基于MATLAB_的语音信号分析和处理
基于MATLAB的语音信号分析与处理的实验报告

基于MA TLAB的语音信号分析与处理的实验报告数字信号课程设计,屌丝们有福了一.实验目的数字信号课程设计,屌丝们有福了综合计运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应的结论,培养发现问题、分析问题和解决问题的能力。
并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。
此外,还系统的学习和实现对语音信号处理的整体过程,从语音信号的采集到分析、处理、频谱分析、显示和储存。
二.实验的基本要求数字信号课程设计,屌丝们有福了1.进一步学习和巩固MATLAB的使用,掌握MATLAB的程序设计方法。
2.掌握在windows环境下语音信号采集的方法。
3.掌握数字信号处理的基本概念、基本理论、原理和基本方法。
4.掌握MATLAB设计FIR和IIR数字滤波器的方法。
5.学会用MATLAB对信号进行分析和处理。
三.实验内容录制一段自己的语音信号,(语音信号声音可以理解成由振幅和相位随时间缓慢变化的正弦波构成。
人的听觉对声音的感觉特征主要包含在振幅信息中,相位信息一般不起作用。
在研究声音的性质时,往往把时域信息(波形图)变换得到它的频域信息(频谱),通过研究频谱和与频谱相关联的特征获得声音的特性。
)并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法或者双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号发生的变化;回放语音信号。
数字信号课程设计,屌丝们有福了四.实验的实现(1).语音信号的采集采用windows下的录音机或者手机、其他的软件,录制一段自己的话音,时间控制在一分钟左右;然后在MATLAB软件平台下,利用函数wavread对自己的话音进行采样,记住采样的频率和采样的点数。
基于matlab的语音信号的采集与处理

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
目录第1章前言 ................................................................................................... 错误!未定义书签。
第2章语音信号分析处理的目的和要求 ................................................... 错误!未定义书签。
2.1MATLAB软件功能简介................................................................. 错误!未定义书签。
2.2课程设计意义 .................................................................................. 错误!未定义书签。
第3章语音信号的仿真原理..................................................................... 错误!未定义书签。
第4章语音信号的具体实现..................................................................... 错误!未定义书签。
4.1语音信号的采集................................................................................ 错误!未定义书签。
4.2语音信号加噪与频谱分析................................................................ 错误!未定义书签。
4.3设计巴特沃斯低通滤波器................................................................ 错误!未定义书签。
基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。
本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。
二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。
在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。
通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。
三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。
通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。
2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。
预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。
3. 特征提取在语音信号处理中,特征提取是一个关键步骤。
通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。
