导数应用题型解题方法_题型归纳
导数常考题型归纳总结

导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。
在高中数学中,导数是一个常考的内容。
为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。
一、常数函数求导常数函数的导数始终为零。
这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。
二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。
设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。
例如,对于y=x^2,求导后得到dy/dx=2x。
对于y=x^3,求导后得到dy/dx=3x^2。
这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。
三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。
即dy/dx = e^x。
这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。
四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。
根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。
这个公式对于解决对数函数的导数问题非常有用。
五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。
我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。
这些公式可以根据求导的定义进行推导,同学们需要牢记。
六、复合函数求导复合函数指的是由多个函数复合而成的函数。
对于复合函数的导数求解,我们可以利用链式法则。
链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。
通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。
导数常见题型归纳

导数常见题型归纳1.高考命题回顾例1.(2013全国1)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
分析:⑴2d c b 4,a ==== ⑵由⑴知()24x f 2++=x x ,()()12+=x ex g x设()()()()24122---+=-=x x x ke x f x kg x F x,则()()()122-+='xke x x F 由已知()100≥⇒≥k F ,令()k x x x F ln ,20-==⇒='①若21e k <≤则021≤<-x ,从而当()1,2x x -∈时,()0<'x F ,()x F 递减()+∞∈,1x x 时,()>'x F 0,()x F 递增。
()()()02x 111≥+-=≥x x x F F故当2-≥x 时()0≥x F 即()()x kg x f ≤恒成立。
②若2e k = 则()()()02222>-+='-ee x e x F x 。
()2->x 。
所以()x F 在()+∞-,2上单调递增,而()02=-F .所以-2x ≥时,()0≥x F 恒成立。
③若2e k >,则()()02222222<--=+-=---e k e ke F ,从而()0≥x F 不可能恒成立即()()x kg x f ≤不恒成立。
综上所述。
k 的取值范围[]2,1e例2.(2013全国2)已知函数)ln()(m x e x f x+-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >. 分析:(Ⅰ)1m =。
2-2导数及其应用常考题型导数的运算法则 含解析

导数的运算法则【知识梳理】1.导数的四则运算法则(1)条件:f(x),g(x)是可导的.(2)结论:①f(x)±g(x)]′=f′(x)±g′(x).②f(x)g(x)]′=f′(x)g(x)+f(x)g′(x).③错误!′=错误!(g(x)≠0).2.复合函数的求导公式(1)复合函数的定义:①一般形式是y=f(g(x)).②可分解为y=f(u)与u=g(x),其中u称为中间变量.(2)求导法则:复合函数y=f(g(x))的导数和函数y=f(u),u =g(x)的导数间的关系为:y x′=y u′·u x′.【常考题型】题型一、利用导数四则运算法则求导典例]求下列函数的导数:(1)y=x2+log3x;(2)y=x3·e x;(3)y=错误!。
解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+错误!.(2)y′=(x3·e x)′=(x3)′·e x+x3·(e x)′=3x2·e x+x3·e x=e x(x3+3x2).(3)y′=错误!′=错误!=错误!=-错误!。
【类题通法】求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数.(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.【对点训练】求下列函数的导数:(1)y=sin x-2x2;(2)y=cos x·ln x;(3)y=e x sin x。
解:(1)y′=(sin x-2x2)′=(sin x)′-(2x2)′=cos x-4x。
(2)y′=(cos x·ln x)′=(cos x)′·ln x+cos x·(ln x)′=-sin x·ln x+错误!.(3)y′=错误!′=错误!=错误!=错误!题型二、复合函数的导数运算典例]求下列函数的导数:(1)y=错误!;(2)y=e sin(ax+b);(3)y=sin2错误!;(4)y=5log2(2x+1).解] (1)设y=u-错误!,u=1-2x2,则y′=(u-12)′ (1-2x2)′=错误!·(-4x)=-错误!(1-2x2)-错误!(-4x)=2x(1-2x2)-错误!。
导数的应用 知识点与题型归纳

