陕科大概率论与数理统计试卷及其解答(修正)

合集下载

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论与数理统计(练习参考答案)

概率论与数理统计(练习参考答案)

一、填空题 (每小题2分,共10分)1、一射手对同一个目标独立地进行4次射击,若至少命中一次的概率为8180,则该射手的命中率为 .2、 设随机变量X 在区间[2,5]上服从均匀分布,则=)(2X E ____13_____ .3、 设X 服从参数为10=θ的指数分布,Y )2,3(~2N ,且X 与Y 相互独立,Y X Z 23-=,则=)(Z D ___916_____.4、已知5.0,9)(,4)(===XY Y D X D ρ,则=+)(Y X D 19_ .5、设总体),(~2σμN X ,n X X X ,,,21Λ为来自X 的简单随机样本,则~11∑==ni iX n X ),(2n N σμ. 二、单项选择题 (每小题2分,共10分)(1)对于任意两事件A 和B ,=-)(B A P C .(A ))()(B P A P - (B ))()()(AB P B P A P +- (C ) )()(AB P A P - (D ))()()(B A P A P A P -+ 2、.对于任意两个随机变量,若)()()(Y E X E XY E =则____B _____.(A))()()(Y D X D XY D = (B))()()(Y D X D Y X D +=+ (C) X 与Y 相互独立 (D)X 与Y 相互不独立 3、设Y X ,相互独立,X 和Y 的分布律分别为,则必有 D .(A )Y X = (B ){}0==Y X P(C ){}1==Y X P (D ){}58.0==Y X P4、 在假设检验中,原假设0H ,备择假设1H ,则称_____D _____ 为犯第二类错误 (A)10H H 为真,接受 (B) 00H H 不真,拒绝 (C) 10H H 为真,拒绝 (D) 00H H 不真,接受5、 已知341.1)15(90.0-=t 。

设随机变量X 服从自由度为15的t 分布,若90.0)(=<a X P ,则=a _____B _____.(A) -1.341 (B) 1.341 (C) 15 (D) -15三、计算题 (共52分)1、 有四位同学报考硕士研究生,他们被录取的概率分别为0.2、0.3、0.45、0.6,试求至少有一位同学被录取的概率. (5分) 解: 设}{个同学被录取第i A i =),4,3,2,1(=i ;}{至少有一位同学被录取=B则有 4321A A A A B +++= ;∑=-=-=41)(1)(1)(i iA PB P B P8768.04.055.07.08.01=⨯⨯⨯-=2、 某年级有甲,乙,丙三个班级,其中各班的人数分别占年级总人数的1/ 4, 1/3, 5/12,已知甲,乙,丙三个班级中是独生子女的人数分别占各班人数的1/ 2, 1/ 4, 1/5, 求:: (1) 从该年级中随机的选一人,该人是独生子女的概率为多少?(2) 从该年级中随机的选一人,发现其为独生子女,则此人是甲班的概率为多少? (8分) 解: 设}{为独生子女从该年级中随机选一人=B }{1选到的是甲班的人=A}{2选到的是乙班的人=A ;}{3选到的是丙班的人=A ;则321,,A A A 为一个分割,41)(1=A P ,1)(2=A P ,125)(3=A P ;21)(1=A B P ,41)(2=A B P ,51)(3=A B P . (1) ∑==31)()()(i i i A P A B P B P =32=⨯+⨯+⨯511254*********7; (2) )(1B A P =)()()(11B P A P A B P =73.3、设有5件产品,其中有两件次品,今从中连取二次,每次任取一件不放回,以X 表示所取得的次品数,试求: : (1)X 的分布律和分布函数)(x F ; (2)122+=X Y 的分布律. (9分) 解: (1)(2)4、 某商品的日销量X (公斤)~)300,10000(2N , 求:日销量在9700到10300公斤之间的概率. (8413.0)1(=Φ 97725.0)2(=Φ备用) (8分)解: 300,10000==σμ)9700()10300(}103009700{F F X P -=≤≤=)3001000010300(-Φ-)300100009700(-Φ=)1()1(--ΦΦ=1)1(2-Φ=6826.018413.02=-⨯5、设随机变量X 的密度函数为⎩⎨⎧≥=-其它0)(2x Ce x f x,求: (1) 常数C ; (2) 概率}2/11{<<-X P ; (3) )(X E ;(4)设X Y 2=,则Y 的密度函数)(y f Y 。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