4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。
通过模型训练,可以实现对不同语音信号的自动识别和分类。
四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。
这些模块相互配合,构成一个完整的系统架构。
2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。
良好的界面设计可以提升系统的易用性和用户体验。
五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。
毕业论文_基于Matlab的语音信号分析与处理系统设计

毕业论文_基于Matlab的语音信号分析与处理系统设计毕业论文语音信号分析与处理系统设计语音信号分析与处理系统设计摘要语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。
通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。
Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。
信号处理是Matlab重要应用的领域之一。
本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。
最后,本文对语音信号处理的进一步发展方向提出了自己的看法。
关键字:Matlab;语音信号;傅里叶变换;信号处理;The Design of Analysis and Processing Voice SignalAbstractSpeech signal processing is to study the use of digital signal processing technology and knowledge of the voice signal voice processingof the emerging discipline is the fastest growing areas of information science one of the core technology. Transmission of information through the voice of humanity's most important, most effective, most popular and most convenient form of exchange of information..Matlab language is a data analysis and processing functions are very powerful computer application software, sound files which can be transformed into discrete data files, then use its powerful ability to process the data matrix operations, such as digital filtering, Fourier transform, when domain and frequency domain analysis, sound playback and a variety of map rendering, and so on. Its signal processing and analysis toolkit for voice signal analysis provides a very rich feature function, use of these functions can be quick and convenient features complete voice signal processing and analysis and visualization of signals, makes computer interaction more convenient . Matlab Signal Processing is one of the important areas of application.The design of voice-processing software for most of the content are numerous, easy to maneuver and so on, using MATLAB7.0 comprehensive use GUI interface design, various function calls to voice signals such as frequency, amplitude, Fourier transform and filtering, the program interface concise, simple, has some significance in practice.Finally, the speech signal processing further development putforward their own views.Keywords: Matlab, Voice Signal,Fourier transform,Signal Processing目录1 绪论 (1)1.1课题背景及意义 (1)1.2国内外研究现状 ..................................................... 