1.1.1 归纳推理 同步训练(高中数学选修2-2 北师大版)

合集下载

2021-2022高二数学北师大版选修2-2课后作业:1.1 归纳与类比 Word版含解析

2021-2022高二数学北师大版选修2-2课后作业:1.1 归纳与类比 Word版含解析

第一章 推理与证明§1 归纳与类比课后作业提升1观看下列事实:|x|+|y|=1的不同整数解(x ,y )的个数为4,|x|+|y|=2的不同整数解(x ,y )的个数为8,|x|+|y|=3的不同整数解(x ,y )的个数为12,……,则|x|+|y|=20的不同整数解(x ,y )的个数为( ) A.76B.80C.86D.92解析:由已知条件得,|x|+|y|=n (n ∈N +)的不同整数解(x ,y )的个数为4n ,所以|x|+|y|=20的不同整数解(x ,y )的个数为80,故选B . 答案:B2将自然数0,1,2,…,依据如下形式进行摆放:依据以上规律判定,从2021到2022的箭头方向是( )解析:本题中的数字及箭头方向都有肯定的规律.箭头每经过四个数就要重复消灭,即以4为周期变化.2022恰好是4的倍数,2021应当与1的起始位置相同. 答案:B3已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S=底×高2,可推知扇形面积公式S 扇等于()A.r 22B.l 22C.lr 2D.不行类比解析:由扇形的弧长与半径分别类比三角形的底边与高,可得扇形的面积公式. 答案:C4三角形的面积为S=12(a+b+c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四周体的体积为( )A.V=13abcB.V=13ShC.V=13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D.V=13(ab+bc+ac )h (h 为四周体的高)解析:设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四周体A BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四周体分割为四个以O 为顶点,以原来面为底面的四周体,高都为r ,所以有V=13(S 1+S 2+S 3+S 4)r. 答案:C5在平面几何里,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13”.拓展到空间,类比平面几何的上述结论,则正四周体的内切球半径等于这个正四周体的高的 . 解析:三角形有三条边→13;而正四周体有四个面→14,可接受分割法证明. 答案:146观看下列不等式:①√2<1;②√2√6<√2;③√2√6√12<√3;……则第5个不等式为 .答案:√2+√6√12√20√30<√57已知a ,b 为正整数,设两直线l 1:y=b-b a x 与l 2:y=b ax 的交点为P 1(x 1,y 1),且对于n ≥2的自然数,两点(0,b ),(x n-1,0)的连线与直线y=b ax 交于点P n (x n ,y n ). (1)求点P 1,P 2的坐标;(2)猜想点P n 的坐标公式.分析:两直线的交点坐标可通过解方程组求出,由两点坐标又可写出新的直线方程,从而猜想出点P n 的坐标. 解:(1)解方程组{y =b -bax ,y =bax ,得P 1(a 2,b2).过(0,b ),(a 2,0)两点的直线方程为2x a +yb=1,与y=b a x 联立,解得P 2(a 3,b 3).(2)由(1)可猜想P n (a n+1,bn+1).8图(1)(2)(3)(4)为刺绣中较简洁的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越秀丽;现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n+1)与f (n )之间的关系式,并依据你得到的关系式求出f (n )的表达式; (3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)由于f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n+1)-f (n )=4n , 由于f (n+1)-f (n )=4n , 所以f (n+1)=f (n )+4n , 所以f (n )=f (n-1)+4(n-1) =f (n-2)+4(n-1)+4(n-2)=f (n-3)+4(n-1)+4(n-2)+4(n-3) =……=f [n-(n-1)]+4(n-1)+4(n-2)+4(n-3)+…+4[n-(n-1)] =2n 2-2n+1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n), 所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32−12n.。

