ 【解析】【分析】根据正三角形的几何性质可得外接圆半径,再由正弦定理得边长AB ,取线段AC 的中点N ,取线段BN 的中点P ,根据向量的线性运算及数量积的运算性可得2MA MB MB MC MB MN ⋅+⋅=⋅,且MB MN ⋅= 221,4MP BN - 再由三角形三边关系列不等式得结论.【详解】依题意,设ABC 的外接圆的半径为R ,则2π36πR =,故6R =, 在等边ABC 中由正弦定理得12sin60AB=,则AB =;取线段AC 的中点N ,连接BN,则9BN AB ==, 所以()2MA MB MB MC MB MA MC MB MN ⋅+⋅=⋅+=⋅ ;取线段BN 的中点P ,连接BP ,则O 在线段BN 上,且133ON BN ==,所以93322OP NP ON =-=-=,则MB MN ⋅= 221,4MP BN - 又()22223225624MP MP MO OP ⎛⎫=≤+=+= ⎪⎝⎭ ,故225813644MB MN ⋅≤-= ,则72λ≥. 故答案为:[)72,∞+.16. 已知空间四面体ABCD 满足,26AB AC DB DC AD BC =====,则该四面体外接球体积的最小值为______. 【答案】36π 【解析】【分析】设,E F 分别为,BC AD 的中点,连接,,,AE DE BF CF ,结合三角形全等可证EF 是线段AD的垂直平分线,同理可证EF 是线段BC 的垂直平分线,故而判断球心在EF 上,由三角形两边之和大于第三边可得R 的范围,结合图形判断球心的位置以及半径,从而求出结果. 【详解】设,E F 分别为,BC AD 的中点,连接,,,AE DE BF CF ,由已知,,,AB DB AC DC BC BC ===,故ABC DBC △≌△,因为E 是BC 的中点,所以AE DE =, 因为F 为AD 的中点,故EF AD ⊥,即EF 是线段AD 的垂直平分线; 同理可得,EF 是线段BC 的垂直平分线,故球心在EF 上, 设球的半径为R ,球心为O ,则36OB OC OA OD +≥⎧⎨+≥⎩,即2326R R ≥⎧⎨≥⎩,故3R ≥,此时O 为线段AD 的中点,且3R =,故所求外接球体积的最小值为36π. 故答案为:36π三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答. (一)必考题:共5小题,每小题12分,共60分.17. 某农业大学组织部分学生进行作物栽培试验,由于土壤相对贫瘠,前期作物生长较为缓慢,为了增加作物的生长速度,达到预期标准,小明对自己培育的一株作物使用了营养液,现统计了使用营养液十天之内该作物的高度变化天数x 1 2 3 4 5 6 7 8 9 10 作物高度y /cm 9101011121313141414(1)观察散点图可知,天数x 与作物高度y 之间具有较强的线性相关性,用最小二乘法求出作物高度y 关于天数x 的线性回归方程ˆˆˆy bx a =+(其中ˆˆ,ab 用分数表示); (2)小明测得使用营养液后第22天该作物的高度为21.3cm ,请根据(1)中的结果预测第22天该作物的高度的残差.参考公式:()()()121ˆˆˆ,niii ni i x x y y ba y bx x x ==--==--∑∑.参考数据:101710i ii x y ==∑. 【答案】(1)202633ˆ3yx =+; (2)0.7cm -. 【解析】【分析】(1)根据表格数据利用公式求出ˆˆ,a b即可求解. (2)将22x =代入回归方程求得预测值,然后根据残差定义求解即可【小问1详解】 依题意,123456789105.510x +++++++++==,11233444101210y -+++++++=+=,故()()()()10101110102222111071010 5.51220385105ˆ.53310iii ii i iii i x x y y x y xy bx x xx ====----⨯⨯====-⨯--∑∑∑∑, 20112612332ˆ3a=-⨯=,故所求回归直线方程为202633ˆ3yx =+. 【小问2详解】由(1)可知,当22x =时,2026222m 3ˆ2c 33y=⨯+=, 故所求残差为21.3220.7cm -=-.18. 已知数列{}n a 的前n 项和为n S ,且()23,22n n a S n a ==+. (1)求数列{}n a 的通项公式; (2)若存在*n ∈N ,使得112231111n n n a a a a a a a λ+++++≥ 成立,求实数λ的取值范围. 【答案】(1)1n a n =+;(2)1,16⎛⎤-∞ ⎥⎝⎦. .【解析】【分析】(1)当1n =时,求得12a =,当3n ≥时,得到()()11212n n S n a --=-+,两式相减化简得到11121221n n a a n n n n -⎛⎫-=-- ⎪----⎝⎭,结合叠加法,即可求得数列{}n a 的通项公式; (2)由(1)得到111112n n a a n n +=-++,求得122311111122n n a a a a a a n ++++=-+ , 解法1:根据题意,转化为()222n n λ≤+,结合()2142224nn n n =⎛⎫+++ ⎪⎝⎭,结合基本不等式,即可求解; 解法2:根据题意,转化为()()211222n n λ≤-++,结合二次函数的性质,即可求解.