北师大版八年级上册数学第一、二章测试题及参考答案[1]

合集下载

北师大版八年级数学上册第一二单元综合测试试卷

北师大版八年级数学上册第一二单元综合测试试卷

八(1)试题数学试卷(第一、二章) (第一张) 一.选择题(每小题3分,共45分) 1.下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以222c b a =+D.在Rt △ABC 中,∠B =90°,所以222c b a =+ 2.如果把直角三角形的两条直角边长同时扩大到原来 的2倍,那么斜边长扩大到原来的( ) A.1倍 B.2倍 C.3倍 D.4倍3.在△ABC 中,AB =6,AC =8,BC =10,则该三角 形为( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形4.如图,已知正方形B 的面积为144,如果正方形C 的面积为169,那么正方形A 的面积为( ) A.313 B.144 C.169 D.255.如图,在Rt △ABC 中,∠ACB =90°,若AC =5 cm ,BC =12 cm ,则Rt △ABC 斜边上的高CD 的长为( )A.6 cmB.8.5 cmC.1360cmD.1330cm 6.分别满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1︰2︰3B.三边长的平方之比为1︰2︰3C.三边长之比为3︰4︰5D.三内角之比为3︰4︰57.如图,在△ABC 中,∠ACB =90°,AC =40,BC =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为( )A.6B.7C.8D.98.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A.6 cmB.8 cmC.10 cmD.12 cm9.如果一个三角形的三边长a ,b ,c 满足a 2+b 2+c 2+338=10a +24b +26c ,那么这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 10.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,已知a ∶b =3∶4,c =10,则△ABC 的面积为( )A .24B .12C .28D .3011.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( )(A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠(C )B C A ∠+∠<∠ (D )以上都不对12.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m13.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对14.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm15.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 二.填空题(每小题5分,共25分)16、在△ABC 中,若三边长分别为9,12,15,则用两个这样的三角形拼成的长方形的面积为________.17、如图,某会展中心在会展期间准备将高5 m ,长13 m ,宽2 m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.18、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.19、.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m ),却踩伤了花草.20、(2015·湖北黄冈中考)在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 的面积为 .初 级 班 姓名 考号MA BC N 第7题图ABC 第4题图三.解答下列各题(共80分) 21.(20分)计算下列各题: (1)24x =(2) 23270x -=(3) )32)(32(42--+--x x x(4)(x -5) 2-(x +5)(x -5)22.(10分)已知245100ax y x -+++=,且x ,y 互为相反数,求a 的值。

北师大版八年级数学上册第一章章节测试题及答案 - 副本

北师大版八年级数学上册第一章章节测试题及答案 - 副本

北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.。

北师大版初中八年级数学上册第一章同步练习题(含答案解析)

北师大版初中八年级数学上册第一章同步练习题(含答案解析)