2020-2021学年北师大版数学选修2-2学案-1.1.1-归纳推理-含解析

2020-2021学年北师大版数学选修2-2学案-1.1.1-归纳推理-含解析

|§1归纳与类比1.1归纳推理授课提示:对应学生用书第1页[自主梳理]一、推理推理一般包括______推理和________推理.二、归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中________都有这种属性.我们将这种推理方式称为归纳推理.三、归纳推理的特征归纳推理是由部分到________,由个别到________的推理.[双基自测]1.数列1,5,10,16,23,31,x,50,…中的x等于()A.38B.39C.40 D.412.由集合{a1},{a1,a2},{a1,a2,a3},…的子集个数归纳出集合{a1,a2,a3,…,a n}的子集个数为()A.n B.n+1C.2n D.2n-13.在数列{a n}中,已知a1=3,a2=6,且a n+2=a n+1-a n,则a33为()A.3 B.-3C.6 D.-64.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出________.5.如图(1),将一个边长为1的正三角形的每条边三等分,以中间一段为边向三角形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)…试用n 表示出第(n )个图形的边数a n =________.[自主梳理]一、合情 演绎 二、每一个事物 三、整体 一般 [双基自测]1.C 前6项从第2项起每一项与前一项的差分别为4,5,6,7,8,由此可得x =31+9=40. 2.C 由前三个集合子集的个数分别为21,22,23,可归纳得出{a 1,a 2,…,a n }的子集个数为2n .3.A 由题意可得,a 1=3,a 2=6,a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,a 8=6,归纳出每6项一个循环,则a 33=a 3=3.4.1+122+…+1(n +1)2<2n +1n +1(n ∈N +) 利用归纳推理,不等号的右边的分母与左边的最后一项的分母的算术平方根相同,而右边的分子的变化遵循规律2n +1,n 为正整数.5.3×4n -1 观察图形可知,a 1=3,a 2=12,a 3=48,…,故{a n }是首项为3,公比为4的等比数列,故a n =3×4n -1.授课提示:对应学生用书第1页探究一 数、式中的归纳推理[例1] 已知:1>12;1+12+13>1;1+12+13+14+15+16+17>32;1+12+13+…+115>2;….请你归纳出一个最贴切的一般性结论.[解析] 1=21-1,3=22-1,7=23-1,15=24-1,…,猜想不等式左边最后一项的分母为2n -1,而不等式右端依次分别为:12,22,32,42,…,n2.归纳得一般结论:1+12+13+…+12n -1>n2(n ∈N +).根据给出的数与式,归纳一般结论的思路:(1)观察数与式的结构特征,如数、式与符号的关系,代数式的相同或相似之处等;(2)提炼出数、式的变化规律;(3)运用归纳推理写出一般结论.1.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.解析:由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,….因此,第五个等式为13+23+33+43+53+63=212.答案:13+23+33+43+53+63=212探究二几何图形中的归纳推理[例2]有两种花色的正六边形地面砖.按下图的规律,拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是()A.26B.31C.32 D.36[解析]法一:有菱形纹的正六边形个数如下表:图案123…个数61116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有菱形纹正六边形围绕外,每增加一块无纹正六边形,只需增加5块有菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的有菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为6+5×(6-1)=31.[答案] B图形的归纳推理问题,可从图形的变化规律入手求解,一般研究图形中点、线或面等的增加变化数值,结合数列的知识得出规律.2.(1)如图(a)(b)(c)(d)为四个平面图形.数一数,每个平面图形各有多少个顶点?多少条边?它们分别围成了多少个区域?请将结果填入下表(按填好的例子做);顶点数边数区域数(a)46 3(b)(c)(d)(2)(3)现已知某个平面图形有1 005个顶点,且围成了1 005个区域,试根据以上关系确定这个图形有多少条边.解析:(1)填表如下:顶点数边数区域数(a)46 3(b)812 5(c)69 4(d)1015 6(2)4+3-6=1,8+5-12=1,6+4-9=1,10+6-15=1.所以我们可以推断:任何平面图形的顶点数、边数及区域数之间都有下述关系:顶点数+区域数-边数=1.(3)由上面所给的关系,可知所求平面图形的边数.边数=顶点数+区域数-1=1 005+1 005-1=2 009.对归纳推理的特征掌握不准确致误[例3]对任意正整数n,猜想2n与n2的大小关系是________.[解析]当n=1时,21>12;当n=2时,22=22;当n=3时,23<32;当n=4时,24=42;当n=5时,25>52,当n=6时,26>62;所以可以猜想当n=3时,2n<n2;当n∈N+且n≠3时,2n≥n2.[答案]当n=3时,2n<n2;当n∈N+且n≠3时,2n≥n2.[错因与防范]本题易错解为n≥3时2n<n2,错因是只列出了n=1,2,3时的情况,列出的数据太少,没能得到准确的猜想.防范措施:在进行归纳推理时,为避免出现以偏概全的情形,对于特殊项要多验证几项,再作猜想,以掌握更多归纳特征,同时要根据变化规律和趋势作判断.。

