初二下数学试卷

合集下载

八年级(下)月考数学试卷(3月份)

八年级(下)月考数学试卷(3月份)

八年级(下)月考数学试卷(3月份)一、选择题(每题3分,共30分)1.(3分)若在实数范围内有意义,则x的取值范围为()A.x≥0B.x≤0C.x=0D.x为任意实数2.(3分)△ABC三边为a、b、C,下列条件不能判定△ABC是直角三角形的是()A.a=,b=2,c=B.a=3,b=4,c=5C.b2=a2﹣c2D.∠A:∠B:∠C=1:2:33.(3分)下列二次根式中,化简后不能与进行合并的是()A.B.C.D.4.(3分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.60°B.90°C.120°D.45°5.(3分)下列各命题的逆命题成立的是()A.两条直线平行,同位角相等B.如果两个实数相等,那么它们的绝对值相等C.等边三角形是锐角三角形D.全等三角形的对应角相等6.(3分)点D、E、F分别为△ABC三边的中点,若△DEF的周长为3,则△ABC的周长为()A.12B.9C.6D.1.57.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°8.(3分)如图,Rt△ABC中,∠C=90°,D为AB中点,E为BC上一点,且CE=2BE =2DE=6.则AB的长为()A.12B.6C.6D.39.(3分)如图,长方体的长宽高分别是3、4、2,一只蚂蚁要沿着长方体的外表面从A点爬到B点,最短路径长为()A.5B.C.3D.10.(3分)如图,△ABC为等腰直角三角形,∠ACB=90°.若∠AOB=45°,则OA、OB、OC之间满足()A.OA2+OB2=OC2B.OA2+OB2=2OC2C.OA2+OB2+OA•OB=2OC2D.OA2+OB2+OA•OB=2OC2二、填空题(每题3分,共18分)11.(3分)=;(3)2=;=.12.(3分)一个三角形的三边长为5、、,则该三角形的面积为.13.(3分)如图,E、F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.14.(3分)E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF.若∠C=52°,那么∠ABE=.15.(3分)A(3,4)是平面直角坐标系第一象限内一点,B为x轴正半轴上一点,若△AOB 为等腰三角形,则B点坐标为.16.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4.P为BC边上一点,以AP为边在右侧构造等边△APD.连接BD,Q为BD中点,则P点从C点运动到B点的过程中,Q点的运动路径长为.三、解答题(共72分)17.(8分)(1)计算(﹣)﹣(+);(2)(﹣)×.18.(8分)先化简再求值:,其中x=.19.(8分)如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.20.(8分)▱ABCD中,BD是对角线,CE⊥CD交BD于E点,AF⊥AB交BD于F点,连接AE、CF.求证:四边形AECF是平行四边形.21.(8分)按要求仅用无刻度的直尺作图,不要求写作法,但要保留作图痕迹.(1)如图1,正方形网格中的每个小正方形边长都为1,以格点A为顶点画一个△ABC,使其三边长分别为AB=,AC=,BC=;(2)在▱ABCD中,点E在BC边上,AB=BE,BF平分∠ABC交AD于点F.①在图2中,过点A画出△ABF的BF边上的高AG;②在图3中,过点C画出C到BF的垂线段CH.22.(10分)如图,在平行四边形ABCD中,AC、BD相交于O,OE⊥AC交CD于E点.(1)求证:OA平分∠BAE;(2)若平行四边形ABCD的周长为20,求△ADE的周长.23.(10分)如图,等腰Rt△ABD中,AB=AD,点M为边AD上一动点,点E在DA的延长线上,且AM=AE,以BE为直角边,向外作等腰Rt△BEG,MG交AB于N,连NE、DN.(1)求证:∠BEN=∠BGN.(2)求的值.(3)当M在AD上运动时,探究四边形BDNG的形状,并证明之.24.(12分)如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD 为邻边作平行四边形ABCD,其中a,b,d满足.(1)直接写出C点坐标;(2)如图2,线段BC的垂直平分线交y轴于点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,点E(,0),F为x轴上的一点,∠ECF=45°,求F点的坐标.。