(完整版)概率论与数理统计试卷与答案

(完整版)概率论与数理统计试卷与答案

《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。

考试不需要计算器。

一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。

概率论与数理统计作业与解答

概率论与数理统计作业与解答

概率论与数理统计作业及解答第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹•设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示• 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC;或工 ABACBC ;或工 ABC_(AB C ABC A BC ).(和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB)2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}.C 6 (C 2 )6 32C 8C 4(C 2)4 800.2238, P(B) 8 皆 0.5594,P(A) 8/143★ 4.设某批产品共50件.其中有5件次品•现从中任取3件•求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99⑴冷0.724.⑵虫产0.2526. C 50 1960C 503925. 从1〜9九个数字中•任取3个排成一个三位数•求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率•4(1) P {三位数为偶数} = P {尾数为偶数}=-,9⑵P {三位数为奇数} = P {尾数为奇数} = 5,9或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5.9 96. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}.1 12 C m C M m C mm(2M - m -1)M (M -1)6 —C 16143P(C)二 C 8CJC 2)300.2098.143C 16C 2 iC 2⑴ P(A)=# 詁;(2) P(B )X =C 10 12C 107. 袋中有红、黄、白色球各一个 每次从袋中任取一球.记下颜色后放回 共取球三次 求下列事件的概率:A={全红} B ={颜色全同} C ={颜色全不同} D ={颜色不全同} E ={无 黄色球} F ={无红色且无黄色球} G ={全红或全黄}.1 11A 3!2 8P (A)=3^2?P (B )=3P (A )=9, P(C^#=?=9, P(DH ^P(BH?28 1 1 2P(E)亏方P(F)亏审 P(G r 2P(A)盲☆某班n 个男生m 个女生(m^n 1)随机排成一列•计算任意两女生均不相邻的概率☆ •在[0 ■ 1]线段上任取两点将线段截成三段•计算三段可组成三角形的概率14第二次作业1.设 A B 为随机事件 P(A)=0.92 ■ P(B)=0.93 P(B|Z)=0.85 求 ⑴ P(A|B) (2) P (AU B) ■ (1) 0.85 =P(B| A) =P(A B )P (AB ),P (A B )=0.85 0.08=0.068,P(A) 1-0.92P(AB)二 P(A) -P(AB)二 P(A) - P(B) P(AB) = 0.92 -0.93 0.068 = 0.058,P(A| B): = P(AB) = 0.。

考研数学概率论和数理统计第一章测试题(卷)(含答案解析)

考研数学概率论和数理统计第一章测试题(卷)(含答案解析)

考研数学概率论与数理统计第一章测试题(含答案)一、单项选择题(每小题2分,共20分)1.对于任意二事件A 和B ,与B BA不等价...的是()(A)B A (B)A B(C)BA (D)BA 2.设事件A 与事件B 互不相容,则()(A)0)(B A P (B))()()(B P A P AB P (C))(1)(B P A P (D)1)(B AP 3.对于任意二事件A 和B ,则以下选项必然成立的是()(A)若AB ,则B A,一定独立 (B)若AB ,则B A,有可能独立(C)若AB ,则B A,一定独立 (D)若AB,则B A,一定不独立4.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是()(A)A 与B 互不相容(B)A 与B 相容(C))()()(B P A P AB P (D))()(A P B AP 5.设B A,为任意两个事件,且B A ,0)(B P ,则下列选项必然成立的是()(A))|()(B A P A P (B))|()(B A P A P (C))|()(B A P A P (D))|()(B A P A P 6.设B A,为两个随机事件,且0)(B P ,1)|(B A P ,则必有()(A))()(A P B A P (B))()(B P B A P (C))()(A P B A P (D))()(B P B AP 7.已知1)(0B P ,且)|()|(]|)[(2121B A P B A P B A A P ,则下列选项成立的是()(A))|()|(]|)[(2121B A P B A P B A A P (B))()()(2121B A P B A P B A BA P (C))|()|()(2121B A P B A P A A P (D))|()()|()()(2211A B P A P A B P A P B P 8.将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件()(A)321,,A A A 相互独立 (B)432,,A A A 相互独立(C)321,,A A A 两两独立 (D)432,,A A A 两两独立9.某人向同一目标独立重复射击,每次射击命中目标的概率为p (10p ),则此人第4射击恰好第2次命中目标的概率为()(A)2)1(3p p (B)2)1(6p p (C)22)1(3p p (D)22)1(6p p 10.设C B A ,,是三个相互独立的随机事件,且1)()(0C P AC P ,则在下列给定的四对事件中不.相互独立的是()(A)B A与C (B)AC 与C (C)B A与C (D)AB 与C二、填空题(每小题2分,共14分)1.“C B A ,,三个事件中至少有两个发生”,这一事件可以表示为___2.若事件B A ,满足1BP A P ,则A 与B 一定____________3.在区间)1,0(中随机地取两个数,则两数之差的绝对值小于21的概率为4.在一次试验中,事件A 发生的概率为p 。