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。

高中数学 北师大选修2-2 1.1.1归纳推理

高中数学 北师大选修2-2  1.1.1归纳推理
从前有个财主,想教儿子识字,请来一位教书先 生.先生把着学生的笔杆儿,
写一横,告诉是个“一”字; 写两横,告诉是个“二”字; 写三横,告诉是个“三”字. 学到这里,儿子就告诉父亲说: “我已经学会了写字,不用先生再教了.” 于是,财主就把教书先生给辞退了. 一天,财主要邀请一位姓万的朋友,叫儿子写张 请帖.儿子从早晨进入书房,但到中午都没出来。
(4)
(5)
4.观察下列两式: sin230°+cos260°+sin30°·cos60°=43; sin220°+cos250°+sin20°·cos50°=43; sin215°+cos245°+sin15°·cos45°=43. 分析上面的两式的共同特点,写出反映一般规律的等式,
并证明你的结论.
【解析】推广结论: sin2α+cos2(α+30°)+sinα·cos(α+30°)=34. 证明如下: sin2α+cos2(α+30°)+sinα·cos(α+30°) =34sin2α+[cos(α+30°)+12sinα]2 =34sin2α+(cosαcos30°-sinαsin30°+12sinα)2 =34sin2α+43cos2α=34.
哥德巴赫猜想的过程: 具体的材料 观察分析
猜想出一般性的结论
【2】统计初步中的用样本估计总体 通过从总体中抽取部分对象进行观测或试验, 进而对整体作出推断.
【3】成语“一叶知秋”
意思是从一片树叶的凋落,知道秋天将要来到.比 喻由细微的迹象看出整体形势的变化,由部分推知全 体.
由某类事物的部分对象具有某些特征,推出 该类事物的全部对象都具有这些特征的推理,或 者由个别事实概括出一般结论的推理,称为归纳 推理(简称归纳).
分别把n=1,2,3,4代入an1

北师大版选修22高中数学111《归纳推理》同步训练

北师大版选修22高中数学111《归纳推理》同步训练

第一章推理与证明§1归纳与类比1、1归纳推理错误!1。

把1,3,6,10,15,21,…这些数叫作三角形数,如图所示,则第七个三角形数是( ).A.27B.28C.29D.30解析第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,第四个三角形数是1+2+3+4=10、因此,归纳推理得第n个三角形点数是1+2+3+4+…+n=错误!(个).由此可以得出第七个三角形点数是28、答案B2.根据给出的数塔,猜测123 456×9+7等于( )。

1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=11 111;12 345×9+6=111 111、A.1 111 110 B。

1 111 111C。

1 111 112 D.1 111 113答案B3.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为().A。

01 B.43 C。

07 D.49解析因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4、又因为2 011=4×502+3,所以72 011的末两位数字与73的末两位数字相同,故选B、答案B4.经计算发现下列不等式:错误!+错误!<2错误!,错误!+错误!〈2错误!,错误!+错误!〈2错误!,…根据以上不等式的规律,试写出一个对正实数a、b都成立的条件不等式:________、解析各不等式右边相同,左边两根号内的数之和等于20、答案当a+b=20时,有a+错误!<2错误!,a、b∈R+5。