1 1. 3本课题的研究内容和方法 .. (2)1.3.1 研究内容 .....................................................21.3.2 运行环境 (2)1.3.3 开发环境 .....................................................22 语音信号处理的总体方案 (3)2.1 系统基本概述 ......................................................3 2.2 系统基本要求 ....................................................... 3 2.3 系统框架及实现 ..................................................... 3 2.4系统初步流程图 .. (4)3 语音信号处理基本知识 (5)3.1语音的录入与打开 ...................................................5 3.2采样位数和采样频率 ................................................. 6 3.3时域信号的FFT 分析 ................................................. 6 3.4数字滤波器设计原理 ................................................. 6 3.5倒谱的概念 (7)4 语音信号处理实例分析 (7)4.1图形用户界面设计 ...................................................7 4.2信号的采集 ......................................................... 8 4.3语音信号的处理设计 (8)4.3.1 语音信号的提取 ...............................................84.3.2 语音信号的调整 (10)4.3.2.1 语音信号的频率调整 (10)4.3.2.2语音信号的振幅调整 (11)4.3.3 语音信号的傅里叶变换 (12)4.3.4 语音信号的滤波 .............................................134.3.4.1 语音信号的低通滤波 (13)?4.3.4.2 语音信号的高通滤波 .......................................154.3.4.3 语音信号的带通滤波 .......................................154.3.4.4 语音信号的带阻滤波 .......................................164.4 语音信号的输出 (17)5 总结 (18)参考文献 (19)致谢 (19)1 绪论语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。
基于MATLAB的语音信号时域特性分析_语音信号处理实验报告

南京信息工程大学 实验(实习)报告实验(实习)名称 基于MATLAB 的语音信号时域特性分析 实验(实习)日期 2013.4.18 得分 ___指导教师院电子与信息工程专业电子信息工程年级 班次 姓名 学号一、实验目的语音信号是一种非平稳的时变信号,它携带着各种信息。
在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。
语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。
语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法,直接对语音信号的时域波形进行分析,提取的特征参数主要有语音的短时能量,短时平均过零率,短时自相关函数等。
本实验要求掌握时域特征分析原理,并利用已学知识,编写程序求解语音信号的短时过零率、短时能量、短时自相关特征,分析实验结果,并能掌握借助时域分析方法所求得的参数分析语音信号的基音周期及共振峰。
二、实验原理及实验结果1.窗口的选择通过对发声机理的认识,语音信号可以认为是短时平稳的。
在5~50ms 的范围内,语音频谱特性和一些物理特性参数基本保持不变。
我们将每个短时的语音称为一个分析帧。
一般帧长取10~30ms 。
我们采用一个长度有限的窗函数来截取语音信号形成分析帧。
通常会采用矩形窗和汉明窗。
图1.1给出了这两种窗函数在帧长N=50时的时域波形。
0.20.40.60.811.21.41.61.82矩形窗samplew (n )0.10.20.30.40.50.60.70.80.91hanming 窗samplew (n )图1.1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下{1,00,()n Nw n ≤<=其他hamming 窗的定义:一个N 点的hamming 窗函数定义为如下0.540.46cos(2),010,()n n NN w n π-≤<-⎧⎨⎩其他=这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图1.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;汉明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。