概率论与数理统计第3章复习题(含解答)

概率论与数理统计第3章复习题(含解答)

《概率论与数理统计》第三章复习题解答1. 设Y X ,的分布律分别为且已知0)(=<Y X P ,4)1(=+>Y X P .(1)求),(Y X 的联合分布律;(2)判定Y X ,独立否;(3)求),min(),,max(,321Y X Z Y X Z Y X Z ==+=的分布律.解:(1) 由0)(=<Y X P 知0)1,1()0,1(==-=+=-=Y X P Y X P ,故0)1,1()0,1(==-===-=Y X P Y X P ;由41)1(=+>Y X P 知41)1,1(=-==Y X P .于是可以填写出如下不完整的联合分布律、边缘分布律表格:再由联合分布律、边缘分布律的关系可填出所余的3个空, 得到(2) 41)1,1(=-=-=Y X P ,而2141)1()1(⋅=-=-=Y P X P ,故Y X ,不独立. (3) 在联合分布律中增加0=X 的一行,该行ij p 均取为0,分别沿路径:对ij p 相加, 得2. 设平面区域G 由曲线xy 1=, 直线2,1,0e x x y ===所围成. ),(Y X 在G 上服从均匀分布, 求)2(X f .解:区域G 的面积.2][ln 12211===⎰e e G x dx xS 故),(Y X 的联合概率密度为⎪⎩⎪⎨⎧><<<=其它 ,0 10,1,21),(2x y e x y x f . ⎪⎩⎪⎨⎧<<===⎰⎰∞∞-其它 ,0 1 ,2121),()(210e x x dy dy y x f x f x X , .41)2( =∴Xf 3. 一个电子仪器由两个部件构成,Y X ,分别表示两个部件的寿命(单位:千小时),已知),(Y X 的联合分布函数为⎩⎨⎧>>---=+---其它 0,0 0 ,1),()(5.05.05.0y ,x e e e y x F y x y x(1) 问Y X ,是否独立;(2)求两个部件的寿命都超过0.1千小时的概率.解:(1) ⎪⎩⎪⎨⎧>-=∞+=-其它 0, 0 ,1),()(5.0x e x F x F x X , ⎪⎩⎪⎨⎧>-=+∞=-其它 0, 0 ,1),()(5.0y ey F y F y Y , 从而有)()(),(y F x F y x F Y X =, 所以Y X ,相互独立.(2) 由Y X ,相互独立知)]1.0(1)][1.0(1[)1.0()1.0()1.0,1.0(≤-≤-=>>=>>Y P X P Y P X P Y X P.)]1.0(1)][1.0(1[1.005.005.0---==--=e e e F F Y X4. 设),(Y X 的联合概率密度⎪⎩⎪⎨⎧><+=其它,0 0,1,2),(22y y x y x f π,⎩⎨⎧≥<=Y X Y X U ,1,0,⎪⎩⎪⎨⎧<≥=Y X Y X V 3 ,13,0,求:(1) ),(V U 的联合分布律;(2))0(≠UV P .解:(1) 0)()3,()0,0(00=Φ=≥<====P Y X Y X P V U P p ;432),()3,()1,0(01===<<====⎰⎰OCD OCDS dxdy y x f Y X Y X P V U P p 扇形扇形π; 612),()3,()0,1(10===≥≥====⎰⎰OAB OABS dxdy y x f Y X Y X P V U P p 扇形扇形π; 1212),()3,()1,1(11===<≥====⎰⎰OBC OBCS dxdy y x f Y X Y X P V U P p 扇形扇形π. 于是有联合分布律:(2) 121)0(11==≠p UV P . 5. 设),(Y X 的联合概率密度为⎩⎨⎧<<<<=其它,010,10 ,1),(y x y x f求:(1))21,21(≤≤Y X P ;(2))21(>+Y X P ;(3))31(≥Y P ;(4))21(>>Y Y X P .