【小问1详解】解:当1n =时,111222S a a ==+,解得12a =, 当3n ≥时,()()()1122,212n n n n S n a S n a --=+=-+, 两式相减可得,()()1212n n n a n a ----=-, 则11211112,2,12212332n n n n a a a a n n n n n n n n ---⎛⎫⎛⎫-=---=-- ⎪ ⎪--------⎝⎭⎝⎭, 32121212a a ⎛⎫-=-- ⎪⎝⎭叠加可得,242111n a a nn n --=--,则1n a n =+, 而1,2n =时也符合题意,所以数列{}n a 的通项公式为1n a n =+. 【小问2详解】解:由(1)知1n a n =+,可得()()111111212n n a a n n n n +==-++++,故()1223111111111123341222n n n a a a a a a n n n ++++=-+-++-=+++ ;解法1:由112231111n n n a a a a a a a λ+++++≥ ,可得()()222n n n λ≥++, 即()222n n λ≤+,即则()2max 22nn λ⎡⎤≤⎢⎥+⎢⎥⎣⎦,又由()2114162224n n n n =≤⎛⎫+++ ⎪⎝⎭, 当且仅当2n =时取等号,故实数λ的取值范围为1,16∞⎛⎤- ⎥⎝⎦. 解法2:由()1223111111222n n n a a a a a a n λ++++=-≥++ , 可得()()22111112224162n n n λ⎛⎫≤-=--+ ⎪++⎝⎭+, 当24n +=,即2n =时,()()2max11122162n n ⎡⎤-=⎢⎥++⎢⎥⎣⎦, 则116λ≤,故实数λ的取值范围为1,16∞⎛⎤- ⎥⎝⎦.19. 已知四棱柱1111ABCD A B C D -如图所示,底面ABCD 为平行四边形,其中点D 在平面1111D C B A 内的投影为点1A ,且1AB AA ==2,120AD ABC ︒∠=.(1)求证:平面1A BD ⊥平面11ADD A ;(2)已知点E 在线段1C D 上(不含端点位置),且平面1A BE 与平面11BCC B,求1DEEC 的值. 【答案】(1)证明见解析(2)113DEEC =【解析】【分析】(1)不妨设1AD =,根据线面垂直的性质证明1A D AD ⊥,利用勾股定理证明AD DB ⊥,再根据线面垂直和面面垂直的判定定理即可得证;(2)以D 为坐标原点,建立空间直角坐标系D xyz -,利用向量法求解即可. 【小问1详解】 不妨设1AD =,因为1A D ⊥平面,ABCD AD ⊂平面ABCD ,故1A D AD ⊥, 在ADB 中,2,1,60AB AD DAB ==∠= ,由余弦定理,222222cos 21221cos603BD AB AD AB AD DAB ∠=+-⋅⋅=+-⨯⨯⨯= ,得BD =,故222AD BD AB +=,则AD DB ⊥,因为11,,A D DB D A D DB ⋂=⊂平面1A BD ,所以AD ⊥平面1A BD , 而AD ⊂平面11ADD A ,所以平面1A BD ⊥平面11ADD A ; 【小问2详解】由(1)知,1,,DA DB DA 两两垂直,如图所示,以D 为坐标原点,建立的空间直角坐标系D xyz -, 则()()()(()10,0,0,1,0,0,,,D A B A C -,故()11,AC A C AC =-= ,(1C ∴-,所以((11,A B DC ==-,设()101DE DC λλ=<<,则()12DE DC λλ==-,即()2E λ-,所以(12A E λ=-;设()111,,n x y z =为平面1A EB 的一个法向量,则1111111020nA B n A E x y z λ⎧⋅=-=⎪⎨⋅=-+--=⎪⎩,的令12z λ=,则112,==-y x λ()2,2n λλ=-, 因为y 轴⊥平面11BCC B ,则可取()0,1,0m =为平面11BCC B 的一个法向量, 设平面1A EB 与平面11BCC B 的夹角为α,则cos n m n m α⋅===⋅解得14λ=,故113DE EC =.20.已知函数()ln(1)f x x =+-. (1)求曲线()y f x =在(0,(0))f 处的切线方程;(2)若(1,π)x ∈-,讨论曲线()y f x =与曲线2cos y x =-的交点个数. 【答案】(1)312y x =-; (2)2. 【解析】【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解. 【小问1详解】依题意,()()3211121f x x x '=+++,故()302f '=,而()01f =-,故所求切线方程为312y x +=,即312y x =-. 【小问2详解】 令()ln 12cos x x +=-,故()ln 12cos 0x x ++=,令()()ln 12cos g x x x =++ ()()32112sin 112g x x x x -=++'-+,令()()()32112sin 112h x g x x x x -==-++'+,()()()522132cos 141h x x x x -=---++'.