矿大 弹性力学11-4

合集下载

弹塑性力学第十一章标准详解

弹塑性力学第十一章标准详解

弹塑性⼒学第⼗⼀章标准详解第⼗⼀章习题答案11.3使⽤静⼒法和机动法求出图⽰超静定梁的极限载荷。

解1:(1)静⼒法⾸先该超静定梁(a )化为静定结构(b )、(c )。

分别求出其弯矩图,然后叠加,得该超静定梁的弯矩图(f )在极限情况下,A sB s M M M M =-=设C 点⽀反⼒为C R ,则:12C s R l Pl M -=- 1(2)C s R l l M -=由上⼆式得()()11142p M l l P l l l *-=-当P 值达到上述数值时,结构形成破坏机构,故P 为该梁的完全解。

(2)机动法设破坏机构如图(g ),并设B 点挠度为δ,则:11,(2)A C l l l θδθδ==-()1122B A C l l l l δθθθ=+=-外⼒功e W P δ=内⼒功()11142i A A B B s l l W M M M l l l θθδ-=+=-由e i W W =,可得极限载荷上限为()11142s l l P M l l l *-=-先将该超静定梁化为静定梁(b )、(c ),分别作弯矩图,叠加得该超静定梁的弯矩图(f )设A 点为坐标原点,此时弯矩⽅程为:()()()212B M x R l x q l x =---在极限状态时,有()0,0s x M M ==- ()11,s x x M x M == 令()0dM x dx=得1()B q l x R -= (1)⽽212B s R l ql M -=- (2)()()21112B s R l x q l x M ---= (3)联⽴解(1)、(2)、(3)得2122s s M qM ql l ??=-解得21122s M q l=取较⼤的值,可得0211.66sM q l ≈在以上0q 值作⽤下,梁已形成破坏机构,故其解为完全解。

(2)机动法如图(g )设在A 、C 两点形成塑性铰,2A B C θθθθθ=== 内⼒功为()23i s s s W M M M θθθ=--+=g 外⼒功为e W q x dx q l θθ**==由虚功原理i W W =得:0221211.66s s M M q q l l*=>≈该解与完全解的误差为 03%q q q **-≈解3:(1)静⼒法设坐标原点在C 点,此时弯矩⽅程为:BC 段(02x l ≤≤)21()2c M x R x qx =-AB 段(2l x l ≤≤)11()24c M x R x ql x l ?? =--在x ξ=处,M 为极⼤值,设ξ在BC 段,由()0x dM x dx ξ==得0c R q ξ-= cR qξ=(1)在极限情况下()s M l M =- , ()s M M ξ=即:238c s R l ql M -=- (2)21221889s M q l=取正号219.2s Mq l=由于此时形成破坏机构,故q 值完全解。

弹性力学及有限元课程大纲

弹性力学及有限元课程大纲

《弹性力学及有限元》课程纲领课程代码EM316课程名称中文名:弹性力学及有限元英文名: Elasticity and Finite Element Method课程类型专业基础课修读类型必修学分 2 学时32开课学期第 5 学期开课单位船舶大海与建筑工程学院土木匠程系合用专业土木匠程专业先修课程《高等数学》、《理论力学》、《资料力学》、《构造力学》教材:徐芝纶 . 弹性力学简洁教程(第四版),北京:高等教育第一版社,2013 年 6 月。

ISBN: 9787040373875参照书:1.王润富 .弹性力学简洁教程学习指导 . 北京:高等教育第一版社,教材及主要2004. ISBN: 7040130815参照书 2. 吴家龙. 弹性力学( 新一版). 北京:高等教育第一版社,2001.ISBN: 7560812457.3. S.Timoshenko &J. N. Goodier. Theory of Elasticity.(Thirdedition) McGraw-hill Book Co.,1970. ISBN-13: 978-00706472064. 丁科,陈月顺. 有限单元法. 北京大学第一版社,2006. ISBN: 9787301104354一课程简介弹性力学及有限元是土木匠程专业必修的一门专业基础课。