第一章测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( )A .2倍B .3倍C .4倍D .5倍2.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( )A .169B .119C .13D .1444.如图,阴影部分是一个长方形,则长方形的面积是( )A .3 cm 2B .4 cm 2C .5 cm 2D .6 cm 2(第4题)(第7题)(第9题)(第10题)5.满足下列条件的△ABC ,不是直角三角形的为( )A .∠A =∠B -∠C B .∠A ∶∠B ∶∠C =1∶1∶2C .b 2=a 2-c 2D .a ∶b ∶c =2∶3∶46.已知一轮船以18 n mile/h 的速度从港口A 出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A 出发向东南方向航行,离开港口1.5 h 后,两轮船相距( )A .30 n mileB .35 n mileC .40 n mileD .45 n mile7.如图,在△ABC 中,AB =A C =13,BC =10,点D 为BC 的中点,DE ⊥AB ,垂足为点E ,则DE 等于( ) A.1013 B.1513 C.6013D.7513 8.若△ABC 的三边长a ,b ,c 满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形9.(枣庄)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .B .C .D .10.(泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC 中,AB =AC ,AD 是底边上的高,若AB =5 cm ,BC =6 cm ,则AD =__________.(第11题)(第12题)(第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于________.c-b=0,则△ABC的形状14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||为__________________.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.16.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,若一只壁虎从A点出发沿着台阶面爬到B点,则壁虎爬行的最短路线的长是______.第15题图第16题图第17题图17.如图,是一种饮料的包装盒,长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为____.18.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为____.三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4×4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1×3的长方形的对角线,请你说明:AB⊥AE..21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?23.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.24.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).参考答案第一章测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的(B)A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是(A)A.30,40,50B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是(A)A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是(C)A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题)(第7题)(第9题)(第10题)5.满足下列条件的△ABC,不是直角三角形的为(D)A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距(D)A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=A C=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于(C)A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是(D)A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.(枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【解析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.10.(泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为(D)A.9 B.6 C.4 D.3【解析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为: ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=_____11.4 cm_____.(第11题)(第12题)(第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为____400 m____.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于___7 cm_____.14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||c-b=0,则△ABC的形状为_________等腰直角三角形_________.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=____4____.16.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,若一只壁虎从A点出发沿着台阶面爬到B点,则壁虎爬行的最短路线的长是__130cm____.第15题图第16题图第17题图17.如图,是一种饮料的包装盒,长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为__3cm≤h≤4cm__.【解析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16-12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16-12=4(cm);②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为数学公式=13cm,则露在杯口外的长度最长为16-13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.18.在△ABC 中,若AC =15,BC =13,AB 边上的高CD =12,则△ABC 的周长为__32或42__.【解析】∵AC =15,BC =13,AB 边上的高CD =12,∴AD 2=AC 2-CD 2,即AD =9,BD 2=BC 2-CD 2,即BD =5.如图①,CD 在△ABC 内部时,AB =AD +BD =9+5=14,此时,△ABC 的周长为14+13+15=42;如图②,CD 在△ABC 外部时,AB =AD -BD =9-5=4,此时,△ABC 的周长为4+13+15=32.综上所述,△ABC 的周长为32或42.三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m ,如图,即AD =BC =12 m ,此时建筑物中距地面12.8 m 高的P 处有一被困人员需要救援.已知消防云梯车的车身高AB 是3.8 m ,问此消防车的云梯至少应伸长多少米?解:因为CD =AB =3.8 m ,所以PD =PC -CD =9 m.在Rt △ADP 中,AP2=AD2+PD2,得AP=15 m.所以此消防车的云梯至少应伸长15 m.20.如图,在4×4的正方形网格中,每个小正方形的边长都是1.线段AB ,AE 分别是图中两个1×3的长方形的对角线,请你说明:AB ⊥AE ..解:如图,连接BE .因为AE2=12+32=10,AB2=12+32=10,BE2=22+42=20,所以AE2+AB2=BE2.所以△ABE 是直角三角形,且∠BAE=90°,即AB ⊥AE..21.如图,四边形ABCD 是边长为a 的正方形,点E 在CD 上,DE =b ,AE =c ,延长CB 至点F ,使BF =b ,连接AF ,试利用此图说明勾股定理.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF.所以AE=AF=c ,∠DAE=∠BAF ,S △ADE=S △ABF.所以∠EAF=∠EAB +∠BAF=∠EAB +∠DAE=∠DAB=90°,S 正方形ABCD=S 四边形AECF.连接EF ,易知S 四边形AECF=S △AEF +S △ECF=12[c2+(a -b )(a +b )]=12(a2+c2-b2),S 正方形ABCD=a2,所以12(a2+c2-b2)=a2. 所以a2+b2=c2.22.如图,∠AOB =90°,OA =9 cm ,OB =3 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少? 解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB=90°,所以在Rt △BOC 中,根据勾股定理,得OB2+OC2=BC2,所以32+OC2=(9-OC )2,解得OC=4 cm.所以BC=5 cm.23.如图,在长方形ABCD 中,DC =5 cm ,在DC 上存在一点E ,沿直线AE 把△AED 折叠,使点D 恰好落在BC 边上,设落点为F ,若△ABF 的面积为30 cm 2,求△ADE 的面积.解:由折叠可知AD=AF ,DE=EF.由S △ABF=12BF ·AB=30 cm2, AB=DC=5 cm ,得BF=12 cm.在Rt △ABF 中,由勾股定理,得AF=13 cm ,所以BC=AD=AF=13 cm.设DE=x cm ,则EC=(5-x )cm ,EF=x cm ,FC=13-12=1(cm ).在Rt △ECF 中,由勾股定理,得EC2+FC2=EF2,即(5-x )2+12=x2,解得x=135. 所以S △ADE=12AD ·DE=12×13×135=16.9 (cm2). 24.如图,公路MN 和公路PQ 在点P 处交会,公路PQ 上点A 处有学校,点A 到公路MN 的距离为80m ,现有一拖拉机在公路MN 上以18km/h 的速度沿PN 方向行驶,拖拉机行驶时周围100m 以内都会受到噪音的影响,试问该校受影响的时间为多长?解:设拖拉机开到C 处学校刚好开始受到影响,行驶到D 处时,结束了噪声的影响,则有CA=DA=100m.在Rt △ABC 中,CB2=1002-802=602,∴CB=60m ,∴CD=2CB=120m.∵18km/h=5m/s ,∴该校受影响的时间为120÷5=24(s ).答:该校受影响的时间为24s.25.有一个如图所示的长方体透明玻璃水缸,其长AD =8 cm ,高AB =6 cm ,水深为AE =4 cm ,在水面线EF 上紧贴内壁G 处有一粒食物,且EG =6 cm ,一只小虫想从水缸外的A 处沿水缸壁爬进水缸内的G 处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102,所以A ′G =10 cm ,所以A Q +QG =A ′Q +QG =A ′G =10 cm.所以最短路线长为10 cm.。

