超临界二氧化碳萃取技术
超临界CO2萃取

基本工艺流程
2.4 超临界二氧化碳萃取的影响因素
压力 温度 流量 夹带剂 粒度
2.4.1 萃取压力的影响
物质处于临界状态时,其密度对压力的变化比较敏感,即当 提取温度T与临界温度Tc的比值在1-1.2(1<T/TC),压力的较小 改变会引起流体密度有较大的变化,而密度的增加将引起溶解度 的提高,因此可调节流体对溶质的溶解能力,以达到分离的目的。
提取和分离一体,提取后马上分离,效率高。
在萃取过程中,SFE的萃取效率是由SCF的溶剂力、溶质的特 性、溶质—基体结合状况决定的。因而在选择萃取条件时,一方 面要考虑溶质在SCF中的溶解度,另一方面也要考虑溶质从样品基 体活性点脱附并扩散到SCF中的能力与速度。
2.2 超临界流体萃取技术的特点
1.超临界流体具有良好的渗透性和溶解性,可从固体或粘稠的原料中快速 萃取有效成分。提取有效成分的效率高,为传统生产工艺的2-10倍。
2.4.2 萃取温度的影响
一方面,温度升高,超临界流体的密度降低,其溶解能力相 应下降,导致萃取数量的减少;
但另一方面,温度升高使被萃取溶质的挥发性增加,这样就增 加了被萃取物在超临界流体中的浓度,从而使萃取数量增大。
通过实验,人们还发现温度对溶解度的影响还与压力有密切的 关系:在压力相对较低时(28MPa以下),温度升高溶解度降低; 而在压力较高时(28MPa以上),温度升高二氧化碳的溶解能力提 高。
超临界二氧化碳萃取的产品必须是“以质取胜”,必 须具备其他提取技术不可替代的优越性。一般说来,超临 界二氧化碳萃取主要是提取一些附加值高和产量大的产品, 在质量领先的前提下,尽量降低成本中的设备折旧费的比 例,以使该技术的优势得到较好的发挥。
超临界co2萃取技术

超临界co2萃取技术
超临界CO2萃取技术是一种新型的抽取技术,可以将有机物从固体、液体、气体等介质中抽取出来。
该技术是以液态CO2为溶剂,在超临界状态下,进行萃取的技术。
首先,超临界CO2萃取技术的原理是,当CO2的温度和压力达到超临界状态时,它就会变成一种具有特殊流动性和溶解性的液体,可以与固体、液体和气体中的有机物结合,抽取出其中的有机物。
其次,超临界CO2萃取技术的优势在于,它可以抽取出多种有机物,而且可以调节温度和压力来实现高效的抽取,可以得到高纯度的有机物,而且它是一种温和的抽取技术,不会破坏有机物的结构,也不会污染环境,是一种绿色的抽取技术。
此外,超临界CO2萃取技术可以应用于多个领域,包括食品工业、农药工业、医药工业、化学工业等。
它有助于提取有机物,并有助于提高有机物的纯度,从而提高产品的质量。
综上所述,超临界CO2萃取技术是一种新型的抽取技术,它具有良好的效率、高纯度和绿色的特点,可以应用于多个领域,对改善产品质量具有重要意义。
超临界萃取技术及其应用

解析釜 4. 萃取完后,通过节流降低操作压力进入分离系统。
(2)溶解力与P.T的关系 超临界CO2的溶解力受P和T的 影响较大。压力P增加,超临界C02的密度增加,溶解 力也相应增加,其实验的结果也是如此。以超临界 CO2 萃取沙棘油为例,T=39℃,P=15MP。时,油的 收率为%,同样温度下,增加压力P=25MPa时,油的 收率增加到%。但一般当压力在40MP。时,超临界 CO2 ,的溶解力就达到了实际所能获得的最高限。
超临ቤተ መጻሕፍቲ ባይዱ萃取拔术的应用研究
超临界CO2的物化特性
3.一种新的单元操作 在传统的分离方法中.溶剂萃取 是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异 来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸 气压)的不同来实现分离的,而SFE则是通过调节C02的 压力和温度来控制溶解度和蒸气压这两个参数来进行 分离的,故超临界C02萃取综合了溶剂萃取和蒸馏的两 种功能和特点.从它的特性和完整性来看.可相当于 一种新的单元操作。
超临界萃取技术及其应用
简介
超临界CO2萃取(Supercrifrae CO2Extrction)是利用超临 界状态下的CO2流体作为萃取溶剂,从液体或固体物料 中萃取出某种或某些组份,而进行物质分离的一种新型 分离技术。该技术国际上自六十年代开始研究,在七十 年代末在工业上得到应用。随着对其基础理论、应用技 术和工艺装备的深入研究与开发,与传统的蒸馏、萃取 等分离技术相比,越来越清楚地显示出其在技术上的先 进性和经济上的竞争力,受到了越来越多的科研、设计 和生产单位的关注和重视,应用领域不断扩大。
SFE(超临界二氧化碳萃取)