观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为________。

数学北师大版高中选修2-2第一章 推理与证明练习题

数学北师大版高中选修2-2第一章 推理与证明练习题

第一章 推理与证明练习题1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是: ;2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为: ;3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于: ;4.否定结论“至多有两个解”的说法是: ;5.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为: ;6.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于: ;7.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定: ;8.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于: ;9.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.10.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图111.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.12.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.13.已知a +b +c =0,比较ab +bc +ca 的大值与0的大小;14.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,….根据上述规律,第五个等式为________________________.15.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n .16.(2014·银川模拟)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( )A .假设n =2k +1时正确,再推n =2k +3时正确(k ∈N +)B .假设n =2k -1时正确,再推n =2k +1时正确(k ∈N +)C .假设n =k 时正确,再推n =k +1时正确(k ∈N +)D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(k ∈N +)17.f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.推测:当n ≥2时,有____________.18.(2014·陕西文,14)已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +, 则f 2014(x )的表达式为________.19.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.20.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明.21.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.22.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1恒成立.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32-12n.18.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解:(1)f 1(x )=x1+x2(x >0),f 2(x )=x1+x21+x 21+x 2=x1+2x 2,f 3(x )=x1+2x 21+x 21+2x2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x1+nx2,下面用数学归纳法证明: ①当n =1时,命题显然成立.②假设当n =k 时,f k (x )=x1+kx2,那么f k +1(x )=x1+kx 21+x21+kx2=x1+kx 2+x2=x 1+k +x 2.这就是说,当n =k +1时命题成立.由①②,可知f n (x )=x1+nx2对所有n ∈N +均成立.20.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.[分析] 利用不完全归纳法猜想归纳出a n ,然后用数学归纳法证明.解题的关键是根据已知条件和假设寻找a k 与a k +1和S k 与S k +1之间的关系.[解析] (1)由已知,得a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a3=5+5+10=20,a n =⎩⎪⎨⎪⎧n =5×2n -2n .(2)①当n =2时,a 2=5×22-2=5,表达式成立.当n =1时显然成立,下面用数学归纳法证明n ≥2时结硫化亦成立.②假设n =k (k ≥2,k ∈N +)时表达式成立,即a k =5×2k -2, 则当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+…+a k=5+5+10+…+5×2k -2=5+-2k -11-2=5×2k -1=5×2(k +1)-2.故当n =k +1时,表达式也成立.由①②可知,对一切n (n ≥2,n ∈N +)都有a n =5×2n -2.[点评] 本题先用不完全归纳法猜想出通项,然后用数学归纳法证明,考查了由特殊到一般的数学思想,也考查了数列知识,在高考中这类题往往是压轴题.解决方法是观察与分析法,也就是说解决这类题要注意观察数列中各项与其序号的变化关系,归纳出构成数列的规律,同时还要注意第一项与其他各项的差异,从而发现其中的规律.21.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1恒成立.第一章 推理与证明 (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是( )A .演绎推理B .归纳推理C .类比推理D .以上都不对【解析】 由部分推断全体,是归纳推理. 【答案】 B2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( ) A .25 B .6 C .7 D .8【解析】 将数列分组得(1),(2,2),(3,3,3),(4,4,4,4),…,这样每一组的个数为1,2,3,4,…;其和为n n +2,令n =6,则有6×72=21,所以第25项在第7组,因此第25项是7.