2019秋北师大八上(BS)版数学测试题及答案(1-6章)

2019秋北师大八上(BS)版数学测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

北师大版八年级上册数学第一二章测试题及参考答案

北师大版八年级上册数学第一二章测试题及参考答案

八年级数学上册第一、二章测试题一.填空题:(每小题2分,共20分)1. 已知直角三角形的三边长为6、8、x ,x 为斜边,则以x 为边的正方形的面积为____ _; 2.如右图:图形A 的面积是 ;3.2)3(-=________,327- =_________, 0)5(-的立方根是 ;4.210-的算术平方根是 ,16的平方根是 ;5.计算(508)2-÷的结果是 . 6.比较下列实数的大小(在 填上 > 、< 或 =) ①3-2-; ②215- 21; ③112 53。

7.若a 、b 互为相反数,c 、d 互为倒数,则______3=++cd b a ;8.在2,3.0,10,1010010001.0,125,722,0,1223π---•- 中,负无理数集合:{ };9.有两棵树,一棵高6米,另一棵高2米,两树相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米; 10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬 到B 点,那么它所行的最短路线的长是_____________; 二.选择题:(每小题3分,共24分) 11、数轴上点P 表示的数可能是( )A 、B 、C 、D 、12.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是 ( )715242520715202425157252024257202415(A)(B)(C)(D)13.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为 ( ) (A ) 80cm (B ) 30cm (C ) 90cm (D ) 120cmAB第10题图144225A14.下列语句中正确的是 ( ) (A )9-的平方根是3-(B )9的平方根是3(C )9的算术平方根是3±(D )9的算术平方根是3 15.下列运算中,错误的是 ( ) ①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ (A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个16.若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A ) 2- (B ) 5± (C ) 5 (D ) 5-17、如下图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数 为( )A .0B .1C .2D .318、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 2cmB. 3cm B.C. 4cmD. 5cm三.计算题:(每小题3分,共20分) 19. 24612⨯ )32)(32(-+()2132-7002871+- |322|21121--⎪⎭⎫⎝⎛--19、(6分)求下列图形中阴影部分的面积.(2)1414220、(6分)请在同一个数轴上用尺规作出 2 和 5 的对应的点。

北师大版八年级上册数学第二章测试题(附答案)

北师大版八年级上册数学第二章测试题(附答案)