①当π1,2x ⎛⎤∈- ⎥⎝⎦时,()()522cos 0,10,10x x x -≥+>+>,()()0,h x h x ∴∴'<在π1,2⎛⎤- ⎥⎝⎦上为减函数,即()g x '在π1,2⎛⎤- ⎥⎝⎦上为减函数,又()()32111111010,12sin122sin1120222222g g -=+>=-+⋅'<-⋅+<-'⨯=,()'∴g x 在()0,1上有唯一的零点,设为0x ,即()()00001g x x ='<<. ()g x ∴在()01,x -上为增函数,在0π,2x ⎛⎫⎪⎝⎭上为减函数. 又()πππ0210,ln 12cos 444g g ⎛⎫⎛⎫⎛⎫=->-=-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππln 10,ln 10422g ⎛⎫⎛⎫⎛⎫=-+<=+-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()g x ∴在()01,x -上有且只有一个零点,在0π,2x ⎛⎤⎥⎝⎦上无零点; ②当π5π,26x ⎛⎤∈ ⎥⎝⎦时,()()()3211110,12g x x g x x -<-++<+'单调递减,又12π5π5π5π0,ln 11ln402666g g -⎛⎫⎛⎫⎛⎫⎛⎫>=++<-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()g x ∴在π5π,26⎛⎤⎥⎝⎦内恰有一零点;③当5π,π6x ⎛⎫∈ ⎪⎝⎭时,()()()522132cos 141h x x x x -=---++'为增函数, ()5225π135π1106465π1+6h x h -⎛⎫⎛⎫∴==-+-⋅+> ⎪ ⎪⎝⎭⎝⎭⎛⎫⎝'⎪⎭,()'∴g x 单调递增,又()5ππ0,06g g ⎛⎫><⎪⎝'⎭',所以存在唯一()005π,π,06x g x '⎛⎫∈=⎪⎝⎭, 当05π,6x x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<递减;当()0,πx x ∈时,()()0,g x g x '>递增,()()5πmax ,π06g x g g ⎧⎫⎛⎫≤<⎨⎬ ⎪⎝⎭⎩⎭,()g x ∴在5π,π6⎛⎫⎪⎝⎭内无零点.综上所述,曲线()y f x =与曲线2cos y x =-的交点个数为2. 【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.21. 已知椭圆2222:1(0)x y C a b a b+=>>短轴长为2,左、右焦点分别为12,F F ,过点2F 的直线l 与椭圆C交于M ,N 两点,其中M ,N 分别在x 轴上方和下方,11,MP PF NQ QF ==,直线2PF 与直线MO 交于点1G ,直线2QF 与直线NO 交于点2G .(1)若1G 坐标为11,36⎛⎫⎪⎝⎭,求椭圆C 的方程; (2)若2112435MNG NF G MNG S S S ≤≤ ,求实数a 的取值范围.【答案】(1)22314x y +=(2)⎛ ⎝【解析】【分析】(1)根据重心的定义,求解得到点A 的坐标,用待定系数法即得椭圆的方程;(2)根据重心的几何性质并结合图象,将三角形的面积拆分,然后利用面积关系即可求解得到m 的取值范围.【小问1详解】依题意,1b =,故椭圆222:1x C y a+=,易知点111,36G ⎛⎫ ⎪⎝⎭为12MF F △的重心,则1131,2OM OG ⎛⎫== ⎪⎝⎭ ,故11,2M ⎛⎫⎪⎝⎭,代入椭圆方程得22114143a a =⇒+=, 所以椭圆C 的方程为22314x y +=.【小问2详解】解法一:易知点12,G G 分别为1212,MF F NF F △△的重心, 设121212,F F M F F N S S S S == ,设点()()1122,,,M x y N x y , 则根据重心性质及面积公式得()21121133MNG MNF S S S S ==+ , ()11121121211123333NF G S S S S S S S S =+--+=+ ,而()()21121212124125435,33333MNG NF G MNG S S S S S S S S S ⎛⎫≤≤∴+≤+≤+ ⎪⎝⎭ , 所以12121221222S S S S S S ≤⎧⇒≤≤⎨≤⎩,则12122y y ≤≤-,所以1212,2y y ⎡⎤∈--⎢⎥⎣⎦; 设直线:l x ty c =+,则联立椭圆方程得222,1x ty c x y a=+⎧⎪⎨+=⎪⎩,消元化简得,()222210t a y tcy ++-=,1212222221,tc y y y y t a t a --∴+==++, ()2222212121212222112122452,22y y y y y y y y t c y y y y y y t a +-+⎡⎤∴+===--∈--⎢⎥+⎣⎦,()2222222410892t c a t a t a ∴≤≤⇒-≤+对任意的t 恒成立,即得28901a a -≤⇒<≤,故实数a的取值范围为⎛ ⎝. 