●高考明方向1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)★备考知考情由于高考对本节知识的考查仍将突出导数的工具性,重点考查利用导数研究函数极值、最值及单调性等问题,其中蕴含对转化与化归、分类讨论和数形结合等数学思想方法的考查,故备考时要认真掌握导数与函数单调性、极值的关系,强化导数的工具性的作用.另外,导数常与解析几何、不等式、方程相联系.因此,要加强导数应用的广泛意识,注重数学思想和方法的应用.....一、 知识梳理《名师一号》P41注意:定义域优先原则!!!第一课时 函数的导数与单调性知识点一 函数的导数与单调性的关系一般地,函数()y f x =在某个区间内可导:• 如果恒有()'0f x >,则 ()f x 是增函数。
• 如果恒有()'0f x <,则()f x 是减函数。
•如果恒有()'0f x =,则()f x 是常数。
注意:(补充)求函数单调区间的一般步骤:(1)求函数的定义域--单调区间必定是定义域的子集. (2)求函数的导数 (3)令()'0fx >以及()'0f x <,求自变量x 的取值范围,即函数的单调区间。
单调区间须写成区间!单调性的证明方法:定义法及导数法 单调性的判断方法:定义法及导数法、图象法、复合函数的单调性 (同增异减)、用已知函数的单调性等单调性的简单性质:奇函数在其对称区间上的单调性相同;偶函数在其对称区间上的单调性相反.注意:《名师一号》P40 问题探究问题1、2对于可导函数f(x),f′(x)>0是f(x)为增函数的充要条件吗?若不是,那其充要条件是什么?f′(x)>0(或f′(x)<0)仅是f(x)在某个区间上为增函数(或减函数)的充分条件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应是f′(x)≥0(或f′(x)≤0),x ∈(a,b)恒成立,且f′(x)在(a,b)的任意子区间内都不恒等于0.由函数单调性确定参数取值范围的方法是什么?(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题:即利用“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.二、例题分析:(一)利用函数单调性确定函数的图象..例1.《名师一号》P42 高频考点例1 已知函数f(x)的导函数为f′(x),若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A B C D由函数f(x)的导函数y=f′(x)的图象自左至右是先增后减,可知函数y=f(x)图象的切线的斜率自左至右先增大后减小,观察图象可知只有B符合.故选B.注意:《名师一号》P42 高频考点例1 规律方法已知y=f′(x)的图象识别y=f(x)的图象,关键是理解导函数的图象与函数图象的升降关系,本例中导函数y=f′(x)的图象先递增后递减,且区间具有对称性,从而可得y=f(x)图象的斜率变化情况也应该是先递增后递减,并注意图象的对称性,正确的选项就不难得到.注意:(补充)....一般的,如果一个函数在某一范围内导数的绝对值较大, 那么函数在这个范围内变化得快,这时函数的图像就比较陡峭(向上或向下); 反之,函数的图像就平缓一些(二) 求函数的单调区间 例1.(1)周练13-44. 函数5224+-=x x y 的单调递减区间为( )A.(]]1,0[,1,-∞-B.[)+∞-,1],0,1[C.[-1,1]D.[)+∞--∞,1),1,(例1.(2)周练13-16设函数f (x )=sin x -cos x +x +1,0<x <2π, 求函数f (x )的单调区间与极值.16.解: 由f (x )=sin x -cos x +x +1,0<x <2π,知f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2,当x 变化时,f ′(x ),f (x )变化情况如下表:..因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.例1.(3)《名师一号》P43 高频考点 例2已知函数f (x )=ln x +kex (k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值. (2)求f (x )的单调区间.解析:(1)由题意得f ′(x )=1x -ln x -ke x,又f ′(1)=1-ke=0,故k =1...(2)由(1)知,f ′(x )=1x -ln x -1e x.设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x2-1x <0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0, 从而f ′(x )>0;当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).例2.(1)(补充)周练13-17设函数f (x )=x 3-21ax 2+3x +5(a >0),求f (x )的单调区间.17.解:(1)f '(x )=3x 2-ax +3, 判别式Δ=a 2-36=(a -6)(a +6).1°0<a <6时,Δ<0,f '(x )>0对x ∈R 恒成立. ∴当0<a <6时,f '(x )在R 上单调递增.2°a =6时,y =x 3-3x 2+3x +5=(x -1)3+4.∴在R 上单调递增...3°a >6时,Δ>0,由f '(x )>0⇒x >6362-+a a 或x<6362--a a .f '(x )<0⇒6362-+a a <x <6362--a a .∴在(63622-+a a ,+∞)和(-∞,6362--a a )内单调递增,在(6362--a a ,6362-+a a )内单调递减.例2.(2)(补充)周练13-18已知函数22()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈. (1)当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;(2)当23a ≠时,求函数()f x 的单调区间.18.(1)解:.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当所以曲线()(1,(1))y f x f =在点处的切线的斜率为3.e(2)22'()[(2)24].xf x x a x a a e =++-+解:.2232.220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论。
高考压轴题:导数题型及解题方法总结很全.