北师大版八年级上册数学第二章测试题(附答案)一、单选题(共12题;共24分)1.下列式子中,正确的是()。

A. B.C. D.2.下列各式表示正确的是()A. =±2B.C. ±=2 D.3.实数a、b在数轴上的位置如图,化简为()A. ﹣2bB. 0C. ﹣2aD. ﹣2a﹣2b4.实数:,有理数的个数是( )A. 3B. 4C. 5D. 65.估计+3的值()A. 在5和6之间B. 在6和7之间C. 在7和8之间D. 在8和9之间6.27的立方根为()A. ±3B. 3C. ﹣3D. 97.如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是()A. n+1B.C.D.8.式子在实数范围内有意义,则x的取值范围是()A. x>3B. x≥3C. x<3D. x≤39.若+(y+1)2=0,则x﹣y的值为()A. -1B. 1C. 2D. 310.下列语句:①的算术平方根是4 ②③平方根等于本身的数是0和1 ④其中正确的有()个A. 1B. 2C. 3D. 411.下列二次根式中,最简二次根式是().A. B. C. D.12.已知x为实数,化简的结果为()A. B. C. D.二、填空题(共6题;共6分)13.计算:=________. 14.化简:||=________ .15.已知m=-2,a,b为两个连续的整数,且a<m<b,则a-b=________.16.在实数,0,π,3.1415,﹣3,,2.1010010001…(相邻两个1之间0的个数逐次加1)中,无理数有________个.17.估算≈________(结果精确到1)。

18.观察下列等式:① ;②③…参照上面等式计算方法计算:________.三、计算题(共3题;共30分)19.计算(1)计算(2)已知,,求代数式的值.20.计算下列各题:(1); (2)21.有这样一类题目:将化简,如果你能找到两个数m,n,使m2+n2=a,且mn= ,则a±2 ,变成m2+n2+2mn=(m±n)2开方,从而使得化简.例如:化简因为3±2 =1+2±2 =12+()2+2 =(1+ )2,所以= =|1± |= ±1.仿照上例化简下列各式:(1);(2).四、解答题(共4题;共20分)22.把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:3,﹣(﹣1),﹣1.5,0,﹣|﹣4|,.23.已知2a-1的平方根是±3,的算术平方根是b,求a+b的平方根24.已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.25.阅读下面材料:随着人们认识的不断深入,毕达哥拉斯学派逐渐承认不是有理数,并给出了证明.假设是有理数,那么存在两个互质的正整数p,q,使得=,于是p=q,两边平方得p2=2q2.因为2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,代入上式,得4s2=2q2,即q2=2s2,所以q也是偶数,这样,p和q都是偶数,不互质,这与假设p,q互质矛盾,这个矛盾说明,不能写成分数的形式,即不是有理数.请你有类似的方法,证明不是有理数.五、综合题(共4题;共40分)26.计算与解方程(1)计算:| ﹣2|+ + ﹣|﹣2| (2)解方程(2x﹣1)2=25.27.已知一个三角形的三边长分别为,,.(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.28.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答:________位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:________(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答:________.因此59319的立方根是________.(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是________位数,②它的立方根的个位数是________,③它的立方根的十位数是________,④185193的立方根是________.29. (1)填写下表,观察被开方数a的小数点与算术平方根的小数点的移动规律:________(2)根据你发现的规律填空:①已知:=2.683 , 则=________, =________②已知:=6.164,若=61.64,则x=________,(3)直接写出与a的大小.答案一、单选题1. D2. D3. A4. B5. C6. B7. D8. D9. C 10. A 11.C 12. C二、填空题13. 14. 2﹣15. -1 16. 3 17. 3 18.三、计算题19. (1)解:原式=7;(2)解:.20. (1)解:=-3+6+2=5(2)解:= = =21. (1)解:原式= =(2)解:原式= =四、解答题22. 解:用数轴表示为:,它们的大小关系为﹣|﹣4|<﹣1.5<0<﹣(﹣1)<<323. 解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,的算术平方根是b,即16的算术平方根是b,∴b=4,24. 【解答】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:± =±4.25. 解:假设是有理数,则存在两个互质的正整数m,n,使得=,于是有2m3=n3,∵n3是2的倍数,∴n是2的倍数,设n=2t(t是正整数),则n3=8t3,即8t3=2m3,∴4t3=m3,∴m也是2的倍数,∴m,n都是2的倍数,不互质,与假设矛盾,∴假设错误,∴不是有理数.五、综合题26. (1)解:原式=2﹣﹣2+2﹣2=﹣(2)解:开方得:2x﹣1=5或2x﹣1=﹣5,解得:x=3或x=﹣227. (1)解:周长= + + . ==.(2)解:当x=4时,周长= = =14.(答案不唯一)28. (1)2(2)9(3)3;39(4)2;7;5;5729. (1)0.04;0.4;4;40(2)84.85;0.02683;3800(3)解:当0<a<1时,>a;当a=1或0时,=a;当a>1时,<a.。