初二下册数学试卷库期末

初二下册数学试卷库期末

一、选择题(每题5分,共25分)1. 下列各数中,是质数的是()A. 29B. 28C. 27D. 302. 下列各数中,是偶数的是()A. 15B. 22C. 19D. 243. 下列各数中,是分数的是()A. 3/2B. 4/5C. 6/7D. 8/94. 下列各数中,是正数的是()A. -3B. 0C. 2D. -55. 下列各数中,是负数的是()A. 5B. -3C. 0D. 2二、填空题(每题5分,共25分)1. 0的相反数是__________。

2. 2的倒数是__________。

3. 下列各数中,最大的数是__________。

A. 2/3B. 3/4C. 4/5D. 5/64. 下列各数中,最小的数是__________。

A. -2B. -3C. -1D. 05. 下列各数中,有理数是__________。

A. √4B. √9C. √16D. √25三、解答题(每题10分,共40分)1. (10分)已知a、b是实数,且a + b = 5,ab = 6,求a² + b²的值。

2. (10分)已知m、n是实数,且m² - 2m + 1 = 0,n² - 2n + 1 = 0,求m + n的值。

3. (10分)已知a、b是实数,且a² + b² = 25,ab = -12,求a - b的值。

4. (10分)已知x、y是实数,且x² + y² = 36,xy = 6,求x + y的值。

四、应用题(每题15分,共30分)1. (15分)某工厂生产一批产品,已知每天生产60件,用了5天生产了300件,求这批产品共有多少件?2. (15分)某市去年的财政收入为100亿元,今年的财政收入比去年增加了20%,求今年的财政收入是多少亿元?五、附加题(10分)1. (10分)已知a、b是实数,且a² + b² = 1,求a + b的最大值。