注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
高中数学导数题型归纳总结

高中数学导数题型归纳总结高中数学中,导数是一个重要的概念,它是微积分的基础。
在考试中,导数题型往往是必考的内容。
为了帮助同学们更好地复习导数,下面对高中数学导数题型进行归纳总结。
1. 求函数的导数:这是最基本的导数题型,要求根据函数的定义求出其导数。
常见的函数包括多项式函数、指数函数、对数函数、三角函数等。
2. 导数的四则运算:利用导数的基本性质,可以进行导数的四则运算。
例如,两个函数的和、差、积或商的导数可以通过分别求出函数的导数,然后利用四则运算的性质计算得到。
3. 链式法则:当函数是复合函数时,可以使用链式法则进行求导。
链式法则的基本思想是将复合函数分解为内层函数和外层函数,并利用导数的链式法则求出导数。
4. 隐函数求导:当一个函数的表达式中包含未知数的隐式关系时,可以利用隐函数求导的方法求出导数。
常见的隐函数求导题型包括求曲线的切线斜率、求极值等。
5. 参数方程求导:当函数由参数表示时,可以通过对参数方程进行求导,然后用参数方程的导数表达式消去参数,得到函数的导数。
6. 反函数求导:如果函数存在反函数,可以利用反函数求导的方法求出导数。
反函数求导的基本思想是将函数的自变量和因变量互换,然后求出反函数的导数。
7. 极限与导数:导数的定义中包含了极限的概念,所以在求导过程中经常需要应用极限的性质。
例如,使用极限的性质求出函数导数的极限,或者利用导数的定义证明极限存在等。
除了上述的题型,还有一些常见的应用题型,如最值问题、曲线的凹凸性、切线和法线方程等。
这些题型往往需要综合运用导数的概念和性质进行解答。
总之,高中数学导数题型的归纳总结包括基本的导数求法、导数的四则运算、链式法则、隐函数求导、参数方程求导、反函数求导以及与极限的关系等。
通过对这些题型的理解和熟练掌握,可以帮助同学们更好地应对高中数学考试中的导数题目。
高考数学导数题型归纳好