课程主要研究弹性体受外力作用或温度改变等原由此产生的应力、位移和变形。

本课程的教课目的,是使学生在理论力学和资料力学等课程的基础上,进一步掌握弹性力学与有限元的基本观点、基来源理和基本方法,提升剖析与计算的能力。

使学生掌握有限单元法及其工程合用性,为学生从事与土木匠程有关的专业技术工作、科学研究工作等打下坚固的基础。

二本课程所支撑的毕业要求本课程支撑的毕业要求及比重以下:序号毕业要求指标点毕业要求指标点详细内容支撑比重1 毕业要求拥有必备的土木匠程专业基础知识及65% 在复杂土木匠程问题中应用能力2 毕业要求拥有起码应用一种土木匠程方面的大35%型剖析软件能力,并认识工程合用性。

弹塑性力学习题集

弹塑性力学习题集

弹塑性力学习题集(有图)(共37页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--弹塑性力学习题集殷绥域李同林编中国地质大学·力学教研室二○○三年九月目录弹塑性力学习题........................................................................(1)第二章应力理论.应变理论......................................................(1)第三章弹性变形.塑性变形.本构方程.......................................(6)第四章弹塑性力学基础理论的建立及基本解法 (8)第五章平面问题的直角坐标解答 (9)第六章平面问题的极坐标解答................................................(11)第七章柱体的扭转...............................................................(13)第八章弹性力学问题一般解.空间轴对称问题...........................(14)第九章* 加载曲面.材料稳定性假设.塑性势能理论.....................(15)第十章弹性力学变分法及近似解法..........................................(16)第十一章* 塑性力学极限分析定理与塑性分析 (18)第十二章* 平面应变问题的滑移线场理论解 (19)附录一张量概念及其基本运算.下标记号法.求和约定...............(21)习题参考答案及解题提示 (22)前言弹塑性力学是一门理论性较强的技术基础课程,它与许多工程技术问题都有着十分密切地联系。

弹性力学

弹性力学

C11 C12 , 2
x
2u j 2ui 2ui the equations of motion reads: r 2 2 l t x j x ix j
This is a set of coupled equations ; hard to solve
dE Vacuum
dT
1 1 dE dE r VCP r SxCP
1 0.9x10 3
2700 x 7x10 9 xp x(25x10 6 )2 x 880
x 7Байду номын сангаасnm
x dE = 1 mJ ; R=0.9 d = 50 µm
dT
Metal
dE
dT 3.10 6 K
The lighted material conducts the heat
one must apply the Fourier transport equation Where K is the thermal conductivity (W.m-1.K-1)
Sx , t 2T K t K
Example 2: the absorbed laser flux is uniform across the irradiated area the laser pulse is Gaussian in time
t t 0 2 Sz, t S 0 z . exp 2 t
(s=37.106 Siemens.m-1 in Aluminum)
c is the speed of light (c=3.108 m.s-1) x is the skin depth (x=7 nm in Aluminum)

中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷

中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷

中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷一.选择题(共10小题,每小题3分,共30分)1.力系简化时若取不同的简化中心,则( )。

(A)力系的主矢、主矩都会改变;(B)力系的主矢不会改变,主矩一般会改变;(C)力系的主矢会改变,主矩一般不改变;(D)力系的主矢、主矩都不会改变,力系简化时与简化中心无关。

2.当作用在质点系上的外力系的主矢恒为零时,则( )。

(A) 只有质点系的动量守恒; (B) 只有质点系的动量矩守恒;(C) 只有质点系的动能守恒; (D) 质点系的动量和动能均守恒。

3.关于瞬时平移时下列叙述正确的是:()(A) 速度相同,加速度不同; (B) 速度不同,加速度不同;(C) 速度不同,加速度相同; (D) 速度相同,加速度相同。

4.平面一般力系的二力矩平衡方程为是( )(A) 合力的作用线必然通过A点和B 点的连线 (B) x轴与A点和B点的连线不相互垂直;(C) x轴与A点和B点的连线相互垂直; (D) 合力与x轴相互垂直。