解法二:易知点2G 为12NF F △的重心,223NG NO =, ()2221111111221,,333MNG MNO MF NOF NF G NOF NG G OF NOG MNO S S S S S S S S S S ∴==⋅+=++= , 此时,设点()()()()112212,,,,,0,,0M x y N x y F c F c -,则根据重心的性质可得11111,33G x y ⎛⎫⎪⎝⎭, ()1212121221111,2222MNO NOF S OF y y c y y S OF y cy =⋅⋅-=-=⋅⋅=- ,11111111236G F S OF y cy =⋅⋅= , ()()11112122121211111,3626633NOG MNO NF G cy cy S S c y y S cy c y y cy ∴==-=-+-+=- ,()2122133MNG MNO S S c y y ==- 而112112245435,33NF G MNG NF G MNG MNG S S S S S ≤≤∴≤≤ , 1121221*********2224511,,12,33211y y y y y y y y y y y y y y y y ---⎡⎤⎡⎤∴∈==-⇒∈--⎢⎥⎢⎥--⎣⎦⎣⎦--; 设直线:l x ty c =+,则联立椭圆方程得222,1x ty c x y a =+⎧⎪⎨+=⎪⎩,消元化简得,()222210t a y tcy ++-=,1212222221,tc y y y y t a t a--∴+==++, ()2222212121212222112122452,22y y y y y y y y t c y y y y y y t a +-+⎡⎤∴+===--∈--⎢⎥+⎣⎦,()2222222410892t c a t a t a ∴≤≤⇒-≤+对任意的t 恒成立,即得28901a a -≤⇒<≤,故实数a 的取值范围为⎛ ⎝. (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22. 已知在平面直角坐标系xOy 中,曲线C 的参数方程为222sin 2sin cos x y ααα⎧=-⎨=⎩(α为参数),以坐标原点O为极点,x 轴的非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为3πcos 04a ρθ⎛⎫--= ⎪⎝⎭,且直线l 与曲线C 交于A ,B 两点.(1)求曲线C 的极坐标方程以及直线l 的一般方程; (2)若π4AOB ∠=,求a 的值以及曲线C 上的点到直线l 距离的最大值.【答案】(1)2cos ρθ=,0x y -+=;(2)a =1+. 【解析】【分析】(1)利用三角函数的恒等变换,结合参数方程、极坐标方程与普通方程的互化即可得解; (2)判断得点O 在圆C 上,利用圆的性质得到ACB ∠,进而得到圆心到直线的距离,从而求得a 的值,再确定圆C 上的点到直线l 距离的最大值,由此得解. 【小问1详解】依题意,曲线222sin :2sin cos x C y ααα⎧=-⎨=⎩可化为1cos2sin2x y αα-=⎧⎨=⎩,则()2211x y -+=,即2220x y x +-=,则22cos 0ρρθ-=, 故曲线C 的极坐标方程为2cos ρθ=,而直线3π:cos 04l a ρθ⎛⎫--= ⎪⎝⎭可化:cos sin 0l ρθρθ-=,则直线l 的一般方程为0x y -+=. 【小问2详解】依题意,圆心()1,0C ,半径为1r =, 易知点O 在圆C 上,又π4AOB ∠=,所以π2ACB ∠=,则点()1,0C 到直线l,所以d ,则0a =或a =,当0a =时,直线:0l x y -=过原点,不满足题意,舍去;故a =:20l x y --=,满足题意; 则圆心()1,0C 到直线l的距离d ==1+. [选修4—5:不等式选讲](10分)23. 已知函数()|24||3|f x x x =-++.(1)求不等式()112128f x ⎛⎫≤⎪⎝⎭的解集; (2)若()1f x kx >+恒成立,求实数k 的取值范围. 【答案】(1){0x x ≤或83x ⎫≥⎬⎭(2)()3,2-. 【解析】【分析】(1)根据指数函数的单调性得到不等式,求出()2437f x x x =-++≥,三段法解绝对值不等式,求出不等式解集;(2)画出()|24||3|f x x x =-++的图象,数形结合得到答案. 【小问1详解】依题意,()71122f x ⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭,由于12xy ⎛⎫= ⎪⎝⎭在R 上单调递减, 故()2437f x x x =-++≥,当3x <-时,4237x x ---≥,解得2x ≤-,故3x <-;当32x -≤≤时,4237x x -++≥,解得0x ≤,故30x -≤≤; 当2x >时,2437x x -++≥,解得83x ≥,故83x ≥; 综上所述,不等式()112128f x ⎛⎫≤⎪⎝⎭的解集为{0x x ≤或83x ⎫≥⎬⎭.【小问2详解】由(1)可知,()13,3,7,32,31,2,x x f x x x x x -<-⎧⎪=--≤≤⎨⎪->⎩,作出函数()f x 的图象如图所示,观察可知,临界状态为直线1y kx =+过()2,5B 或与直线13y x =-平行, 当直线1y kx =+过()2,5B 时,215k +=,解得2k =,当直线1y kx =+与直线13y x =-平行时,3k =-,此时31y x =-+与1y kx =+重合, 故实数k 的取值范围为()3,2-.。