【答案】 C3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于( )A .1B .1+12C .1+12+13D .1+12+13+14【解析】 中间的式子共有2n 项,故n =2时,中间的式子等于1+12+13+14.【答案】 D4.否定结论“至多有两个解”的说法中,正确的是( ) A .有一个解 B .有两个解C .至少有三个解D .至少有两个解【解析】 “至多有两个解”包含有两解,仅有一解,和无解,故其否定为至少有三个解.【答案】 C5.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a ,b 大小不定【解析】 a =1c +1+c ,b =1c +c -1,显然a <b .【答案】 B6.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)【解析】 设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都为r ,所以有V =13(S 1+S 2+S 3+S 4)r .【答案】 C 7.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于( )A .f (n -1)+1B .f (n -2)+2C .f (n -2)+1D .f (n -1)+f (n -2)【解析】 要到达第n 级台阶有两种走法:(1)在第n -2级的基础上到达;(2)在第n -1级的基础上到达.【答案】 D8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A .大于零B .等于零C .小于零D .正负都可能【解析】 f (x )=x 3+x 是奇函数且在R 上是增函数,由a +b >0,得a >-b ,故f (a )>f (-b ),可得f (a )+f (b )>0.同理f (a )+f (c )>0,f (b )+f (c )>0.所以f (a )+f (b )+f (c )>0.【答案】 A9.(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199【解析】 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.【答案】 C10.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于( )A.12B .-1C .2D .3【解析】 ∵a 1=12,a n +1=1-1a n,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *)∴a 2 013=a 3+3×670=a 3=2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在横线上)11.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.【解析】 数列可写成35,48,511,614,717,….猜想通项公式a n =n +23n +2.【答案】 n +23n +212.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图1【解析】根据规律和第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.【答案】 28 n +n +213.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.【解析】 就x 是否等于a ,b 而言有四种情形:①x =a ,x ≠b ;②x ≠a ,x =b ;③x =a ,x =b ;④x ≠a ,x ≠b .故应假设x =a 或x =b . 【答案】 x =a 或x =b14.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.【解析】 根据等差、等比数列中运算的性质知: 在等比数列{b n }中会有10a 11·a 12·…·a 20=30a 1·a 2·…·a 30.【答案】 10a 11·a 12·…·a 20=30a 1·a 2·…·a 30三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)用反证法证明:如果x >12,那么x 2+2x -1≠0.【证明】 假设x 2+2x -1=0, 则解得x 1=2-1,x 2=-2-1.又x 1<12,x 2<12,这与已知x >12矛盾.故假设不成立,x 2+2x -1≠0成立.16.(本小题满分12分)试比较2n 与n 2(n ∈N *)的大小关系,并用数学归纳法证明.【证明】 当n =1时,21>12,即2n >n 2,当n =2时,22=22,即2n =n 2,当n =3时,23<32,即2n <n 2,当n =4时,24=42,即2n =n 2,当n =5时,25>52,即2n >n 2,当n =6时,26>62,即2n >n 2, …猜测,当n ≥5时,2n >n 2.下面用数学归纳法证明猜测成立. ①当n =5时,由上可知猜测成立.②设n =k (k ≥5)时,命题成立,即2k >k 2. ∴2k +1=2·2k >2k 2=k 2+k 2>k 2+(2k +1)=(k +1)2,即n =k +1时命题也成立.由①和②可得,n ≥5时,2n >n 2(n ∈N *).17.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n-1-1n)=1+12(1-1n)=32-12n.18.(本小题满分14分)已知a、b、c>0,求证:a3+b3+c3≥13(a2+b2+c2)(a+b+c).【证明】∵a、b、c>0,∴a2+b2≥2ab,∴(a2+b2)(a+b)≥2ab(a+b),∴a3+b3+a2b+ab2≥2ab(a+b)=2a2b+2ab2,∴a3+b3≥a2b+ab2.同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,将三式相加得,2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac2.∴3(a3+b3+c3)≥(a3+a2b+a2c)+(b3+b2a+b2c)+(c3+c2a+c2b)=(a2+b2+c2)(a+b+c).∴a3+b3+c3≥13(a2+b2+c2)(a+b+c).。

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(含答案解析)

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(含答案解析)