5.圆盘作定轴转动,若某瞬时其边缘上A、B 、C三点的速度、加速度如图所示,则的运动是不可能的()。

(A) 点A,B;(C) 点B,C;(B) 点A,C;(D) 点A,B,C。

6.刚体作平面运动,某瞬时平面图形的角速度为の,角加速度为α,则其上任意两点A、B的加速度在A、B连线上的投影()。

(A) 必相等; (B) 相差AB·w²;(C) 相差AB·α; (D) 相差(AB·w²+AB·α)。

7.在图示系统中,A点的虚位移大小δr₄与C点的虚位移大小δrc的比值δr₄:δrc=()(A)Icosβlh;(B)l/(hcos β);(C)lcos²βlh;(D)Ih/cos²β。

8.已知刚体质心C 到相互平行的z'、z轴之间的距离分别为a、b,刚体的质量为m,对 z 轴的转动惯量为J,则的计算公式为( )。

弹性力学ppt课件

弹性力学ppt课件

弹性力学ppt课件•弹性力学基本概念与原理•弹性力学分析方法与技巧目录•一维问题分析与实例讲解•二维问题分析与实例讲解•三维问题分析与实例讲解•弹性力学在工程领域应用探讨01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内力分布规律的科学。

研究对象弹性体,即在外力作用下能够发生变形,当外力去除后又能恢复原状的物体。

弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。

约束条件几何约束(物体形状和尺寸的限制)、物理约束(物体材料属性的限制)。

单位面积上的内力,表示物体内部的受力状态。

应力物体在外力作用下产生的变形程度,表示物体的变形状态。

应变物体上某一点在外力作用下的位置变化。

位移应力与应变之间存在线性关系,位移是应变的积分。

关系应力、应变及位移关系虎克定律及其适用范围虎克定律在弹性限度内,物体的应力与应变成正比,即σ=Eε,其中σ为应力,ε为应变,E为弹性模量。

适用范围适用于大多数金属材料在常温、静载条件下的力学行为。

对于非金属材料、高温或动载条件下的情况,需考虑其他因素或修正虎克定律。

02弹性力学分析方法与技巧0102建立弹性力学基本方程根据问题的具体条件和假设,建立平衡方程、几何方程和物理方程。

选择适当的坐标系和坐标…针对问题的特点,选择合适的坐标系,如直角坐标系、极坐标系或柱坐标系,并进行必要的坐标系转换。

求解基本方程采用分离变量法、积分变换法、复变函数法等方法求解基本方程,得到位移、应力和应变的解析表达式。

确定边界条件和初始条件根据问题的实际情况,确定位移边界条件、应力边界条件以及初始条件。

验证解析解的正确性通过与其他方法(如数值法、实验法)的结果进行比较,验证解析解的正确性和有效性。

030405解析法求解思路及步骤将连续体离散化为有限个单元,通过节点连接各单元,建立单元刚度矩阵和整体刚度矩阵,求解节点位移和单元应力。

弹性力学基础知识归纳

弹性力学基础知识归纳第一篇:弹性力学基础知识归纳一.填空题1.最小势能原理等价于平衡微分方程和应力边界条件2.一组可能的应力分量应满足平衡微分方程和相容方程。

二.简答题1.简述圣维南原理并说明它在弹性力学中的作用。

如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。

作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。

(2)将次要的位移边界条件做应力边界条件处理。

2.写出弹性力学的平面问题的基本方程。

应用这些方程时,应注意什么问题?(1).平衡微分方程:决定应力分量的问题是超静定的。

(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。

(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。

但是形变分量完全确定时,位移分量不完全确定。

3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?由六个分量决定。

在确定方向的时候,正面上的应力沿正方向为正,负方向为负。

负面上的应力沿负方向为正,正方向为负。

5.什么叫平面应力问题和平面应变问题?举出工程实例。

平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。

例如工程中的深梁和平板坝的平板支墩。

平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。

例如6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。

(1)完全弹性假定。

(2)均匀性假定。

(3)连续性假定。

(4)各向同性假定。

(5)小变形假定。

满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。

一般混凝土构件和一般土质地基可以看做为理想弹性体。

弹性力学讲义

弹性力学01绪论1.1弹性力学的内容1.2弹性力学的几个基本概念 1.3弹性力学中的基本假定。

1.1、弹性力学的内容弹性力学:研究弹性体由于受外力、边界约束或温度等原因而发生的应力、变形和位移。

研究弹性体的力学:有材料力学、结构力学、弹性力学。

它们的研究对象分别如下: ①材料力学:研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。

②结构力学:在材料力学基础上研究杆系结构(如桁架、钢架等)③弹性力学:研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。