利用MATLAB软件对音频信号进行频谱分析与处理

利用MATLAB软件对音频信号进行频谱分析与处理一、简介频谱分析是通过对信号的频率成分进行分析,它允许我们了解信号的特性,计算信号的能量分布,同时还可以用来定位造成干扰的频率组件,以及检测和分析信号的变化。
MATLAB是一种编程语言和科学计算软件,它可以非常便捷地实现对音频信号的频谱分析和处理。
二、实现方法1.导入音频信号在使用MATLAB进行频谱分析时,首先需要先将音频信号导入MATLAB环境中。
可以使用audioplayer和audioread函数来完成这一步骤,示例代码如下:[audioData, fs] = audioread(‘AudioFile.wav’);player = audioplayer(audioData, fs);play(player);其中audioData表示从wav文件中读取的音频数据,fs表示采样率,player表示存储audioData和fs的audioplayer实例,play函数可以播放音频文件。
2.信号预处理针对所记录的音频信号,需要进行一些基本的信号处理操作,包括去噪、均衡、时域平均等。
去噪可以用MATLAB内置的函数完成,例如:audioData_NoiseRemoved = denoise(audioData,‘meanspectrum’);均衡是指将频谱的一些区域调整到更好的水平,可以用equalizer函数实现:audioData_Equalized = equalizer(audioData, ‘bandwidth’, 0.2);时域平均则可以使用conv函数实现:audioData_Meaned = conv(audioData, [1/N 1/N ... 1/N]);3.频谱分析频谱分析的主要工作是计算信号的谱密度,也就是每一个频率分量的能量。
使用Matlab进行声音信号处理的基本技巧

使用Matlab进行声音信号处理的基本技巧声音信号处理是一门重要的领域,它涵盖了音频合成、语音识别、音频修复等多个应用方向。
Matlab是一款功能强大的数学软件,也可以用于声音信号处理。
本文将介绍使用Matlab进行声音信号处理的基本技巧,包括声音读取、时域分析、频域分析、滤波和音频合成等内容。
1. 声音读取首先,我们需要将声音文件读取到Matlab中进行处理。
Matlab提供了`audioread`函数用于读取声音文件。
例如,我们可以使用以下代码读取一个wav格式的声音文件:```matlab[y, Fs] = audioread('sound.wav');```其中,`y`是声音信号的向量,每个元素代表一个采样点的数值;`Fs`是采样率,即每秒采样的次数。
通过这个函数,我们可以将声音文件以数字信号的形式加载到Matlab中进行后续处理。
2. 时域分析在声音信号处理中,常常需要对声音信号在时域上进行分析。
我们可以使用Matlab的绘图函数来展示声音信号的波形。
例如,以下代码可以绘制声音信号的波形图:```matlabt = (0:length(y)-1)/Fs;plot(t, y);xlabel('Time(s)');ylabel('Amplitude');title('Sound waveform');```这段代码中,`t`是时间轴,通过除以采样率,我们可以得到每个采样点对应的时间。
`plot`函数用于绘制声音信号的波形图,横轴表示时间,纵轴表示振幅。
通过这种方式,我们可以直观地观察声音信号的时域特征。
3. 频域分析除了时域分析,频域分析也是声音信号处理中常用的方法。
通过对声音信号进行傅里叶变换,我们可以得到声音信号在频域上的表示。
Matlab提供了`fft`函数用于进行傅里叶变换。
以下代码可以绘制声音信号的频谱图:```matlabN = length(y);f = (-N/2:N/2-1)/N*Fs;Y = fftshift(fft(y));plot(f, abs(Y));xlabel('Frequency (Hz)');ylabel('Magnitude');title('Sound spectrum');```在这段代码中,`N`是声音信号的长度,`f`是频率轴,通过调整`f`的取值范围可以实现将零频移动到中心位置。
实验4基于MATLAB的语音信号LPC分析

的波形,预测语音帧波形和它们之间预测误差的波形。图3.2为原始语音帧和预测 语音帧的短时谱和LPC谱的波形
图3.1 原始语音帧、预测语音帧和预测误差的波形
图3.2 原始语音帧和预测语音帧的短时谱和LPC谱的波形
这里我们可以改变线性误差的阶数来观察语音帧的短时谱和LP谱的变化情况,如 图3.3。
图3.3 预测阶数对语音帧短时谱和LPC谱的影响
A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)
通过LPC分析,由若干帧语音可以得到若干组LPC参数,每组参数形成 一个描绘该帧语音特征的矢量,即LPC特征矢量。由LPC特征矢量可以进一步 得到很多种派生特征矢量,例如线性预测倒谱系数、线谱对特征、部分相关系 数、对数面积比等等。不同的特征矢量具有不同的特点,它们在语音编码和识 别领域有着不同的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB 的语音信号分析和处理福建师范大学协和学院信息技术系电子信息科学与技术专124122006028王祯飞指导老师黄小芬【摘要】本设计用微软录音机采集了一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。