湖北华大新高考联盟2024届高三4月教学质量测评语文试卷含答案

湖北华大新高考联盟2024届高三4月教学质量测评语文试卷含答案

华大新高考联盟2024届高三4月教学质量测评(答案在最后)语文试题及答案本试题卷共8页,23题。

全卷满分150分。

考试用时100分钟。

祝考试顺利一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,18分)阅读下面的文字,完成1~5题。

对于“过去之事、眼前之事、将来之事”,新闻和文学都有自己不同的表现方式。

然而,在当今商业化的趋势下,各类叙事成了大众文化的重要内容,新闻报道也进入了叙事的时代——一个让人眼花缭乱的“新闻故事化”时代。

虽然“新闻故事化”未必不好,但新闻叙事和文学叙事有着本质的区别。

有人曾戏言:文学是“人学”,新闻是“事学”。

就文本而言,新闻与文学是两个不同类别的人文学科。

新闻反映的是客观事实,而文学表达的是主观情感。

从叙事内容来看,文学叙事的基础是“母题”,新闻叙事的基础是“事实”。

韦斯坦因认为文学叙事的母题数量和结构相对稳定,主要可以归结为生与死、爱与恨、美与丑三项二元组合结构,由此对应的基本题材就是战争、爱情与世俗生活,绝大部分文学作品的叙事主题都是由此产生的变体。

文学叙事主题大多以情感发展为主线。

通过性格、感情冲突塑造人物形象。

文学叙事的母题不论生与死、爱与恨还是美与丑,都带有强烈的感情判断色彩。

文学作品在安排情节时需要理性地建立大家的常识性认识,但感性是文学打动人的核心因素,文学叙事的成功与否在很大程度上取决于这种感性叙事能否充分激发读者的代入感和感情共鸣。

文学叙事作品中的“事”一般而言是虚构的,亚里士多德说:“诗人的职责不在于描述已发生的事,而在于描述可能发生的事,即按照可然律或必然律可能发生的事。

”而新闻作品所叙之事,依据新闻的本质,则是已经发生和正在发生的事,即事实。

因此,新闻叙事应具有客观真实的特点。

新闻叙事要求叙事者从理性的态度出发,诉诸受众的内容以信息为主,用客观事实表现社会或人物状态。

当然,新闻报道中也会有感性的描写、刻画,但其目的是让新闻叙事更生动、真实,具有更强的感染力。

华大新2025届高一数学第一学期期末综合测试试题含解析

华大新2025届高一数学第一学期期末综合测试试题含解析

f
(x)
tan

2
x
3
1
的对称中心是
k 2
6
,1

k Z

其中正确命题的序号是________.
16.已知定义在区间[a 2023, 2024]上的奇函数 f (x) 满足: f (2 x) f (x) ,且当 x [1, 0] 时,
f (x) a log2 (b x) ,则 f (2021) f (2022) ____________.
【解析】可直接根据题意转化为方程 x x 1 2x 2t 有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即
可求得各个 t 的值
【详解】由题意得方程 x x 1 2x 2t 有两个不等实根,
当方程有两个非负根时,
令 x 0 时,则方程为 x x 1 2x 2t ,整理得 x2 3x 2t 0
4sin
0
(1)求
tan
4
的值;
(2)求
sin
2
2
的值.
20.如图,已知在正四棱锥 P ABCD 中, M 为侧棱 PD 的中点,
(1)证明: PB / /平面ACM ;
连接 AC、BD 相交于点 O
(2)证明: 平面ACM 平面PBD ;
(3)设 AB 2 ,若质点从点 A 沿平面 PAD 与平面 PCD 的表 棱锥 P ABCD 的体积
AO ∴ AOA 60 .
故选:C
【点睛】本题考查了二面角的平面角的作法,重点考查了运算能力,属基础题. 7、B 【解析】由三角函数的定义即可得到结果.
【详解】∵ 480 角的终边上一点 (4, a) , ∴ tan 480 tan1200 3 a ,