解:(1)4121211),()21,21(21,21=====≤≤⎰⎰⎰⎰≤≤G Gy x S dxdy dxdy y x f Y X P ;(2)=>+)21(Y X P 8721212111),(21=-===⎰⎰⎰⎰>+G Gy x S dxdy dxdy y x f ;(3)=≥)31(Y P 32)311(11),(31=-===⎰⎰⎰⎰≥G Gy S dxdy dxdy y x f ;(4)41211212121)21()21,()21(=⋅=>>>=>>Y P Y Y X P Y Y X P .6. 设),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<-=其它 ,0 2,2010 ,20),(x y x x x xcy x f求:(1) 常数c ;(2) )(x f X ;(3) )(x y f X Y ;(4) )128(=≥X Y P .解:(1) ,25)210(20),(1201020102c dx xcdy xx c dx dxdy y x f xx =-=-==⎰⎰⎰⎰⎰∞∞-∞∞-.251 =∴c(2) ⎪⎩⎪⎨⎧<<-=-==⎰⎰∞∞-else x x dy x xdy y x f x f x x X0, 2010 ,50202520),()(2.(3) 2010 <<x 时,0)(≠x f X ,)(x y f X Y 有定义,且⎪⎪⎩⎪⎪⎨⎧<<=--==elsex y xx x x x x f y x f x y f X X Y 0, 2,250202520)(),()( (4) )20,10 (12∈=x ,⎪⎩⎪⎨⎧<<==∴elsey X y f XY 0,126 ,61)12( ,从而 3261)12()128(1288=====≥⎰⎰∞dy dy X y f X Y P X Y .7. 设Y X ,相互独立且都服从]1,0[上的均匀分布, 求Y X Z +=的概率密度.解:⎰∞∞--=dx x z f x f z f Y X Z )()()(, 其中⎩⎨⎧<<=其它x x f X ,0 10 ,1 )(, ⎩⎨⎧<-<=-其它 x z x z f Y ,0 10 ,1 )(. ⎩⎨⎧<<-<<⇔⎩⎨⎧<-<<<⇔≠-z x z x x z x x z f x f Y X 11010100)()(. (区域见图示)(1)10<<z 时, zdx z f zZ =⋅=⎰011)(;(2) 21<≤z 时, z dx z f z Z -=⋅=⎰-211)(11;(3) )2,0(∉z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧<≤-<<=其它 z z z z z f Z ,0 21 ,210 , )(.8*. 设),(Y X 的联合概率密度⎩⎨⎧<<=-其它 ,0 0 ,),(yx xe y x f y ,求(1) )21(<<Y X P ,)21(=<Y X P ;(2)Y X Z +=的概率密度;(3) )1),(min(<Y X P .解:(1) ① 102142512121)()()2()2,1()21(22221202102202102---=---=--==<<<=<<-------⎰⎰⎰⎰⎰⎰e e e e e e dxe e x dx e e x dy xe dx dyxe dxY P Y X P Y X P x x xy x y; ②⎪⎩⎪⎨⎧≤>===--∞∞-⎰⎰0 0, 0,21),()(20y y e y dx xe dx y x f y f y y yY , 02)2( 2≠=∴-e f Y ,于是 ⎪⎩⎪⎨⎧<<====--elsex xe xef x f Y x f Y Y X 0, 20 ,22)2()2,()2(22 ,从而 412)2()21(101=====<⎰⎰∞-dy x dx Y x f Y X P Y X . (2) ⎰∞∞--=dx x z x f z f Z ),()(, 其中2000),(zx xx z x x z x f X <<⇔⎩⎨⎧>->⇔≠-. (区域见图示)(1) 0>z 时, ⎰⎰---==2020)()(z xzz x z Z dx xe edx xez f 2)12(zze ze---+=; (2)0≤z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧≤>-+=--0 ,0 0,)12()(2z z e ze zf z z Z .(3))1,1(1)1),(min(1)1),(min(≥≥-=≥-=<Y X P Y X P Y X P1111,12111),(1-∞-∞∞-≥≥-=-=-=-=⎰⎰⎰⎰⎰e dx xe dy xe dxdxdy y x f x xyy x .9*. 设),(Y X 的联合概率密度⎩⎨⎧>>=+-其它 ,0 0,0,),()(y x e y x f y x ,求Y X Z -=的概率密度.解:)()()(z Y X P z Z P z F Z ≤-=≤= (1) 0<z 时, 0)()(=Φ=P z F Z ;(2) 0=z 时, 0),()()(0====⎰⎰>=x y Z dxdy y x f X Y P z F(3)0>z 时, 如图⎰⎰⎰⎰⎰⎰∞+---+--+<<-+==zz x zx y x zz x y x zx y z x Z dy e e dxdy e e dxdxdy y x f z F 0),()(⎰⎰∞--+------+-=zz x z x x z zx x dx e e e dx ee )()1(0z zx z z z xz xe dx e e e dx ee e-∞------=-+-=⎰⎰1)()(202综上知⎪⎩⎪⎨⎧≤>-=-0 ,0 0 ,1)(z z e z F z Z , 求导得⎩⎨⎧≤>=-0,0 0,)(z z e z f z Z .10. 设B A ,是两个随机事件, 且,41)(,21)(,41)(===B A P A B P A P 引进随机变量 ⎩⎨⎧=⎩⎨⎧=不发生当发生当 不发生当发生当 B B Y A A X ,0 ,1 , ,0 ,1.判断下列结论的正误, 并给予分析:(1)B A ,互不相容;(2)B A ,相互独立;(3)Y X ,相互独立;(4)1)(==Y X P ;(5)41)1(22==+Y X P . 解:(1)检验0)(=AB P 是否成立. 事实上0812141)()()(≠=⋅==A B P A P AB P , 故B A ,相容, 原结论错. (2)检验)()()(B P A P AB P =是否成立. 事实上由于41)(,41)(==B A P A P ,.)()()()()( A P B P B A P B P AB P ==∴ 即)()()(B P A P AB P =成立, 故B A ,独立, 原结论对.(3)检验Y X ,的联合分布律与边缘分布律之积是否都相等. 事实上81)(11==AB P p ;838121)()()()(01=-=-=-==AB P B P AB B P B A P p ; 818141)()()()(10=-=-=-==AB P A P AB A P B A P p ;83818381100=---=p . 于是有经检验, Y X ,的联合分布律与边缘分布律之积都相等, 故原结论对.(4)只需正确求出)(Y X P =的值. 事实上0218183)(1100≠=+=+==p p Y X P , 故原结论错. (5)只需正确求出)1(22=+Y X P 的值. 事实上41218183)1(100122≠=+=+==+p p Y X P , 故原结论错.。