北师大版八年级数学上册第二章测试题(附答案)

北师大版八年级数学上册第二章测试题(附答案)

北师大版八年级数学上册第二章测试题(附答案)一、单选题(共12题;共24分)1.实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是( )A. B.C. D.2.-8的立方根是()A. -2B. 2C.D.3.在-1.414,,,,3.142,2- ,2.121121112…中,无理数有()A. 1个B. 2个C. 3个D. 4个4.下列各式中,无论为任何数都没有意义的是()A. B. C. D.5.下列式子为最简二次根式的是()A. B. C. D.6.下列各数中,无理数是( )A. 0.121221222B.C. πD.7.下列各数中,是无理数的是()A. B. C. D.8.下列二次根式中为最简二次根式的是()A. B. C. D.9.二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.10.下列计算正确的为()A. B. C. D.11.下列二次根式中,是最简二次根式的是()A. B. C. D.12.下列各式中,运算正确的是()A. B. C. D.二、填空题13.用一组a , b 的值说明式是错误的,这组值可以是a=________,b=________14.写出一个满足的整数a的值为:________.15.计算:________16.化简:=________。

17.大于且小于的所有整数的和是________。

18.如图,数轴上的点表示的数是,,垂足为,且,以点为圆心. 为半径画弧交数轴于点,则点表示的数为________.19.中的取值范围为________.20.化简二次根式的结果是________.三、计算题21.计算:22.计算:(1)(2)23.计算:(1); (2)24.已知4x2=81,求x的值.25.计算: 226.求下列各式中的x:(1)2x2-1=9;(2)(x+1)3+27=0.四、综合题(共2题;共20分)27. (1)化简:(2)如图,数轴上点A和点B表示的数分别是1和.若点A是BC的中点。