2024北京延庆区初二(下)期末数学及答案

2024北京延庆区初二(下)期末数学及答案

2024北京延庆初二(下)期末数 学2024.07考生须知 1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、画图题用2B 铅笔作答,其他试题用黑色签字笔作答. 一、 选择题(共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.窗花是中国传统民间艺术之一,下列四个窗花作品既是轴对称图形又是中心对称 图形的是(A ) (B ) (C ) (D ) 2.函数2xy x =-的自变量x 的取值范围是 (A )0x =(B )0x ≠ (C )2x =(D )2x ≠3.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,若EF =2,则菱形ABCD 的周长为(A )4 (B )8(C )16 (D )204.关于x 的一元二次方程220x x a -+-=的一个根是0,则实数a 的值为 (A )2(B )2- (C )3 (D )3-5.用配方法解方程241x x +=时,原方程应变形为(A )1)2(2=-x(B )5)2(2=+x (C )5)2(2=-x(D )1)2(2=+x6.下图是一个木花窗挂件,它的外周边缘为正八边形,则这个正八边形的每个内角为F E DCBA(A )45° (B )100° (C )120° (D )135°7.如图,在□ABCD 中,点E 在BA 的延长线上,CE ⊥BE ,如果∠EAD =50°,那么∠BCE 的度数为(A )50° (B )45° (C )40° (D )35°8.学习了正方形之后,老师提出问题:要判断一个四边形是正方形,有哪些思路? 甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角; 乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等; 丙同学说:先判定四边形的对角线相等,再确定对角线互相垂直;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且 有一组邻边相等.上述四名同学的说法中,正确的是(A )甲、乙 (B )甲、丙 (C )乙、丙、丁 (D )甲、乙、丁 二、填空题 (共16分,每小题2分) 9.方程24x =的解为____________.10.如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB =30°, 那么∠AOB 的度数为____________.11.一组数据3,2,4,7的方差为2s ,则2s =___________.12.若A 12y (,),B 23y (,)是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是1y ___________2y (填“>”“=”或“<”).13.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:E DCBA DC BAO甲 乙 丙 丁 平均数(分) 92 95 95 92 方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择____________.14.随着生活水平的提高,人们越来越关注健康的生活环境,家庭及办公场所对空气净化器的需求量逐月增多.经调查,某品牌的空气净化器今年三月份的销售量为8万台,五月份的销售量为9.68万台,若销售量的月平均增长率相同,均为x ,则可列方程为________________________. 15.在平面直角坐标系xOy 中,点A (0,2),B (-1,0),C (2,0)为□ABCD 的顶点,则 顶点D 的坐标为_____________.16.如图,已知正比例函数1y ax =与一次函数212y x b =-+的图象交于点P .下面有四个结论: ① 0>a ; ② 0<b ;③ 当0<x 时,21<y y ; ④21b a -=.其中正确的是____________(只填写序号).三、解答题(共68分,第17题10分,第18-21题,每小题5分,第22题4分,第23-26题,每小题5分,第27-28题,每小题7分)17.解方程:(1) x 2 - 2x - 3 = 0 ; (2) 2x 2 + 3x -1 = 0 .18.如图,在四边形ABCD 中,∠DCB =90°,AD ∥BC , 过点A 作AE ⊥BC 于点E ,连 接AC ,DE . 求证:AC =DE .x xy O 2212y b=-+1y ax=P19.在平面直角坐标系xOy 中,函数2y kx =+(0k ≠)与函数4y x =-+的图象交点为 P (3,m ),与 y 轴交于点A . (1)求k 的值; (2)求△PAO 的面积.20.如图,在△ACB 中,∠ACB =90°,点E 是边AB 的中点,过点A ,点C 分别作CE 和AB 的平行线,交于点D . (1)求证:四边形ADCE 是菱形; (2)若CE=6,∠DAE =60°,求AC 的长.21.已知关于x 的一元二次方程2210x x m ++-=有两个不相等的实数根. (1)求实数m 的取值范围;(2)若m 为满足条件的最大整数,求此时方程的根.22.在数学课上,老师布置以下思考题:EDCB ADECBA已知:△ABC ,点D 为AB 的中点. 求作:线段DE ,使DE ∥BC . 小智结合所学知识思考后,作法如下:(1)请你利用直尺和圆规,依据小智的作法补全图形(保留作图痕迹); (2)请回答,小智尺规作图得到DE ∥BC 的依据是________________________. 23.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当月用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题:(1)“基础电价”是____________元度; (2)当x >240 时,求y 与x 的函数表达式;(3)若小刚家3月份用电量是80度,则应缴纳电费____________元;(4)若小华家六月份缴纳电费132元,则小华家六月份用电量为____________度.24.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为 40米的篱笆围成一个矩形场地,其中边 AB ,AD 为篱笆.如果矩形场地的面积是300平方米,求矩形场地的长AB 和宽AD 各是多少米?y (DC25.长城是中华民族的精神象征.某校为让更多的师生了解长城、保护长城,举办了以“讲好长城故事,传承长城文化,弘扬长城精神”为主题的演讲比赛,共有200名学生参加.为了更好地了解本次比赛成绩的分布情况,随机抽取了部分学生的成绩作为样本,绘制的频数分布表与频数分布直方图的一部分如下(每组分数段中的分数包括最低分,不包括最高分):请根据所给信息,解答下列问题:(1)a =________,b =________, c =________; (2)补全频数分布直方图;(3)若成绩在80分及以上为优秀,请你根据抽取的样本数据,估计参加这次比赛的200名学生中成绩优秀的约有多少名?26.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象平移得到,且经过点(0,1).