一、选择题1.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点()3,4A -,且法向量为(1,2)n =-的直线(点法式)方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上方法,在空间直角坐标系中,经过点()1,2,3A ,且法向量为(1,2,1)m =--的平面的方程为( ) A .220x y z +--= B .220x y z ---= C .220x y z ++-=D .220x y z +++=2.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -3.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立4.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确5.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 6.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20647.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球8.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( ) A .12B .14C .16D .189.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12510.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+=12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -二、填空题13.已知数列{},{}n n a b 的通项公式分别为*31,2,nn n a n b n N =-=∈,将{}n a 与{}n b 中的各项混合,并按照从小到大的顺序排成一个新数列(相同元素以一个计):2,4,5,8,11,,记新的数列为{}n c ,若2021n c =,则n =___________.14.我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=,…. 按照以上规律,若11111111n n=具有“穿墙术”,则n =_______. 15.观察下列等式:请你归纳出一般性结论______.16.点00(,)x y 到直线0Ax By C ++=的距离公式为0022d A B=+,通过类比的方法,可求得:在空间中,点(0,1,3)到平面2330x y z +++=的距离为__________. 17.研究cos n α的公式,可以得到以下结论:2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.18.已知结论“1a ,*2R a ∈,且121a a +=,则12114a a +≥;若1a 、2a 、*3R a ∈,且1231a a a ++=,则1239111a a a ++≥”,请猜想若1a 、2a 、…、*R n a ∈,且121n a a a +++=,则12111na a a +++≥__________. 19.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.20.甲、乙、丙、丁四人分别去买体育彩票各一张,恰有一人中奖.他们的对话如下,甲说:“我没中奖”;乙说:“我也没中奖,丙中奖了”;丙说:“我和丁都没中奖”;丁说:“乙说的是事实”.已知四人中有两人说的是真话,另外两人说的是假话,由此可判断中奖的是__________.三、解答题21.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性. 22.已知函数2()1f x x =-,数列{}n a 的前n 项和为n S ,且满足2425()n n S n n f a +=+. (1)求1234,,,a a a a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.23.已知数列{}n a 的前n 项和为n S ,且20S =,()*2n n S n na n N +=∈.(1)试写出数列{}n a 的任意前后两项(即n a 、1n a +)构成的等式;(2)用数学归纳法证明:()*23n a n n N =-∈.24.数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.25.已知各项均不为零的数列{}n a 的前n 项和为n S ,且()141n n n S a a n N *+=⋅+∈,其中11a =.(1)求证:135,,a a a 成等差数列; (2)求证:数列{}n a 是等差数列;(3)设数列{}n b 满足()121nb nn N a *=+∈,且n T 为其前n 项和,求证:对任意正整数n ,不等式212log n n T a +>恒成立. 26.给出下面的数表序列:其中表()1,2,3,...n n =有n 行,第1行的n 个数是1,3,5,…,21n -,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表()3n n ≥(不要求证明)(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{}n b ,求数列{}n b 的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3),利用平面法向量为n =(﹣1,﹣2,1),即可求得结论. 【详解】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3)∵平面法向量为n =(﹣1,﹣2,1), ∴﹣(x ﹣1)﹣2×(y ﹣2)+1×(z ﹣3)=0 ∴x +2y ﹣z ﹣2=0, 故选A . 【点睛】本题考查了类比推理,考查了空间向量数量积的坐标运算,由于平面向量与空间向量的运算性质相似,利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解问题,属于中档题.2.C解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。

北师大版高中数学选修2-2归纳推理同步练习.docx

北师大版高中数学选修2-2归纳推理同步练习.docx

高中数学学习材料马鸣风萧萧*整理制作归纳推理 同步练习1. 从 )4321(16941,321941),21(41,11+++-=-+-++=+-+-=-=概括出第n 个式子为___________________。

2. 第一届漳州琯西蜜柚节上,展会主办方用蜜柚堆成一个正三棱锥“金字塔”,从上向下看,第一层放了1个柚子,第二层放了4个,第三层放了10个,第四层放了20个……若第1-n 层放了220个柚子,则第n 层放了______个柚子。