2024届华大新高考联盟高三下学期4月教学质量测评理科综合试题-高中生物(解析版)

2024届华大新高考联盟高三下学期4月教学质量测评理科综合试题-高中生物(解析版)
(2)艾滋病的致病原理:HIV病毒进入人体后,与人体的T淋巴细胞结合,破坏T淋巴细胞,使免疫调节受到抑制,使人的免疫系统瘫痪,最后使人无法抵抗其他细菌、病毒的入侵,让人死亡。
(3)艾滋病的传播途径包括:血液传播、性传播、母婴传播。
【详解】AB、HIV是病毒,辅助性T细胞是真核细胞,两者结构上最大的区别是有无细胞结构,两者的生命活动都需要细胞呼吸提供能量,AB正确;
C.胰高血糖素与肝细胞膜上受体结合后一直发挥作用
D.胰岛素水平升高可间接影响磷酸化酶b的活化过程
【答案】C
【解析】
【分析】分析题图:胰高血糖素与肝细胞膜上的胰高血糖素受体结合后,胞内磷酸化酶b被活化,促进磷酸化酶b活化成磷酸化酶a,促进肝糖原分解,葡萄糖通过膜上葡萄糖载体运输到胞外,增加血糖浓度。
【详解】A、由图可知,胰高血糖素与肝细胞膜上的胰高血糖素受体结合后,细胞内磷酸化酶b被活化为磷酸化酶a,促进肝糖原分解,葡萄糖通过肝细胞膜上的葡萄糖载体运输到细胞外,增加血糖浓度,A正确;
B、饥饿时,血糖浓度下降,刺激胰高血糖素分泌增加,肝细胞中有更多磷酸化酶b被活化成磷酸化酶a,加快肝糖原的分解,提高血糖浓度,以维持血糖浓度相对稳定,B正确;
C、胰高血糖素与肝细胞膜上受体结合,发挥作用后失去活性,C错误;
D、胰岛素水平升高会抑制胰高血糖素的分泌,而胰高血糖素分泌量的减少会影响磷酸化酶b的活化过程,D正确。
B、SGLT顺浓度梯度转运Na+,B正确;
C、一种载体蛋白往往只适合转运特定的物质,细胞膜上载体蛋白的种类、数量、载体蛋白空间结构的变化对许多物质的跨膜运输起着决定性的作用,细胞膜的选择透过性与细胞膜上的载体蛋白有关,C正确;
D、Na+进细胞的运输方式是顺浓度进行的协助扩散,不需要消耗ATP,运输速率不受氧气浓度的影响,Na+出细胞的运输方式是逆浓度进行的主动运输,需要消耗ATP,运输速率会受氧气浓度的影响,D错误。

湖北省华大新2025届高三二诊模拟考试数学试卷含解析

湖北省华大新2025届高三二诊模拟考试数学试卷含解析

湖北省华大新2025届高三二诊模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数()12()()z m m i m R =+-∈+是纯虚数,则63i z+=( ) A .3 B .5 C .5D .35 2.已知集合M ={x |﹣1<x <2},N ={x |x (x +3)≤0},则M ∩N =( )A .[﹣3,2)B .(﹣3,2)C .(﹣1,0]D .(﹣1,0)3.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P 表示π的近似值),若输入10n =,则输出的结果是( )A .11114(1)35717P =-+-+⋅⋅⋅+ B .11114(1)35719P =-+-+⋅⋅⋅- C .11114(1)35721P =-+-+⋅⋅⋅+ D .11114(1)35721P =-+-+⋅⋅⋅- 4.如图网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )A .2B .22C .3D .15.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( )A .82B .8C .2D .46.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A .48B .72C .90D .96 7.已知()4sin 5πα+=,且sin 20α<,则tan 4πα⎛⎫- ⎪⎝⎭的值为( ) A .7 B .7- C .17 D .17- 8.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅的最大值为( )A .714-B .24-C .514-D .30-9.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )A .方差B .中位数C .众数D .平均数10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=) A .1624 B .1024 C .1198 D .156011.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )A .14B .13C .532D .316 12.在ABC ∆中,AB AC AB AC +=-,4AB =,3AC =,则BC 在CA 方向上的投影是( )A .4B .3C .-4D .-3二、填空题:本题共4小题,每小题5分,共20分。