中国大学mooc《概率论与数理统计(西北农林科技大学) 》满分章节测试答案

中国大学mooc《概率论与数理统计(西北农林科技大学) 》满分章节测试答案

title概率论与数理统计(西北农林科技大学) 中国大学mooc答案100分最新版content随机事件及其概率随机事件及其概率单元测验1、事件A,B,C为任意三个事件,A,B至少有个发生而C不发生的事件可以表示为()答案:2、从10名女生与5名男生中选出6名学生组成课外学习小组,按性别比例分层随机选人,则组成此课外小组的概率为()答案:3、设是互不相容事件,则()答案:4、设为三个随机事件,且,则中恰有一个事件发生的概率为()答案:5、设为随机事件,则的充要条件是()答案:6、设为随机事件,若,则的充分必要条件是()答案:7、设为任意两个随机事件,则()答案:8、设随机事件A,相互独立,且,则()答案:9、一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率为,则袋中白球数是()答案: 410、三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子有3个黑球3个白球,第三个箱子中有3个黑球5个白球,现随机取一个箱子,再从箱子中取出一球,则取到白球的概率是()答案:一维随机变量及其概率分布一维随机变量及其概率分布单元测验1、设随机变量的概率密度函数为,则一定满足()答案:2、下列各函数中可作为随机变量分布函数的是()答案:3、设随机变量的概率密度函数为,则()答案:4、设随机变量的概率密度函数为,则的概率分布函数为()答案:5、设随机变量的概率密度函数为,分布函数为,且有,则对任意给定的实数有()答案:6、已知随机变量,记,则()答案: 随着的增加而增加7、已知随机变量,用表示对的3次独立重复观察中事件出现的次数,则答案: 正确8、设随机变量的概率分布为则常.答案: 错误9、设随机变量,已知,则.答案: 错误10、随机变量,则的概率密度函数答案: 正确多维随机向量及其概率分布多维随机向量及其概率分布单元测验1、设的概率密度为则A=()答案:2、设随机变量相互独立,概率分布为,则必有()答案:3、设二维随机变量服从二维正态分布,则随机变量与不相关的充分必要条件为()答案:4、设和是任意两个相互独立的连续型随机变量,它们的概率密度分别为和,分布函数分别为和,则()答案: 必为某一随机变量的分布函数5、设随机变量和独立同分布,且的分布函数为,则的分布函数为()答案:6、设和相互独立,,服从参数为的泊松分布,则()答案: 仍是离散型随机变量7、设二维随机变量的概率密度为则答案: 错误8、从数中等可能地任取一个数,记为,再从中等可能地任取一个数记为,则答案: 正确9、设随机变量和相互独立,且均服从区间上的均匀分布,则答案: 错误10、设随机变量和相互独立,且则随机变量的概率密度为答案: 错误随机变量的数字特征随机变量的数字特征单元测验1、设,且,则()答案: 32、设随机变量X满足,则( )答案: 83、设随机变量X和Y相互独立,方差分别为6和3,则D(2X-Y)=( )答案: 274、将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于( )答案: -15、已知随机变量X有分布列,则E(X)=1,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计 B卷 第 1 页 共 11 页 陕西科技大学概率论与数理统计试题及其解答 一、填空题(共 10 小题,每题 2 分,共计 20 分) 1. A,B是两个随机事件,且P(A)=0.4,P(A+B)=0.7,若A与B互不相容,则P(B)= ;若A与B相互独立,则P(B)= .

解答:0.3;0.3. A,B是两个随机事件,且P(A)=0.4,P(A+B)=P(A)+P(B)-P(AB), A与B互不相容,A与相互独立,都可以得到P(AB)=0.

2. 已知随机变量X服从参数为的泊松分布,且P(X=2)=P(X=4),则= . 解答:随机变量X服从参数为的泊松分布,且P(X=2)=P(X=4),那么 有2424!ee!, 解得12

本题 得分 概率论与数理统计 B卷 第 2 页 共 11 页 3. 设二维随机向量(X,Y)的联合概率密度函数为 ,11,02(,)0cxyfxyelse

则c= ;Y的边缘密度函数)(yfY= . 解答:有密度函数的性质得,12101cdydx,解得14c. 再由边缘分布的定义 1111,02,()(,)420,Ydxyfyfxydxelse











4. 已知随机变量X服从B(n,p),EX=2, DX=1.6 ,则此二项分布参数n,p的值分别是 .

解答:因为随机变量X服从B(n,p),EX=2, DX=1.6;易得 2, EXnpDXnpqpqnpq解得:,,,

5. 将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数为 . 解答: xyn

6. 设随机向量(X,Y)的联合概率密度函数 概率论与数理统计 B卷 第 3 页 共 11 页

elseyxxyyxf010,20,23),(2, 则EY= . 解答: 1230033(,)24EYyfxydxdyxydxdy

7. 设nXX,,1为总体),(2N的样本,2,SX分别是样本均值和样本方差,若2未知,则的置信水平为1的置信区间为 .

解答:在2未知的条件下,求的置信水平为1的置信区间, 显然是用到t检验. 2(1)xtnsn,

212xtsn

,

1122tntnxxss 概率论与数理统计 B卷 第 4 页 共 11 页

8. 设nXX,,1为总体X的样本,若统计量niiiXa1是总体均值的无偏估计量,则niia1 = . 解答:统计量niiiXa1是总体均值的无偏估计量. 则有

11111nnnnniiiiiiiiiiiiiEEaXEaXaEXaa 显然,

11niia

9. 设T服从自由度为n的t分布,若aTP,则TP= . 解答: 设T服从自由度为n的t分布,若aTP,由t分布的对称性知道,

2

a

PT,则112aPTPT

10. 设nXX,,1为总体),(2N的样本,2,SX分别是样本均值和样本方差,则22)1(Sn~ . 解答:课本上的定理,

本题 得分 概率论与数理统计 B卷 第 5 页 共 11 页 22(1)(1)nStn



二、单项选择题(共 5 小题,每题 2 分,共计 10 分) 1. 设随机变量X服从正态分布N(3,4),满足条件PXcPXc,则其中常数c为 ( ) A.3 B.2 C.0 D.4 解答:机变量X服从正态分布N(3,4),满足条件,由正态分布的对称性有,