(1)求该一次函数的表达式;(2)当2x >时,对于x 的每一个值,函数y x n =+的值大于一次函数(0)y kx b k =+≠的值,直接写出n 的取值范围.分组/分 频数 频率 50~60 2 a60~70 4 0.10 70~80 80.20 80~90 b0.35 90~100 12c合计d 1.00样本成绩频数分布表样本成绩频数分布直方图27.如图,点E 是正方形ABCD 内部一点,BE =BA ,连接AE ,CE ,过点C 作CF ⊥AE 交AE 的延长线于点F . (1)依题意补全图形,求∠CEF 的度数;(2)连接DF ,用等式表示线段AF ,DF ,CF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,对于点P 与图形W 给出如下定义:N 为图形W 上任意一点,P ,N 两点间距离的最小值称为点P 与图形W 的“近点距离”.特别的,当点P 在图形W 上时,点P 与图形W 的“近点距离”为零.如图1,点A (3,1),B (3,5).(1)点C (4,1)与线段AB 的“近点距离”是 ;点D (1,0)与线段AB 的“近点距离”是 ;(2)点P 在直线2y x =+上,如果点P 与线段AB 的“近点距离”为2,那么点P 的坐标是 ;(3)如图2,将线段AB 向右平移3个单位,得到线段EF ,连接AE ,BF ,若直线y x b =+上存在点G ,使得点G 与四边形ABFE 的“近点距离”小于或,直接写出b 的取值范围.EDCBA图1 图2参考答案一、选择题:(共8个小题,每小题2分,共16分)DDCA BDCD二、填空题:(共8个小题,每小题2分,共16分)9.1222,x x ==- 10.60° 11.3.5 12.> 13.乙 14.28(1)9.68x += 15.(3,2) 16.①④ 三、解答题17.(1)2230x x --=.解:223x x -=.22131++x x -=.2(1)4x -=.12x -=±.∴原方程的解为13x =,21x =-.(2) 2x 2 + 3x -1 = 0 .解:2a =,3b =,1c =-.224342(1)17b ac -=-⨯⨯-=.∴x ===.∴原方程的解为1x =,2x =. 18.证明:∵∥AD BC ,∴ADC DCB ∠=∠=90°. ∵AE ⊥BC ,∴∠AEC =90°.∴∠ADC DCE AEC ∠=∠==90°. ∴四边形AECD 是矩形. ∴AC =DE .19.(1)∵P (3,m )在4y x =-+上,∴341m =-+=.∵2y kx =+过点P (3,1), ∴321k +=. ∴ 13k =-.EDCBA…………………………1分…………………………2分…………………………1分…………………………2分…………………………3分…………………………5分…………………………4分…………………………2分…………………………1分…………………………5分…………………………4分…………………………3分…………………………4分…………………………5分…………………………2分…………………………3分…………………………1分(2)∵直线2y kx =+(0k ≠)与y 轴交于点A , ∴A (0,2). ∴12332△==PAO S ⨯⨯.20.证明:(1)∵A D ∥EC ,CD ∥AE ,∴ 四边形ADCE 为平行四边形.∵ ∠ACB =90°,点E 是边AB 的中点, ∴CE =AE=EB . ∴□ADCE 是菱形.(2) ∵□ADCE 为菱形,CE=6, ∴AE =EC =6.∵点E 是边AB 的中点,∴AB=12. ∵∠DAE =60°, ∴∠CAB =30°.∵∠ACB =90°,∠CAB =30°, ∴BC =6.在R t △ABC 中,∠ACB =90°, ∴AC=∴AC的长为 21.(1)解:依题意,得441(1)m ∆=-⨯⨯-84m =-.∵方程有两个不相等的实数根, ∴840m ->. ∴2m <.(2)解:∵m 为满足条件的最大整数,∴1m =.∴220x x +=. ∴ 1202,x x ==-.22.(1)DECBA…………………………2分…………………………1分…………………………3分…………………………4分………………………5分…………………………3分…………………………3分…………………………4分…………………………5分…………………………2分…………………………1分…………………………4分…………………………5分(2)三角形的中位线平行于第三边.23.(1)0.5;(2)0.624y x =-(x >240); (3)40; (4)260.24.解:设矩形场地的长AB 为x 米,则宽AD 为(40-x)米,由题意得(40)300x x -=. 解方程得123010x x ==,. 当AB =30时,AD =10;当AB =10时,AD =30(不合题意,舍去);∴AB =30,AD =10.答:矩形场地的长为30米,则宽为10米.25.(1)a =0.05; b =14;c =0.30; (2)略; (3)2620013040⨯=(名). 答:成绩优秀的约有130名.26.解:(1)∵一次函数(0)y kx b k =+≠的图象由函数12y x =的图象平移得到,∴12k =. ∵一次函数(0)y kx b k =+≠过点(0,1) ∴1b =∴该一次函数的表达式为112y x =+.(2)0n ≥.27.(1)如图…………………………1分…………………………1分…………………………2分…………………………5分………………………………1分…………………………1分…………………………3分…………………………4分…………………………5分…………………1分…………………………2分…………………………5分…………………………3分…………………………4分…………………………4分…………………………3分…………………………5分…………………………3分解:∵正方形ABCD ,∴AB =BC ,∠ABC =90°. ∵BE =BA , ∴AB =BE =BC .∴设∠BAE =∠BEA =x ,∠BEC =∠BCE =y . ∵四边形ABCE 的内角和为360°,∴2290360x y ++=°. ∴135x y +=°. ∴∠AEC =135°.∴∠CEF =45°.(2)数量关系是AF CF +.如图,作DH ⊥DF ,交AF 于点H . ∴∠ADH =∠CDF =90°-∠HDC .∵∠EFC =90°, 又∵∠CEF =45°,∴△EFC 是等腰直角三角形. ∴EF =FC .∵∠DAB =90°,∠BAE =x , ∴∠DAH=90°-x , ∵∠DCE =90°-y ,∴∠FCD =45°-(90°-y )=y -45°. 又∵135x y +=°, ∴y =135°-x .∴∠FCD=90°-x . ∴∠DAH =∠DCF .∵正方形ABCD , ∴AD=DC .在△DAH 和△DCF 中,∠∠∠∠DAH DCF AD DCADH FDC =⎧⎪=⎨⎪=⎩∴△DAH ≌△DCF (AAS ). ∴AH = CF , DH =DF . ∴△DHF 是等腰直角三角形.∴HF =.………………………………4分………………………………5分………………………………6分FEDCB A HFEDCB A………………………………2分………………………………3分∵AF HF AH=+,∴AF CF+. 28.(1)1(2)(1,3)或(3;(3)52b-≤.………………………………7分…………………………2分…………………………4分…………………………7分。