3. 平面中,凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线……由此猜想,凸n 边形有_______条对角线。

4. 数列{}n a 中,)()1(1,2,1*221N n a a a a n n n ∈-+=-==+,则_______100=S 。

5. 已知数列{}n a ,其中n a a a a a n n n n =+--+=++11,6112,则 (1)求431,,a a a ; (2)求{}n a 的通项公式。

6. 设数列{}n a 中,n n n a a a a a 3235,35,11221-===++,令n n n a a b -=+1,求数列{}n b 的通项公式。

7. 用推理的形式表示等差数列 ,12,,5,3,1-n 的前n 项和n S 的归纳过程。

参考答案 1. 2)1()1()1(16941121+-=-++-+-++n n n n n 。

2. 共286个,由题意可归纳出2)1()1()(++-=n n n f n f 。

3. )4,(2)3(≥∈-n N n n n 。

4. 2600;由题意,当n 为奇数时,n n a a =+2,故199531=====a a a a , 当n 为偶数时,{}n a 是以2a 为首项,公差为2的等差数列。

所以26002)1002(5050)()(1004299531100=++=++++++++=a a a a a a a S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章推理与证明
§1归纳与类比
1.1归纳推理
双基达标(限时20分钟)
1.把1,3,6,10,15,21,…这些数叫作三角形数,如图所示,则第七个三角形数是().
A.27 B.28
C.29 D.30
解析第一个三角形数是1,
第二个三角形数是1+2=3,
第三个三角形数是1+2+3=6,
第四个三角形数是1+2+3+4=10.
因此,归纳推理得第n个三角形点数是1+2+3+4+…+n=(1+n)n
2(个).
由此可以得出第七个三角形点数是28.
答案 B
2.根据给出的数塔,猜测123 456×9+7等于().1×9+2=11;
12×9+3=111;
123×9+4=1 111;
1 234×9+5=11 111;
12 345×9+6=111 111.
A.1 111 110 B.1 111 111
C.1 111 112 D.1 111 113
答案 B
3.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为().A.01 B.43 C.07 D.49
解析因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4.又因为2 011=4×502+3,所以72 011的末两位数字与73的末两位数字相同,故选B.
答案 B
4.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,…根据以上不等式的规律,试写出一个对正实数a、b都成立的条件不等式:________.
解析各不等式右边相同,左边两根号内的数之和等于20.
答案当a+b=20时,有a+b<210,a、b↔R

5.观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第五个等式应为________.
解析由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.
6.已知:1=12;1+3=22;1+3+5=32;1+3+5+7=42,…
根据以上等式的结构特点,请你归纳一般结论.
解注意到各等号左边为若干项奇数的和,且最后一项分别为1=2×1-1;
3=2×2-1;5=2×3-1;7=2×4-1,…
又等号右边相应结果分别为:12;22;32;42;…
由此总结出一般结论:1+3+5+7+…+(2n-1)=n2.
综合提高(限时25分钟)
7.n个连续自然数按规律排成下表:
03→47→811…
↓↑↓↑↓↑
1→25→69→10
根据规律,从2 012到2 014,箭头的方向依次为().A.↓→B.→↑C.↑→D.→↓
解析由前几项可归纳出4n-44n-1→
↓↑
4n-3→4n-2
则n≥1,n∈N*,
2 012=4n,n=503,
∴2 012

2 013→2014
答案 A
8.观察如图所示的正方形图案,每条边(包括两个端点)有n(n≥2,n↔(N*) 个圆点,第n个图案中圆点的总数是S n.
按此规律推断出S n与n的关系式为().A.S n=2n B.S n=4n
C.S n=2n D.S n=4n-4
解析由n=2,n=3,n=4的图案,推断第n个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n个圆点,则圆点的个数为S n=4n-4.
答案 D
9.将全体正整数排成一个三角形数阵如图:。

相关文档
最新文档