超临界二氧化碳萃取
超临界二氧化碳萃取(Supercritical Carbon Dioxide Extraction,简称SFE)是一种利用超临界二氧化碳提取天然物质的独特工艺。
超临界二氧化碳是一种介于气态和液态之间状态的物质,具有高溶解力、低表面张力、低粘度和可调节性等特点,在低温下能够较快地将有机物质从天然源中提取。
SFE工艺主要包括三个步骤:加压、扩散和减压。
首先,将二氧化碳压缩至超临界状态(大约50℃和3000 psi);然后,将超临界二氧化碳通过特制的萃取釜与天然源接触,将天然物质中可溶解的成分提取出来;最后,通过减压,将萃取物质从二氧化碳中分离出来。
整个过程中,温度、压力、流量等参数都可以精密控制,以确保最佳的萃取效果。
SFE有以下优点:一是绿色环保,使用超临界液体作为萃取介质,使得萃取过程中无需使用有毒有害的有机溶剂;二是提取效率高,由于超临界二氧化碳具有较高的溶解力,所以可以将极低浓度的活性成分(如植物中的活性成分、香料、药品等)高效提取出来;三是生产成本低,不需要大量的化学品,节省能源,因此具有较好的经济性。
超临界二氧化碳萃取目前广泛应用于食品、药品、香料、色素等行业。
例如,SFE可以从植物、动物中提取出天然活性成分,如咖啡因、芝麻酚、黄酮、萜烯等;在化妆品、食品、药品行业中可以从香料、色素等中萃取出高品质的成分,具有广泛的应用前景。
CO2超临界萃取技术简介(程克文)

超临界CO2萃取压力与温度的关系图
二氧化碳超临界萃取装置
超临界CO2萃取的特点 决定了其应用范围十分广 阔。 在医药工业中,可用 于中草药有效成份的提取, 热敏性生物制品药物的精 制,及脂质类混合物的分 离; 在食品工业中,啤酒 花的提取,色素的提取等; 在香料工业中,天然 及合成香料的精制;化学 工业中混合物的分离等。
3.夹带剂 在超临界状态下,CO2具有选择性溶解。SFE-CO2对低 分子、低极性、亲脂性、低沸点的成分如挥发油、烃、酯、 内酯、醚,环氧化合物等表现出优异的溶解性,像天然植 物与果实的香气成分。对具有极性集团(-OH,-COOH等)的 化合物,极性集团愈多,就愈难萃取,故多元醇,多元酸 及多羟基的芳香物质均难溶于超临界二氧化碳。 对于分子量高的化合物,分子量越高,越难萃取,分 子量超过500的高分子化合物也几乎不溶。 而对于分子量较大和极性集团较多的中草药的有效成 分的萃取,就需向有效成分和超临界二氧化碳组成的二元 体系中加入第三组分,来改变原来有效成分的溶解度,在 超临界液体萃取的研究中,通常将具有改变溶质溶解度的 第三组分称为夹带剂。一般地说,具有很好溶解性能的溶 剂,也往往是很好的夹带剂,如甲醇、乙醇、丙酮、乙酸 乙酯。
有机溶剂萃取精酚
CO2回收基本流程图
应用茶多酚的产品
6.CO2萃取剂优点
用超临界萃取方法提取天然产物时,一般用CO2作萃取剂。 a)临界温度和临界压力低(Tc=31.1℃,Pc=7.38MPa),操作 条件温和,对有效成分的破坏少,因此特别适合于处理高 沸点热敏性物质,如香精、香料、油脂、维生素等; b)CO2可看作是与水相似的无毒、廉价的有机溶剂; c)CO2在使用过程中稳定、无毒、不燃烧、安全、不污染环境, 且可避免产品的氧化; d)CO2的萃取物中不含硝酸盐和有害的重金量,并且无有害溶 剂的残留; e)在超临界CO2萃取时,被萃取的物质通过降低压力,或升 超临界流体萃取机高温度即可析出,不必经过反复萃取操 作,所以超临界CO2萃取流程简单。 因此超临界CO2萃取特别适合于对生物、食品、化妆品 和药物等的提取和纯化。
超临界CO2萃取技术