初二数学下册期末考试题及答案

初二数学下册期末考试题及答案

初二数学下册期末考试题及答案数学试卷一、选择题(每小题4分,共40分,每小题只有一个正确答案)1、下列运算中,正确的是()A.$\frac{y^2}{a}·\frac{a}{y}=y$B.$\frac{y^2}{2x}·\frac{2x}{y}=y$C.$\frac{2x}{x+a}+\frac{y}{a+b}=1$D.$\frac{2x+xy}{x+y}+\frac{a+b}{a}=\frac{a+b+2x}{a}$2、下列说法中,不正确的是()A.为了解一种灯泡的使用寿命,宜采用抽样的方法B.众数在一组数据中不一定唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差3、能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等4、反比例函数$y=\frac{k}{x}$,在第一象限的图象如图所示,则$k$的值可能是()A.1 B.2 C.3 D.45、在平面直角坐标系中,已知点$A(1,2)$,$B(-2,3)$,$C(4,-2)$,$D(2,-1)$,则以这四个点为顶点的四边形$ABCD$是()A.矩形 B.菱形 C.正方形 D.梯形6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、12、11、9、10、13,则这组数据的()A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.97、一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为()A.15cmB.20cmC.25cmD.12cm8、已知,反比例函数的图像经过点$M(1,1)$和$N(-2,-3)$,则这个反比例函数是()A。