(第1—2章)第一次阶段性综合练习题 2024-2025学年北师大版八年级数学上册

(第1—2章)第一次阶段性综合练习题   2024-2025学年北师大版八年级数学上册

2024-2025学年北师大版八年级数学上册(第1—2章)第一次阶段性综合练习题(附答案)一、选择题(共30分)1.下列各数:,﹣,,,0.3030030003,无理数有()A.2个B.3个C.4个D.5个2.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c23.下列说法不正确的是()A.±0.3是0.09的平方根,即±=±0.3B.的平方根是±8C.正数的两个平方根的积为负数D.存在立方根和平方根相等的数4.下列各式计算正确的是()A.+=B.4﹣3=1C.2×2=4D.÷=35.下列二次根式中,化简后能与合并的是()A.B.C.D.6.若△ABC的三边a、b、c满足(﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A.2.5B.C.D.﹣18.若一个正数的两个平方根为a+1和2a﹣7,则这个正数是()A.6B.7C.8D.99.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4或810.如图是一个长、宽、高分别为4cm,3cm,5cm的长方体,一只蚂蚁从顶点A出发,沿长方体的表面爬行至点B,爬行的最短路程是()cm.A.5B.C.4D.12二、填空题(共15分)11.比较大小:0.5.12.计算:|=.13.已知x、y都是实数,且y=+4,则y x=.14.如图,矩形纸片ABCD中,AB=18cm.把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13cm,则AD的长为cm.15.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于.三、解答题(75分)16.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c 的算术平方根.17.计算下列各题:(1)+﹣;(2)+|;(3)﹣﹣(+(4).18.实数a、b、c在数轴上的对应点位置如图所示,化简:+|a﹣b|+﹣|b﹣c|19.如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.20.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.21.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.22.阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+)(2﹣)=1,(+)(﹣)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:,.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4﹣的有理化因式可以是,分母有理化得.(2)计算:①已知x =,y =,求x 2+y 2的值;②+++...+20222021123.如图1,Rt △ABC 中,AC ⊥CB ,AC =15,AB =25,点D 为斜边上动点.(1)如图2,过点D 作DE ⊥AB 交CB 于点E ,连接AE ,当AE 平分∠CAB 时,求CE ;(2)如图3,在点D 的运动过程中,连接CD ,若△ACD 为等腰三角形,求AD .参考答案一、选择题(共30分)1.解:0.3030030003,是分数,属于有理数;=7,是整数,属于有理数;无理数有:,﹣,共2个.故选:A.2.解:A、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;B、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形;C、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形.D、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;故选:B.3.解:A、∵(±0.3)2=0.09,±0.3是0.09的平方根,故本选项正确;B、∵=8,∴的平方根为±2,故本选项错误;C、正数的平方根有两个,互为相反数,其积为负数,故本选项正确;D、0的立方根和平方根相等,故本选项正确.故选:B.4.解:A、与Z不是同类二次根式,不能合并成一项,故本选项计算错误,不符合题意;B、4﹣3=,故本选项计算错误,不符合题意;C、2×2=12,故本选项计算错误,不符合题意;D、÷==3,故本选项计算正确,符合题意;故选:D.5.解:A、=,能与合并,故本选项正确;B、不能与合并,故本选项错误;C、=2,不能与合并,故本选项错误;D、=,不能与合并,故本选项错误.故选:A.6.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.7.解:∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=3,AD=BC=1,∴AC===,∵AM=AC=,OA=1,∴OM=﹣1,∴点M表示点数为﹣1.故选:D.8.解:根据题意得:a+1+2a﹣7=0,解得:a=2,则这个正数是(2+1)2=9.故选:D.9.解:此图中有两个直角三角形,利用勾股定理可得:CD2=152﹣122=81,∴CD=9,同理得BD2=132﹣122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9﹣5=4故选:B.10.解:因为平面展开图不唯一,故分情况分别计算,进行大小比较,再从各个路线中确定最短的路线.(1)展开前面、右面得到长方形的两边为5+4=9cm和3cm,由勾股定理得AB2=(5+4)2+32=90(cm);(2)展开前面、上面得到长方形的两边为4+3=7cm和5cm,由勾股定理得AB2=(3+4)2+52=74(cm);(3)展开左面、上面得到长方形的两边为5+3=8cm和4cm,由勾股定理得AB2=(3+5)2+42=80(cm);所以最短路径长为cm,故选:B.二、填空题(共15分)11.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.12.解:|=2+1﹣=+1,故答案为:+1.13.解:∵y=+4,∴,解得x=3,∴y=4,∴y x=43=64.故答案为:64.14.解:由折叠得:∠EAC=∠BAC,AE=AB=1cm8,∵四边形ABCD为长方形,∴DC∥AB,∴∠DCA=∠BAC,∴∠EAC=∠DCA,∴FC=AF=13cm,∵AB=18cm,AF=13cm,∴EF=18﹣13=5(cm),∵∠E=∠B=90°,∴EC==12(cm),∵AD=BC=EC,∴AD=12cm,故答案为:12.15.解:连接AD,∵△ABC中,AB=AC=13,BC=10,D为BC中点,∴AD⊥BC,BD=BC=5,∴AD==12,又∵DE⊥AB,∴BD•AD=AB•ED,∴ED=,故答案为:三、解答题(75分)16.解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又有7<<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.17.解:(1)+﹣=2=5;(2)+|=3﹣2+﹣1=;(3)﹣﹣(+=3﹣2﹣(3﹣2)=3﹣2+1﹣1=3﹣2;(4)=2+3+2=5+.18.解:原式=|﹣c|+|a﹣b|+a+b﹣|b﹣c|,=c+(﹣a+b)+a+b﹣(﹣b+c=c﹣a+b+a+b+b﹣c,=3b.19.解:(1)△ABC的面积=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5.故△ABC的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形.20.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=800米,AC=600米,所以,根据勾股定理有AB==1000(米).=AB•CD=BC•AC因为S△ABC所以CD===480(米).由于400米<480米,故没有危险,因此AB段公路不需要暂时封锁.21.解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC2=BD2+CD2,∴∠BDC=90°,=S△ABD+S△DCB=×2×2+×4×4=4+8.∴S四边形ABCD22.解:(1)4﹣的有理化因式可以是4+,,故答案为:4+,;(2)①当x==,y==时,x2+y2=(x+y)2﹣2xy=(2++2﹣)2﹣2×(2+)×(2﹣)=16﹣2×1=14.②+++...+202220211=﹣1+﹣+﹣+…+2022﹣2021=2022﹣123.解:(1)∵AC ⊥CB ,AC =15,AB =25∴BC =20,∵AE 平分∠CAB ,∴∠EAC =∠EAD ,∵AC ⊥CB ,DE ⊥AB ,∴∠EDA =∠ECA =90°,∵AE =AE ,∴△ACE ≌△ADE (AAS ),∴CE =DE ,AC =AD =15,设CE =x ,则BE =20﹣x ,BD =25﹣15=10在Rt △BED 中∴x 2+102=(20﹣x )2,∴x =7.5,∴CE =7.5.(2)①当AD =AC 时,△ACD 为等腰三角形∵AC =15,∴AD =AC =15.②当CD =AD 时,△ACD 为等腰三角形∵CD =AD ,∴∠DCA =∠CAD ,∵∠CAB +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,∴CD =BD =DA =12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则•AB•CH=•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第一、二章测试题
一.填空题:(每小题2分,共20分)
1. 已知直角三角形的三边长为6、8、x ,x 为斜边,则以x 为边的正方形的面积为____ _; 2.如右图:图形A 的面积是 ;
3.2)3(-=________,327- =_________, 0
)5(-的立方根是 ;
4.2
10-的算术平方根是 ,16的平方根是 ;
5
.计算的结果是 . 6.比较下列实数的大小(在 填上 > 、< 或 =) ①
-
2; ②
215- 2
1