2025届华大新化学高三上期末联考模拟试题含解析

2025届华大新化学高三上期末联考模拟试题含解析

2025届华大新化学高三上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共包括22个小题。

每小题均只有一个符合题意的选项)1、化学与生活密切相关。

下列说法正确的是( )A.SO2可用作食品防腐剂B.生石灰能与水反应,可用来干燥氯气C.FeCl3溶液可用于腐蚀印刷铜质线路板是因为Fe比Cu的金属性强D.过氧化钠用于呼吸面具中是因为过氧化钠是强氧化剂,能氧化CO2和水2、可溶性钡盐有毒,医院中常用硫酸钡这种钡盐(俗称钡餐)作为内服造影剂。

医院抢救钡离子中毒患者时除催吐外,还需要向中毒者胃中灌入硫酸钠溶液。

已知:Ksp(BaCO3)=5.1×10-9;Ksp(BaSO4)=1.1×10-10。

下列推断正确的是A.BaCO3的溶度积常数表达式为Ksp(BaCO3)=n(Ba2+)·n(CO32-)B.可用2%~5%的Na2SO4溶液给钡离子中毒患者洗胃C.若误服含c(Ba2+)=1.0×10-5 mol·L-1的溶液时,会引起钡离子中毒D.不用碳酸钡作为内服造影剂,是因为Ksp(BaCO3)>Ksp(BaSO4)3、某种钴酸锂电池的电解质为LiPF6,放电过程反应式为xLi+L1-x CoO2=LiCoO2。

工作原理如图所示,下列说法正确的是( )A.放电时,正极反应式为xLi++Li1-x CoO2+xe-=LiCoO2B.放电时,电子由R极流出,经电解质流向Q极C.充电时,R极净增14g时转移1 mol电子D.充电时,Q极为阴极4、已知NH3·H2O为弱碱,下列实验事实能证明某酸HA为弱酸的是()A.浓度为0.1 mol·L-1HA的导电性比浓度为0.1 mol·L-1硫酸的导电性弱B.0.1 mol·L-1 NH4A溶液的pH等于7C.0.1 mol·L-1的HA溶液能使甲基橙变红色D.等物质的量浓度的NaA和HA混合溶液pH小于75、油炸虾条、薯片等易碎的食品,不宜选用真空袋装而应采用充气袋装。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华侨大学《随机信号分析》期末试卷(通信10级)
班级______________ 姓名________________ 学号_________________
一.填空(30分,第七题2分,其余每题4分)
1、已知平稳随机过程()X t 的自相关函数为 ,则()X t 的均值为
±4 ,方差为0.5 。

2、下列函数 ① 是合法的功率谱密度。

① ② ③
3、窄带高斯噪声加正弦信号在信噪比远小于1的情况下的包络趋向___瑞利 分
布,而相位则趋向_____均匀______分布。

4、()X t 是零均值高斯随机过程,其自相关函数为sin()
()X R πττπτ=
,10t =,
21
2
t =,31t =时刻的三阶概率密度函数记为13
12
2
1
1
()exp[]2
(2)T X f x π-=
-x C x C ,
对应的协方差矩阵为1
2/02/1
2/0
2/1ππ
ππ
⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

5、窄带信号0()()cos[()]x t A t t t ωθ=+的希尔伯特变换是0()sin[()]A t t t ωθ+。

6、对于齐次马尔可夫过程,任意有限维概率密度完全由 初始概率 和 转移概率决定。

7、匹配滤波器是 输出信噪比最大 准则下的最优线性滤波器。

8、某电话交换台在[0,t]时间内转接的电话呼叫次数为()N t ,平均每分钟转接电话3次,则每分钟转接电话多于5次的概率为
5
3
03{()5}10.0839!
k k P N t e k -=>=-=∑。

二、(6分)简述等效噪声带宽的等效原则。

1
()1615
X R ττ=++2
6233ωωω++2cos 31ωω+2||12ωωω++
答:等效噪声带宽的等效原则如下。

一,理想系统和实际系统在同一白噪声激励
下,输出噪声平均功率相等;二,理想系统的增益等于实际系统的最大增益。

三、(8分)已知随机变量X 服从(0,1)均匀分布,随机变量Y 服从(X ,1)的均匀分布。

求:
(1)条件数学期望()E Y X x =;
(2)数学期望()E Y 。

解:(1)1
()()2
Y x E Y X x yf y x dy ∞
-∞
+===

(2)13()24
X E Y E E Y X E +⎡⎤⎡⎤=⎡⎤==⎣⎦⎢⎥⎣⎦⎣⎦
四、(10分)设随机过程()()Z t X t Y =+,其中()X t 是一平稳随机过程,Y 是与
()X t 无关的随机变量。

试讨论()Z t 的平稳性和各态历经性。

证明:[()]x y E Z t m m =+=常数
2(,)()2z X X Y
R t t R E Y m m ττ⎡⎤+=++⎣⎦
22()=(0)2X X Y E Z t R m m E Y ⎡⎤⎡⎤++<∞⎣⎦⎣⎦
故随机过程
()Z t 是广义平稳的。