二氧化碳的生产工艺
膜分离及组合分离手段,将二氧化碳分离出来, 膜分离及组合分离手段,将二氧化碳分离出来,浓集 高浓度的二氧化碳气体,加压液化后作为工业过程B 高浓度的二氧化碳气体,加压液化后作为工业过程 的原料或直接作为一种工业产品。 的原料或直接作为一种工业产品。二氧化碳固定转化 综合利用研究已经成为绿色工程学科研究的热点
Company Logo
二氧化碳的生产工艺
二氧化碳控制和综合利用技术研究已成为绿色过程工程热点之一,从绿色过 程工程角度,根据工业生态学原理,构建二氧化碳良性循环系统,流程如下:
碳循环源 过程A 过程 过程B 过程
浓缩加工 处理收集 分离纯化
来自工业过程的A的二氧化碳废气,经收集,除尘,废热利用,压缩等预处理后, 来自工业过程的 的二氧化碳废气,经收集,除尘,废热利用,压缩等预处理后,进入 的二氧化碳废气 分离纯化系统,依据不同工业气源的组成及含量,分别采取吸收,吸附, 分离纯化系统,依据不同工业气源的组成及含量,分别采取吸收,吸附,
超临界CO2 萃取技术 萃取技术Supercritical 超临界 CO2 extraction technology
南昌大学 制药091:徐换换 : 制药 学号: 学号:5801309035 2011.12.11
超临界CO2 萃取技术 超临界
1.概述 概述
2.超临界 超临界 CO2萃取原 萃取原 理 3.超临界 超临界CO2
Company Logo
典型固体物料萃取工艺流程图
Company Logo
典型固体物料萃取工艺流程图
流程中二氧化碳流体采用液态加压工艺,所以流程中有多 流程中二氧化碳流体采用液态加压工艺, 个热交换装置以满足二氧化碳多次相变需要。 个热交换装置以满足二氧化碳多次相变需要。萃取釜温度 选择受溶质溶解度大小和热稳定性的限制, 选择受溶质溶解度大小和热稳定性的限制,与压力选用范 围相比,温度选择范围要窄得多, 围相比,温度选择范围要窄得多,常用温度范围在其临界 温度附近。选择工艺条件时可按超临界溶剂的对比压力, 温度附近。选择工艺条件时可按超临界溶剂的对比压力, 对比温度和对比密度的关系,选用萃取温度和压力的范围。 对比温度和对比密度的关系,选用萃取温度和压力的范围。 普遍推荐萃取工艺条件介于对比压力在1〈Pr〈 6.对比 普遍推荐萃取工艺条件介于对比压力在 〈 〈 对比 温度在1〈 之间。 温度在 〈 Tr〈 1.4之间。 〈 之间
超临界萃取

超临界萃取
超临界萃取是一种利用超临界流体(通常是超临界二氧化碳)作为
溶剂进行提取的技术。
超临界流体具有介于气体和液体之间的特性,具有较高的溶解力和低的粘度。
超临界萃取被广泛用于从天然产物
中提取化学物质,如药物、天然香料和植物提取物。
超临界萃取的过程是将待提取物料与超临界流体接触,在高压和高
温条件下进行混合和溶解。
随后,通过降压或降温来使溶液回到常
压下,提取物则会从溶液中析出。
这种技术具有以下几个优点:
1. 高选择性:超临界萃取可以根据物质的溶解度和分配系数来实现
有选择性的提取。
2. 高效性:超临界萃取过程通常较快,可以在短时间内完成大量提取。
3. 无残留溶剂:超临界流体通常可以通过减压来回收和重复使用,
因此没有残留的溶剂产生。
4. 温和条件:超临界萃取通常在相对温和的条件下进行,对物质的
活性和稳定性影响较小。
由于这些优点,超临界萃取已被广泛应用于食品、医药、化工和环保等领域。
它在提取高附加值产品、减少有机溶剂使用、替代传统萃取技术等方面具有重要的应用前景。
超临界CO2流体萃取技术

美国应用分离公司超临界 CO2流体萃取仪一、超临界流体萃取技术的起源及发展超临界流体萃取(Supercritical Fluid Extraction,SFE) 作为一种技术应用于分离提取最早可追溯到1879年,当时J.B.Hannay等就发现,用超临界的乙醇可溶解金属卤化物,压力越高,溶解能力越强。
1962年E.klesper等首次成功用超临界的二氯二氟甲烷从血液中分离铁卟啉,1966年开始用超临界CO2和超临界正戊烷来分析多环芳烃、染料和环氧树酯等。
1978年klesper又将超临界流体技术应用于聚合物工业,从聚合物中提取各类添加剂,使超临界流体萃取技术的应用范围不断扩大。
超临界流体萃取技术在工业中也早有应用,最为典型的例子就是用CO2流体萃取咖啡豆中的咖啡因,即脱咖啡因。
二、超临界流体萃取仪的工作原理及特点超临界流体萃取(Supercritical Fluid Extraction,SFE) 是一种以超临界流体作为流动相的分离技术。
超临界流体是指物质高于其临界点,即高于其临界温度和临界压力时的一种物态。
它即不是液体,也不是气体,但它具有液体的高密度,气体的低粘度,以及介入气液态之间的扩散系数的特征。
一方面超临界流体的密度通常比气体密度高两个数量级,因此具有较高的溶解能力;另一方面,它表面张力几近为零,因此具有较高的扩散性能,可以和样品充分的混合、接触,最大限度的发挥其溶解能力。
在萃取分离过程中,溶解样品在气相和液相之间经过连续的多次的分配交换,从而达到分离的目的。
三、超临界流体萃取仪的基本流程和重要部件典型的超临界流体萃仪的工作流程如下图所示。
它大体上可分为三个部分即流动相系统、分离系统、和收集系统。
Micrometering ValveModifier Pump Module流动相对流动相的选择首先要考虑它对萃取样品的溶解能力,流动相的密度越大,其溶解能力越强;次外,在实际应用中还必需考虑流体的超临界条件、腐蚀性和毒性等。