③5。

7.若a 、b 互为相反数,c 、d 互为倒数,则______3=++cd b a ;
8.在2
,3.0,10,1010010001.0,125,722,0,122
3π---∙- 中,
负无理数集合:{ };
9.有两棵树,一棵高6米,另一棵高2米,两树相距5米,
一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米; 10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬 到B 点,那么它所行的最短路线的长是_____________; 二.选择题:(每小题3分,共24分) 11、数轴上点P 表示的数可能是( )
A 、
B 、
C 、
D 、
12.五根小木棒,其长度分别为7,15,20,24,25,现将他们
摆成两个直角三角形,其中正确的是 ( )
7
15
24
25
207
15
2024
25
157
25
20
24
257
202415
(A)
(B)
(C)
(D)
13.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为 ( ) (A ) 80cm (B ) 30cm (C ) 90cm (D ) 120cm
第10


144
225
A
14.下列语句中正确的是 ( ) (A )9-的平方根是3-(B )9的平方根是3(C )9的算术平方根是3±(D )9的算术平方根是3 15.下列运算中,错误的是 ( ) ①1251144251
=,②4)4(2±=-,③22222-=-=-,④20
9
5141251161=+=+ (A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个
16.若9,42
2
==b a ,且0<ab ,则b a -的值为 ( ) (A ) 2- (B ) 5± (C ) 5 (D ) 5-
17、如下图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数 为( )
A .0
B .1
C .2
D .3
18、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )
A. 2cm
B. 3cm B.
C. 4cm
D. 5cm
三.计算题:(每小题3分,共20分) 19. 24
612⨯ )32)(32(-+
()2
1
32
-
700287
1
+- |322|21121
--⎪⎭

⎝⎛--
19、(6分)求下列图形中阴影部分的面积.
(2)
20、(6分)请在同一个数轴上用尺规作出 2 和 5 的对应的点。

21.如图,每个小正方形的边长是1,在图中画出①一个面积是2的直角三角形;②一个面积是2的正方形;(两个面积部分涂上阴影)(6分)
22、 因为,即
,所以
的整数部分为2,小数部分为
.
(8分)
(1) 如果的整数部分为,那= .如果,其中是整数,
且,那么= , = .
(2) 将(1)中的、作为直角三角形的两条边长,请你计算第三边的长度.
第21题图
第21题图
23、(10分)在Rt△ACB中,∠ABC=90°,BC=6cm,AB=8cm
(1)求AC的长
(2)若点P从点B出发,以2cm/s的速度在BC所在的直线上(AB的左侧)运动,设运动时间为t,那么①BP=________(用t表示)
②当t为何值时,△ACP为等腰三角形?(提示:分类讨论)。

相关文档
最新文档