1[()][()]21()2lim
lim T
T T T
T T A Z t X t Y dt T X t dt Y T
-→∞
-→∞=+=+⎰⎰
由于Y 是随机变量,因此[()]A Z t 也是随机变量。

故随机过程()Z t 不是各态历经的。

五、(12分)设有级联的两个线性网络如下图所示。

已知输入()X t 是高斯白噪
声,功率谱密度为0()2X N S ω=,网络Ⅰ的冲激响应为,0()0,0at ae t h t t -⎧≥⎪
=⎨<⎪⎩。

求级联网络输出随机过程()Z t 的概率密度。

解:高斯信号通过线性系统后的输出仍为高斯信号。

()0Y m t =,()0Y m t T -=()0Z m t ⇒= ()()()Z t Y t Y t T =--
线性网络Ⅰ的传输函数为()X
a
H j a j ωω=+,则
()Y t 的功率谱密度为 ()
2
02
/2()()()1/Y X N G G H j a ωωωω=⋅=
+
协方差函数||
00
1
()()cos 4
a Y Y N a C S d e ττωωτωπ

-==
⎰ ()Z t 的方差
222||0()()2()()2(0)2()(1)2
z a Y Y E Y t Y t T Y t Y t T N a
R R T e τσ-⎡⎤=+---⎣⎦
=-=
-
()Z t
的概率密度222()z
z f z σ-=
六、(12分)对于窄带平稳随机过程00()()cos ()sin X t a t t b t t ωω=-,若其均值为零,功率谱为
0000()cos[],2()()cos[],20
X A S A otherwise πωωωωωωπωωωωωωω-∆⎧
-≤⎪∆⎪
+∆⎪
=+≤
⎨∆⎪
⎪⎪⎩
式中A ,ω∆以及0ωω>>∆都是实常数,试求: (1)()X t 的平均功率; (2)()a t 的功率谱密度;
(3)互相关函数()ab R τ或互功率谱密度()ab S ω; (4)()a t 和()b t 是否正交,是否无关?
解:(1)212()2X A P S d ω
ωωπ
π∞
-∞
∆==

(2)
[]
00()()()2cos ,20
a X X S LPF S S A otherwise ωωωωωπωωωω=-++∆⎧≤⎪=∆⎨⎪⎩
(3)
[]00()()()0
ab X X S jLPF S S ωωωωω=---+=
(4)()a t 和()b t 正交且无关。

七、(12分)在双边功率谱密度为
2
N 的加性高斯白噪声干扰下,请对如下信号 0()0
t t T s t T
otherwise
⎧≤≤⎪=⎨⎪⎩
设计一个匹配滤波器。

(1)写出匹配滤波器的冲激响应()h t ,并绘出图形;
(2)求出()s t 经过匹配滤波器的输出信号()y t ,并绘出图形; (3)求最大输出信噪比。

解:(1)匹配滤波器的冲激响应0()()h t s t t =-,考虑系统的因果性和最小时延,
取0t T =。


1/0()0
t T t T
h t otherwise -≤≤⎧=⎨⎩
(2)
22
22()()()()()()()002(3)06(2)()6T
T
T
y t s t h d s t s T d s x T t s x dx
t or t T t T t t T T t T t T T ττττττ
=-=--=-+⎧
⎪≤>⎪
-⎪=<≤⎨⎪
⎪-+⎪

⎰⎰⎰
(3)()s t 的能量为20()3T t T E dt T ==⎰,输出最大信噪比max 00223E T
SNR N N ==
八、(10分)设马尔科夫链的一步转移概率矩阵为
0.30.7000.20.80.700.3P ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
(1)当初始分布为0{1}1p X ==,00{2}{3}0p X p X ====时,求经两步转移后
处于状态2的概率。

(2)求该马尔科夫链的平稳分布。

解:(1)
2
(2)
0.30.700.090.350.56
00.20.80.560.040.4
0.700.30.420.490.09
P
⎡⎤⎡⎤
⎢⎥⎢⎥
==
⎢⎥⎢⎥
⎢⎥⎢⎥
⎣⎦⎣⎦
[][]
0.090.350.56
1000.560.040.40.090.350.56
0.420.490.09
⎡⎤
⎢⎥
⋅=
⎢⎥
⎢⎥
⎣⎦
因此两步转移后处于状态2的概率为0.35。

(2)
1
113
212
2
323
123
3
8
0.30.723
0.70.27
0.80.323
8
1
23
π
πππ
πππ
π
πππ
ππππ

=

=+


⎪=+
⎪⎪
⇒=
⎨⎨
=+
⎪⎪
⎪⎪
++=
⎩=

⎩。

相关文档
最新文档