并应用matlab平台对语音信号加入了不同的噪声,进一步用双线性变换法设计了一个的巴特沃思低通滤波器,基于巴特沃斯模拟滤波器设计数字带通滤波器和用窗函数法设计了FIR低通滤波器,然后对加噪的语音信号进行滤波处理。
最后对比滤波前后的语音信号的时域和频域特性,回放加噪语音信号和去噪语音信号,对比研究了巴特沃思IIR滤波器和FIR滤波器在信号处理尤其是信号滤波去噪方面的特性和应用。
论文从理论和实践上比较不同数字滤波器的滤波效果。
【关键词】语音信号;频域特性; 时域特性; 滤波器1绪论1.1课题的研究意义语言是我们人类所特有的功能,它是传承和记载人类几千年文明史,没有语言就没有我们今天人类的文明。
语音是语言最基本的表现形式,是相互传递信息最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。
语音信号处理属于信息科学的一个重要分支,大规模集成技术的高度发展和计算机技术的飞速前进,推动了这一技术的发展;它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。
1.2设计任务本设计先完成语音信号的采集,然后设计低通,高通,带通等滤波器对采集到的语音信号进行滤波处理,分析语音信号各频率段的特性。
并对所采集的语音信号加入不同的干扰噪声,对加入噪声的信号进行频谱分析,针对受干扰语音信号的特点设计不同的滤波器,对加噪信号进行滤波,恢复原信号。
把原始语音信号、加噪语音信号和滤波后的信号进行时域变换和频域变换,画出它们的时域波形和频域波形图,从视觉角度比较分析滤波的效果。
也可将这3类信号进行播放从听觉角度感受滤波的效果。
2基本原理2.1 语音信号概述语言是人类创造的,是人类区别于其他地球生命的本质特征之一。
人类用语言交流的过程可以看成是一个复杂的通信过程,为了获取便于分析和处理的语音信源,必须将在空气中传播的声波转变为包含语音信息并且记载着声波物理性质的模拟(或数字)电信号,即语音信号,因此语音信号就成为语音的表现形式或载体。
语音学和数字信号处理的交叉结合便形成了语音信号处理。
语音信号处理是建立在语音学和数字信号处理基础之上的,对语音信号模型进行分析、存储、传输、识别和合成等方面的一门综合性学科。
2.2数字滤波器原理2.2.1数字滤波器的概念若滤波器的输入、输出都是离散时间信号,那么该滤波器的单位冲激响应h(n)也必然是离散的,这种滤波器称为数字滤波器(DF)。
数字滤波器实质上是一种运算过程——用来描述离散系统输入与输出关系的差分方程的计算或卷积计算。
数字滤波器的实质是用一有限精度算法实现的离散时间线性时不变系统,以完成对信号进行滤波处理的过程。
它是数字信号处理的一个重要分支,具有稳定性好、精度高、灵活性强、体积小、质量轻等诸多优点。
2.2.2数字滤波器的分类数字滤波器根据不同的分类标准可以将滤波器分成不同的类别。
(1)根据单位冲激响应h(n)的时间特性分类无限冲激响应(IIR)数字滤波器有限冲激响应(FIR)数字滤波器(2)根据实现方法和形式分类递归型数字滤波器非递归型数字滤波器快速卷积型(3)根据频率特性分类低通数字滤波器、高通数字滤波器、带通数字波器、带阻数字滤波器3总体设计思想3.1 语音信号的采集Windows 自带了一个录音机程序(简称录音机),通过它可以驱动声卡采集、播放和简单处理语音信号。
语音信号的采集可以用麦克风直接录制人的语音,也可以通过音频线或者MIDI 线将收音机、电视机或磁带录机中的语音信号采集到计算机中。
在录音机中可以进行简单的声音处理,如加大或降低音量,加速或减速,声音的反转或添加回音效果等。
加速或减速的改变可以完成变音功能,反转可以达到对声音文件保密的功能。
本设计用是收音机接到电脑上用录音机录的,保存起来以备处理。
3.2 语音信号处理工具的选择语音信号的进一步处理分析工作选用了matlab平台。
MATLAB是一种科学计算软件,专门以矩阵的形式处理数据。
MATLAB 将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,不断完善MATLAB 产品以提高产品自身的竞争能力Matlab的数据分析和处理功能十分强大,运用它来进行语音信号的分析、处理和可视化相当便捷。
在编程效率、程序可读性、可移植性和可扩充性上matlab远远优于其它的高级编程语言,而且编程易学、直观,代码非常符合人们的思维习惯。
另外matlab为用户提供了丰富的windows图形界面设计方法,使用户能够在利用其强大的数值计算功能的同时可设计出友好的图形界面,它受到了越来越多的用户的欢迎Matlab几乎可以在各种机型和操作系统上运行,所以在可移植性和可扩充性上,matlab远优越于其他的高级编程语言。
Matlab语言具有强大的数值计算能力和视图能力,其偏微分方程工具箱提供了有限元求解的一个强大而灵活的环境,并且有限元网格可做精细划分以满足要求。
但是,和其他的高级语言相比,matlab程序的执行速度较慢。
在目前电脑处理速度不断提升的情况下,如果实时性要求不是非常高的情况下,使用matlab开发就不存在此类问题了。
3.3 数字滤波器的设计本设计在matlab平台上,设计了IIR和FIR滤波器各种类型的滤波器。
用以对语音原始信号及加噪的语音信号进行滤波,重点对加噪信号进行了滤波。