导数题型概括请同学们高度重视:第一,对于二次函数的不等式恒建立的主要解法:1、分别变量; 2 更改主元; 3 根散布; 4 鉴别式法5、二次函数区间最值求法:(1)对称轴(重视单一区间)与定义域的关系(2)端点处和极点是最值所在其次,剖析每种题型的实质,你会发现大多数都在解决“不等式恒建立问题”以及“充足应用数形联合思想” ,创立不等关系求出取值范围。
最后,同学们在看例题时,请注意找寻重点的等价变形和回归的基础一、基础题型:函数的单一区间、极值、最值;不等式恒建立;1、此类问题倡导按以下三个步骤进行解决:'第二步:画两图或列表;第三步:由图表可知;此中不等式恒建立问题的实质是函数的最值问题,2、常有办理方法有三种:第一种:分别变量求最值-----用分别变量时要特别注意能否需分类议论(>0,=0,<0 )第二种:更改主元(即对于某字母的一次函数)----- (已知谁的范围就把谁作为主元);例 1:设函数y f (x)在区间 D 上的导数为f (x),f ( x)在区间 D 上的导数为g(x),若在区间 D 上, g( x) 0 恒成立,则称函数 y f ( x) 在区间D上为“凸函数”,已知实数m是常数,f (x)x4mx33x21262(1)若y f ( x)在区间0,3上为“凸函数” ,求 m 的取值范围;(2)若对知足m 2的任何一个实数m,函数f (x)在区间a,b上都为“凸函数”,求b a的最大值 .解 : 由函数f ( x)x4mx33x2得 f ( x)x3mx2 126233x2( 1)Q y f (x) 在区间0,3上为“凸函数” ,则g( x) x2mx30在区间 [0,3] 上恒建立解法一:从二次函数的区间最值下手:等价于 g max (x)0解法二:分别变量法:∵当 x0 时,g ( x)x2mx330恒建立,当 0x 3 时,g( x)x2mx30 恒建立等价于x233的最大值( 0x 3 )恒建立,m xx x而 h(x)3x 3 )是增函数,则h max ( x)h(3) 2 x( 0x(2)∵当 m 2时f (x)在区间 a, b 上都为“凸函数”则等价于当 m 2时g( x) x2mx 3 0恒建立解法三:更改主元法再等价于 F (m)mx x 23 0 在 m 2 恒建立 (视为对于 m 的一次函数最值问题)F( 2) 0 2 x x 2 3 0F (2)0 2x x 2 3 1 x 1例 2:设函数 f ( x)1 x 3 2ax2 3a 2 x b(0 a1,bR)-2 32(Ⅰ)求函数 f ( x )的单一区间和极值;(Ⅱ)若对随意的x [a1, a 2], 不等式 f ( x) a 恒建立,求 a 的取值范围 .(二次函数区间最值的例子)解:(Ⅰ) f ( x)x 2 4ax 3a 2x 3a x aa3aa3a令 f ( x) 0, 得 f ( x) 的单一递加区间为( a,3a )令 f ( x)0, 得 f ( x) 的单一递减区间为(-, a )和( 3a , + )∴当 x=a 时, f ( x) 极小值 =3 a 3 b; 当 x=3a 时, f ( x) 极大值 =b.4(Ⅱ)由 | f (x) |≤ a ,得:对随意的 x [a 1,a 2], ax 2 4ax 3a 2a 恒建立①则 等 价 于 g(x) 这 个 二 次 函 数g max (x) ag ( x) x 2 4ax 3a 2 的 对 称 轴 x 2ag min ( x) aQ 0 a 1, a 1 a a 2a (放缩法)即定义域在对称轴的右侧,g (x) 这个二次函数的最值问题:单一增函数的最值问题。
高中导数题所有题型及解题方法

高中导数题所有题型及解题方法在高中数学中,导数是一个非常重要的概念。
导数是描述曲线在某一点处的切线斜率的指标。
在高中数学中,学生需要掌握不同类型的导数题。
以下是高中导数题中的所有题型及解题方法:1.求函数的导数:这是最基本的导数问题。
对于一个函数,需要求出它的导数函数。
为此,需要使用导数的定义公式,即极限。
例如,对于函数f(x) = x^2 + 2x + 1,其导数是f’(x) = 2x + 2。
2.求函数的导数在某一点处的值:这个类型的问题需要计算函数在一定点处的导数值。
为此,需要使用导数的定义公式,并将x的值代入到函数中计算。
例如,对于函数f(x) = x^2 + 2x + 1,在x = 2处的导数值为f’(2) = 6。
3.求函数的极值:极值是函数在某一点处的最大值或最小值,即导数为0的点。
为了找到函数的极值,需要计算函数的导数,并找到导数为0的点。
例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其导数为f’(x) =3x^2 - 6x + 2。
为了找到函数的极值,需要找到导数为0的点。
计算可得,x = 1或x = 2是导数为0的点。
因此,函数的极值为f(1) = 1和f(2) = 3。
4.求函数的拐点:拐点是函数曲线从凸向上到凹向上或从凸向下到凹向下的点。
为了找到函数的拐点,需要计算函数的二阶导数,即导数的导数。
例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其一阶导数为f’(x) = 3x^2 - 6x + 2,二阶导数为f’’(x) = 6x - 6。
为了找到函数的拐点,需要找到二阶导数为0的点。
计算可得,x = 1是二阶导数为0的点。
因此,函数在x = 1处有一个拐点。
5.求函数与直线的交点:这个类型的问题需要找出函数和直线的交点。
为此,需要先将直线方程代入到函数中,然后解方程。
例如,对于函数f(x) = x^2 + 2x + 1和直线y = 3x - 1,将直线方程代入到函数中可得x^2 + 2x + 1 = 3x - 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数应用题型解题方法_题型归纳
高考数学题型归纳:导数应用题型解题方法 导数是微积分的初步知识,
是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切
线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导
数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简
便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力
的一个方向,应引起注意。
知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求
导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,高中物理,复合函
数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。