$y=\frac{11}{6x}$ B。

初二下学期数学试卷答案

初二下学期数学试卷答案

一、选择题1. 答案:D。

解析:选项A、B、C的值都小于1,而选项D的值为1,符合题意。

2. 答案:C。

解析:选项A、B、D的结果都是负数,而选项C的结果是正数,符合题意。

3. 答案:B。

解析:选项A、C、D的结果都大于10,而选项B的结果是10,符合题意。

4. 答案:D。

解析:选项A、B、C的面积都小于20,而选项D的面积是20,符合题意。

5. 答案:A。

解析:选项B、C、D的周长都大于20,而选项A的周长是20,符合题意。

二、填空题6. 答案:2。

解析:由题意可知,2的平方根是±2,而题目要求的是正数,所以答案是2。

7. 答案:-3。

解析:由题意可知,-3的立方是-27,所以答案是-3。

8. 答案:-1/2。

解析:由题意可知,-1/2的平方是1/4,所以答案是-1/2。

9. 答案:4。

解析:由题意可知,4的立方根是2,所以答案是4。

10. 答案:π。

解析:由题意可知,圆的周长公式是C=2πr,其中r是半径,所以答案是π。

三、解答题11. 答案:x=2。

解析:由题意可知,方程为x-1=3,移项得x=4,所以答案是x=2。

12. 答案:y=1/2。

解析:由题意可知,方程为2y+1=0,移项得2y=-1,再除以2得y=-1/2,所以答案是y=1/2。

13. 答案:长方形的长是10cm,宽是5cm。

解析:由题意可知,长方形的面积是50cm²,设长为x,宽为y,则xy=50。

又因为长方形的周长是30cm,所以2(x+y)=30,解得x=10,y=5,所以长方形的长是10cm,宽是5cm。

14. 答案:梯形的面积是35cm²。

解析:由题意可知,梯形的上底是10cm,下底是20cm,高是7cm,梯形的面积公式是S=(a+b)h/2,代入数据得S=(10+20)×7/2=35cm²。

15. 答案:圆的半径是3cm。

解析:由题意可知,圆的直径是6cm,所以半径是直径的一半,即3cm。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。

()2. 任何两个无理数相加都是无理数。

()3. 两条平行线的斜率相等。

()4. 一次函数的图像是一条直线。

()5. 任意两个等腰三角形的面积相等。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。

3. 若x^2 5x + 6 = 0,则x的值为_______或_______。

4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。

5. 平行四边形的对边_______且_______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是正比例函数?请举例说明。

八年级下册数学期末试卷及答案-数学期末八下

八年级下册数学期末试卷及答案-数学期末八下

八年级下册数学期末试卷及答案-数学期末八下八年级下册数学期末试卷及答案一、选择题(本题共10小题,满分共30分)1.二次根式 $\sqrt{1}$,$2$,$12$,$30$,$x+2$,$40x^2$,$x^2+y^2$ 中,最简二次根式有()个。

A。

1个 B。

2个 C。

3个 D。

4个2.若式子 $\frac{x-2}{x-3}$ 有意义,则 $x$ 的取值范围为()。

A。

$x≥2$ B。

$x≠3$ C。

$x≥2$ 或$x≠3$ D。

$x≥2$ 且$x≠3$3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A。

7,24,25 B。

1,1,1 C。

3,4,5 D。

11,13,244.在四边形 $ABCD$ 中,$O$ 是对角线的交点,能判定这个四边形是正方形的是()A。

$AC=BD$,$AB\parallel CD$,$AB=CD$ B。

$AD\parallel BC$,$\angle A=\angle C$C。

$AO=BO=CO=DO$,$AC\perp BD$ D。

$AO=CO$,$BO=DO$,$AB=BC$5.如下左图,在平行四边形 $ABCD$ 中,$\angle B=80°$,$AE$ 平分 $\angle BAD$ 交 $BC$ 于点 $E$,$CF\parallelAE$ 交 $AE$ 于点 $F$,则 $\angle 1=$()第7题)A。

40° B。

50° C。

60° D。

80°6.表示一次函数$y=mx+n$ 与正比例函数$y=mnx$($m$,$n$ 是常数且$mn≠0$)图象是()A。

直线 B。

双曲线 C。

抛物线 D。

指数函数7.如图所示,函数 $y_1=\frac{x}{2}$ 和$y_2=\frac{14}{x+3}$ 的图象相交于($-1$,$1$),($2$,$2$)两点.当 $y_1>y_2$ 时,$x$ 的取值范围是()A。

初二的数学试卷及答案

初二的数学试卷及答案

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √16B. √-16C. πD. 2/32. 下列各式中,正确的是()A. a² = b²,则a = bB. a² = b²,则a = ±bC. a² = b²,则a = 0D. a² = b²,则a = b或a = -b3. 已知一元二次方程x² - 5x + 6 = 0,则方程的解是()A. x₁ = 2,x₂ = 3B. x₁ = 3,x₂ = 2C. x₁ = 6,x₂ = 1D. x₁ = 1,x₂ = 64. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A. P(2,-3)B. P(-2,3)C. P(-2,-3)D. P(2,6)5. 下列函数中,y是x的线性函数是()A. y = x² + 1B. y = 2x - 3C. y = √xD. y = 1/x6. 已知正方形的边长为a,则它的对角线长度是()A. √2aB. √3aC. 2aD. a/√27. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 正方形C. 等边三角形D. 梯形8. 若一个数的平方根是±2,则这个数是()A. 4B. -4C. 16D. -169. 已知三角形ABC中,∠A = 90°,∠B = 30°,则∠C的度数是()A. 30°B. 60°C. 90°D. 120°10. 下列运算中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²二、填空题(每题3分,共30分)11. 若m² = 9,则m的值是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
E D
C
B
A 初二(下)期期末数学模拟试题
一.填空题:
1.计算)3225)(65(-+= ;
=⋅182 ;
=+3
1
6
48 。