对于IIR滤波器,它的极点可以在单位圆内的任何位置,实现IIR滤波器的阶次可以较低,所用的存储单元较少,效率高,又由于IIR数字滤波器能够保留一些模拟滤波器的优良特性,因此应用很广。
设计IIR数字滤波器的常用方法是从模拟滤波器来设计数字IIR滤波器。
模拟滤波器设计已经有了一套相当成熟的方法,它不但有完整的设计公式,而且还有较为完整的图表供查询,因此充分利用这些已有的资源将会给数字滤波器的设计带来很大的方便。
再将模拟滤波器转换为数字滤波器,其转换方法有冲激响应不变法和双线性Z变换法。
一般,当着眼于滤波器的时域瞬态响应时,采用脉冲响应不变法较好,而其它情况下,对于IIR的设计,大多采用双线性变换法。
对于FIR滤波器,它有精确、严格的线性相位特性,并且可以做成既是因果的又是稳定的系统。
所以FIR滤波器的应用越来越广泛。
IIR与FIR滤波器的性能比较如下图3.1所示。
表3.1 IIR滤波器与FIR滤波器的性能比较IIR DF FIR DF(1)相位一般是非线性的(1)相位可以做到严格线性(2)不一定稳定(2)一定是稳定的(3)不能用FFT作快速卷积(3)信号通过系统可采用快速卷积(4)一定是递归结构(4)主要是非递归结构,也可含递归环节(5)对频率分量的选择性好(零极点可同时起作用)(5)选择性差(6)相同性能下阶次较低(6)相同性能下阶次高(7)有噪声反馈,噪声大(7)噪声小(8)运算误差大,有可能出现极限环振荡(8)运算误差小,不会出现极限环振荡(9)设计有封闭形式的公式,一次完成(9)没有封闭形式的设计公式,须靠经验与反复调试(10)对计算手段的要求较低(10)一般需用计算机计算(11)主要用于设计分段常数的标准低通、高通、带通、带阻和全通滤波器(11)还可设计正交变换器、微分器、线性预测器、回波抵消器、均衡器、线性调频器等各种网络,适用范围广从上面的简单比较我们可以看到IIR与FIR滤波器各有所长,所以在实际应用时应该从多方面考虑来加以选择。
例如,从使用要求上来看,在对相位要求不敏感的场合,如语言通讯等,选用IIR较为合适,这样可以充分发挥其经济高效的特点,而对于图像信号处理,数据传输等以波形携带信息的系统,则对线性相位要求较高,如果有条件,采用FIR滤波器较好,当然,在实际应用中应考虑经济上的要求以及计算工具的条件等多方面的因素。
整体来看,IIR滤波器达到同样效果阶数少,延迟小,但是有稳定性问题,非线性相位;FIR滤波器没有稳定性问题,线性相位,但阶数多,延迟大。
而不论是IIR滤波器还是FIR滤波器的设计都包括三个步骤:(1) 按照实际任务的要求,确定滤波器的性能指标。
(2) 用一个因果、稳定的离散线性时不变系统的系统函数逼近性能要求。
根据系统的不同的要求可以考虑用IIR系统函数或FIR系统函数去逼近。
(3) 利用有限精度算法实现系统函数,包括结构选择、字长选择等。
4语音信号分析和滤波处理4.1 语音信号的采集把语音信号并保存为.wav文件,长度小于30秒,并对语言信号进行采样;录制的软件可以使用Windows自带的录音机,或者也可以使用其它专业的录音软件,录制时需要配备录音硬件(如麦克风),为了方便比较,需要在安静、无噪音、干扰小的环境下录。
4.2 语音信号的读入与打开在MATLAB中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y中,fs 表示采样频率(Hz),bits表示采样位数。
[N1 N2]表示读取的值从N1点到N2点的值。
sound(y); 用于对声音的回放。
向量y则就代表了一个信号,也即一个复杂的“函数表达式”,也可以说像处理一个信号的表达式一样处理这个声音信号。
下面是语音信号在MATLAB中的语言程序,它实现了语音的读入与打开,并绘出了语音信号的波形频谱图。
[x,fs,bits]=wavread('wzf.wav');sound(x);X=fft(x,4096);magX=abs(X);angX=angle(X);subplot(221);plot(x);title('原始信号波形');subplot(222);plot(X); title('原始信号频谱');subplot(223);plot(magX);title('原始信号幅值');subplot(224);plot(angX);title('原始信号相位');程序运行可以听到声音,得到的结果图4-1所示:图4-1 语音信号的读入与打开4.3语言信号处理4.3.1语音信号分析用MATLAB绘制出语音信号的时域波形图和原始语音信号的频率响应图和原始语音信号的FFT频谱图。
程序设计如下:fs=22050; %语音信号采样频率为22050[x,fs,bits]=wavread('wzf.wav');sound(x,fs,bits); %播放语音信号y1=fft(x,1024); %对信号做1024点FFT变换f=fs*(0:511)/1024;figure(1)plot(x) %做原始语音信号的时域波形图title('原始语音信号时域图');xlabel('time n');ylabel('fuzhi n');figure(2)freqz(x) %绘制原始语音信号的频率响应图title('频率响应图')figure(3)plot(f,abs(y1(1:512)));title('原始语音信号频谱')xlabel('Hz');ylabel('fudu');如下图4-2所示:图4-2语言信号分析4.3.2含噪语音信号的合成在MATLAB软件平台下,给原始的语音信号叠加上噪声,噪声类型分为如下几种:(1)单频噪色(正弦干扰);(2)高斯随机噪声。