在研究方法上,弹性力学和材料力学也有区别:弹力研究方法:在区域V 内严格考虑静力学、几何学和物理学三方面条件,建立三套方程;在边界s 上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。

材力也考虑这几方面的条件,但不是十分严格的:常常引用近似的计算假设(如平面截面假设)来简化问题,并在许多方面进行了近似的处理。

因此材料力学建立的是近似理论,得出的是近似的解答。

从其精度来看,材料力学解法只能适用于杆件。

例如:材料力学:研究直梁在横向载荷作用下的平面弯曲,引用了平面假设,结果:横截面上的正应力按直线分布。

()zM x yI σ⋅=弹性力学:梁的深度并不远小于梁的跨度,而是同等大小的,那么,横截面的正应力并不按直线分布,而是按曲线变化的。

22()345z M x y y y q I h h σ⎛⎫⋅=+- ⎪⎝⎭这时,材料力学中给出的最大正应力将具有很大的误差。

弹性力学在力学学科和工程学科中,具有重要的地位:弹性力学是其他固体力学分支学科的基础。

弹性力学是工程结构分析的重要手段。

尤其对于安全性和经济性要求很高的近代大型工程结构,须用弹力方法进行分析。

工科学生学习弹力的目的:1)理解和掌握弹力的基本理论; 2)能阅读和应用弹力文献;3)能用弹力近似解法(变分法、差分法和有限单元法)解决工程实际问题: 4)为进一步学习其他固体力学分支学科打下基础。

2024年度-弹性力学讲课文档

弹性力学讲课文档contents •弹性力学基本概念与原理•弹性力学分析方法•一维问题求解方法与应用•二维问题求解方法与应用•三维问题求解方法与应用•弹性力学在工程中应用案例目录01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内部应力分布规律的科学。

研究对象主要研究弹性体(如金属、岩石、橡胶等)在小变形条件下的力学行为。

弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。

约束条件弹性体在变形过程中,必须满足几何约束(如位移连续、无重叠等)和物理约束(如应力平衡、应变协调等)。

应力单位面积上的内力,表示物体内部各部分之间的相互挤压或拉伸作用。

应变物体在外力作用下产生的形状和尺寸的变化,反映物体变形的程度。

位移物体上某一点在变形前后位置的变化,描述物体的整体移动。

关系应力与应变之间存在线性关系(胡克定律),位移是应变的积分结果。

应力、应变及位移关系弹性力学中能量原理能量守恒原理弹性体在变形过程中,外力所做的功等于弹性体内部应变能的增加。

最小势能原理在所有可能的位移场中,真实位移场使系统总势能取最小值。

虚功原理外力在虚位移上所做的虚功等于内力在相应虚应变上所做的虚功。

02弹性力学分析方法解析法分离变量法通过分离偏微分方程的变量,将其转化为常微分方程进行求解。

积分变换法利用积分变换(如傅里叶变换、拉普拉斯变换等)将偏微分方程转化为常微分方程或代数方程进行求解。

复变函数法引入复变函数,将弹性力学问题转化为复平面上的问题,利用复变函数的性质进行求解。

将连续问题离散化,用差分方程近似代替微分方程进行求解。

有限差分法有限元法边界元法将连续体划分为有限个单元,对每个单元进行分析并建立单元刚度矩阵,然后组装成整体刚度矩阵进行求解。

将边界划分为有限个单元,利用边界积分方程进行求解,适用于处理无限域和复杂边界问题。

半解析法有限体积法将计算区域划分为一系列控制体积,将待解的微分方程对每一个控制体积积分得出离散方程进行求解。

弹性力学试题及答案讲解-共12页

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档