2.23-的倒数是 。

3.当x 时,二次根式2-x 有意义。

4.当x <3时,
= 。

5.在△ABC 中,D.E 分别是AB.AC 的中点,若BC =8cm ,则DE = 。

6.菱形的一个内角是60°,边长为5cm ,则这个菱形较短的对角线长是 。

7.如果梯形的两底之比为2∶5,中位线长14cm ,那么较大的底长为 。

8.已知线段a =4cm ,b =9cm ,线段c 是a .b 的比例中项,则c = 。

9.已知线段a =2cm ,b =3cm ,c =6cm ,d 是a .b .c 的第四比例项,那么d = 。

10.梯形的中位线长为6cm ,上底长为4cm ,那么这个梯形的下底长为 。

11.矩形ABCD 的对角线AC.BD 相交于点O ,∠AOB =60°,AB =3.6,那么AC
的长为 。

12.如图,DE ∥BC 且DB =AE ,若AB =5,AC =10,则AE 的长为 ;
若BC =10,则DE 的长为 。

E
D
C
B A
13.如图,直角梯形ABCD 的一条对角线AC 将梯形分成两个三角形,△ABC 是边
长为10的等边三角形,则梯形ABCD 的中位线EF = 。

14.矩形ABCD 中,CE ⊥BD ,E 为垂足,∠DCE ∶∠ECB =3∶1,那么∠ACE = _________度。

二.选择题:
15.下列图形中,不是中心对称图形的是( )
A.菱形
B.平行四边形
C.正方形
D.等腰梯形
16.如果一个多边形的内角和等于720°,那么这个多边形是( )
A.正方形
B.三角形
C.五边形
D.六边形
17.顺次连结任意四边形各边中点所得的四边形是( )
A.平行四边形
B.矩形
C.菱形
D.正方形
18.化简a
a 3
-的结果为( )
A.a -
B.a -
C.a --
D.a
19.当1<x <2时,化简|3|)1(2
-+-x x 的结果是( )
A.2
B.—2
C.—4
D.2x -4 三.解答题:
20.已知:223-=x ,223+=y 。

求y
x 1
1-的值。

21.计算:2
1102112736112⨯÷
22.已知的值
23.已知
,求
的近似值。

(精确到.0.01)
水渠的一个横断面如图,根据下表中的测量数据计算这个横断面的面积,精确到
0.01

E
D
C B A
F E D C
B A
23.已知:如图,矩形ABCD 中,E.F 是AB 上的两点,且AF =BE ; 求证:∠ADE =∠BCF
24.已知:如图,△ABC 中,AB =AC ,AD 是BC 边上的高,AE 是△BAC 的外角平分线,DE ∥AB 交AE 于点E ,求证:四边形ADCE 是矩形。

24.如图,在⊿ABC 中,AD 是∠BAC 的外角平分线,CE ∥
AB ,求证AC AD DE AB ∙=∙
25. 如图,CD 是Rt ⊿ABC 的斜边AB 上的高,BD = 16 cm ,AD = 9 cm ,求
AB 、AD 、AC 的长;
A
B D C
26. 如图,已知:△ABC 中,DE//BC ,分别交BA 、CA 的延长线于点D 、E ,F 是BC 的中点,FA 的延长线交DE 于点G 。

求证:DG=EG 。

(本题6分)
A B C D E
F
(4分)如图,已知点D 、E 、F 分别在边AC 、AB 、BC 上,且四边形BEDF 是菱形。

如果AB=18,AC=BC=12。

求菱形BEDF 的边长。

5.如图,⊿ABC 是等边三角形,∠DAE = ︒120, 求证:(1)⊿ABD ∽⊿ACE ;﹝2﹞CE DB BC ∙=2
A
B C
D
E
初二数学(下)期末试卷
一、填空题:(每小题3分,共30分)
1.已知,那么x是a的____________。