1PXcPXcPXc

,so21,3PXcc

2. 设随机变量X和Y有相同的概率分布:1010.250.50.25,并且满足条件 10XYP,则PXY等于 ( )

A.0 B.0.25 C.0.5 D.1

解答:10XYP,则有 x -1 0 0 1 y 0 -1 1 00

显然,0PXY

3. 对任意随机变量X和Y,以下选项正确的是 ( ) A.EYEXYXE)( B.DYDXYXD)( C.EXEYXYE)( D.DXDYXYD)(

本题 得分 概率论与数理统计 B卷 第 6 页 共 11 页 解答: 由方差和期望的性质,简单的到A.

4. 设nXX,,1为总体),(2N的样本,令 212)(1XXYnii, 则Y~ ( ) A.)(2n B.2(,)N C.)1(2n D.),(2nN 同填空10,选c. 5. 在假设检验中,设0H为原假设,犯第一类错误的情况为 ( )

A. 0H为真,接受0H B. 0H不真,接受0H C. 0H为真,拒绝0H D. 0H不真,拒绝0H 解答:记忆类型题,选择B.

三、计算题(共 5 小题,每题 8 分,共计 40 分)

1. 设A,B两厂产品次品率分别为1%和2%,若已知两厂产品分别占总数的60%和40%,现从中任取一件,发现是次品,求此次品是A厂生产的概率. 解答:设C表示在产品中任取一件发现次品的概率, 由叶贝斯公式得:

本题 得分 概率论与数理统计 B卷 第 7 页 共 11 页

(/)()3(/)(/)()(/)()7PCAPAPACPCAPAPCBPB

答:略. 2. 设随机变量X在区间[2,5]上服从均匀分布,求对X进行三次独立观测中,至少两次的观测值大于3的概率. 解答: b(3,)Xp,531233pdx. (2)(2)(3)PXPXPX 2234(2)p-p9PXC(1)= 33038(3)(1)27PXCpp 20(2)27PX

答:略

3.设随机向量),(YX的联合概率密度 2,01,0(,)0yAxexyfxyelse

求:(1)A;(2)YXP;(3)),(YX的联合分布函数. 解答:(1)由 (,)1fxydxdy

得4A 概率论与数理统计 B卷 第 8 页 共 11 页

(2) 12006(,)1XPXYfxydydxe

(3) 0;0,0(,)xyFXY





4. 已知),(YX的联合分布列

X Y 0 1/3 1

-1 0 1/12 1/3 求(1)EX;(2)DY;(3)EXY. 0 1/6 0 0 2 5/12 0 0

解答: 5=()12iiEXxpx

13()36iiDYypy

13...36EXY

5. 设总体X的概率密度elsexxxf0,10,)1()( 其中1为未知参数,nxx,,1为总体的一个样本,求的最大似然估计值.

解答: 概率论与数理统计 B卷 第 9 页 共 11 页

第一步:构造似然函数, ii(1),01(,)(,)0,nxxLxfxelse 第二步:对数似然函数为 iln(1)ln,01ln(,)ln(,)0,nxxLxfxelse



第三步:对对数似然函数求导,并都只为0,求解得到估计值

inˆ1lnx

答:略

四、应用题(共 3 小题,每题 8 分,共计 24 分)

1. 假设生产线上组装每件成品的时间服从指数分布;统计资料表明该生产线每件成品的组装时间平均为10分钟;各件产品的组装时间互相独立.试利用中心极限定理求组装100件成品需要15到20小时的概率. )9987.0)3(;9772.0)2(;8413.0)1(;5.0)0(( 解答:生产线上组装每件成品的时间服从指数分布,统计资料表明该生产线每件成品的组装时间平均为10分钟,得到 10,100.EXDX 求组装100件成品需要15到20小时的概率,由中心及限定理有, (9001001200)(1()2)PXPx (1)(2)1

0.8185

本题 得分

相关文档
最新文档