2.式子在实数范围内有意义,那么实数a的取值范围是__________。

3.把式子在实数范围内分解因式为_______________。

4.当x≤-1时,化简()21+x等于__________。

5.一个多边形的内角和等于1080°,则它的边数为__________。

6.在平行四边形ABCD中,∠A+∠C=200°,则∠B=_______°。

7.菱形的两条对角线长分别为6cm、8cm,则这个菱形的周长为_______cm.
8.以8cm长的线段为对角线,使两条对角线的一个交角为60°画矩形,则这个矩形的面积为_______。

9.同一时刻,一竿的高为1.5米,影长为1米,某塔的影长为20米,则塔的高为______米。

10.如图,CD是Rt△ABC的斜边上的高,若AD=9cm,CD=6cm,那么BD的长为_________cm。

二、选择题:(每小题2分,共20分)
1.下面说法中正确的是﹝﹞
A.无理数包括正无理数、0和负无理数B.无理数是用根号
形式表示的数
C.在数轴上没有对应着无理数的点 D.无理数是无限不循环小数
2.下面给出的最简二次根式是﹝﹞
A B C.D.
3.下列根式中与是同类二次根式的是﹝﹞
A. B. C.D.
4.若代数式,则的值为﹝﹞A.B.C.1 D.2
5.与的关系是﹝﹞
A.相等B.互为相反数 C.互为倒数D.互为有理化因式6.下面命题中错误的是﹝﹞。

A.两条对角线互相垂直的矩形是正方形 B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形
D.两条对角线垂直且相等的四边形是正方形
7.梯形中位线长为7cm,面积为21,则这个梯形的高为﹝﹞。

A.B.3cm C. D.7cm
8.下列命题中错误的是﹝﹞
A.关于中心对称的两个图形是全等形
B.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称
C.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这个图形是中心对称图形D.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点中心对称
9.下列四组三角形中,两个三角形相似的为﹝﹞。

A.△ABC中,∠A=35°,∠B=50°;B.△ABC中,AB=1.5,BC=1.25,∠B=38 △DEF中,∠D=35°,∠F=105°△DEF中,DE=2,EF=1.5,∠E=38°C.△ABC中,AB=12,∠BC=15,CA=26 D.Rt△ABC中,∠C=90°,AB=5,BC=3;
△DEF中,DE=20,EF=25,FD=40 Rt△DEF中,∠E=90°,DF=15,EF=12 10.如图,E、F分别在BC、AD上,且矩形ABEF∽矩形ADCB,又知AB=2,AD=4,
则AF∶FD为﹝﹞
A.1∶5 B.1∶4 C.1∶3 D.1∶2
三、计算:第1、3、4小题,每题4分,第2、5、6小题,每题5分,共27分。

1.
2.
x-+=
3.解方程:230
4.已知:,且3a+2b-2c=3,求a+4b-2c的值。

5.(4分)如图,已知点D 、E 、F 分别在边AC 、AB 、BC 上,且四边形BEDF 是菱形。

如果AB=18,AC=BC=12。

求菱形BEDF 的边长。

四、证明题:(第1小题6分,第2小题4分,共10分)
1.求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形,(画出图形,标明字母,写出已知、求证,并证明。


(1)(5分)如图,已知在平行四边形ABCD 中,AE 、CF 分别是∠DAB 、
∠BCD 的平分线。

求证:四边形AFCE 是平行四边形。

2.如图,在⊿ABC 中,AD
平分∠BAC ,CE ⊥AD ,BF ⊥AD ,
求证:AC
AB
CE BF
(3)(3分)如图,BF 、BE 分别是∠ABC 与它邻补角的平分线,AE ⊥BE 于E ,AF ⊥BF 于。

F 。

EF 交AB 于M ,交AC 于N 。

求证:
(1)四边形AEBF 是矩形; (2)。

A
B
C
D E F。

相关文档
最新文档