无线传感网实验报告

合集下载

无线传感器网络实验报告

无线传感器网络实验报告

一、实验背景随着物联网技术的飞速发展,无线传感器网络(Wireless Sensor Networks,WSN)作为一种重要的信息获取和传输手段,在军事、环境监测、智能交通、智能家居等领域得到了广泛应用。

为了深入了解无线传感器网络的工作原理和关键技术,我们进行了本次实验。

二、实验目的1. 熟悉无线传感器网络的基本概念和组成;2. 掌握无线传感器网络的通信协议和拓扑结构;3. 熟悉无线传感器网络的编程与调试方法;4. 通过实验,提高动手能力和实践能力。

三、实验内容1. 无线传感器网络概述无线传感器网络由传感器节点、汇聚节点和终端节点组成。

传感器节点负责感知环境信息,汇聚节点负责收集和转发数据,终端节点负责处理和显示数据。

传感器节点通常由微控制器、传感器、无线通信模块和电源模块组成。

2. 无线传感器网络通信协议无线传感器网络的通信协议主要包括物理层、数据链路层和网络层。

物理层负责无线信号的传输,数据链路层负责数据的可靠传输,网络层负责数据路由和传输。

3. 无线传感器网络拓扑结构无线传感器网络的拓扑结构主要有星形、树形、网状和混合形等。

星形拓扑结构简单,但易受中心节点故障影响;树形拓扑结构具有较高的路由效率,但节点间距离较长;网状拓扑结构具有较高的可靠性和路由效率,但节点间距离较远。

4. 无线传感器网络编程与调试本实验采用ZigBee模块作为无线通信模块,利用IAR Embedded WorkBench开发环境进行编程。

实验内容如下:(1)编写传感器节点程序,实现数据的采集和发送;(2)编写汇聚节点程序,实现数据的收集、处理和转发;(3)编写终端节点程序,实现数据的接收和显示。

5. 实验步骤(1)搭建实验平台,包括传感器节点、汇聚节点和终端节点;(2)编写传感器节点程序,实现数据的采集和发送;(3)编写汇聚节点程序,实现数据的收集、处理和转发;(4)编写终端节点程序,实现数据的接收和显示;(5)调试程序,确保各节点间通信正常;(6)观察实验结果,分析实验现象。

传感网技术实验报告

传感网技术实验报告

传感网技术实验报告1. 引言传感网技术是一种集传感、计算和通信为一体的无线网络技术,广泛应用于物联网、智能家居、环境监测等领域。

本实验旨在探索和学习传感网技术的原理和应用,通过设计和构建一个简单的传感网系统,加深对传感网技术的了解和认识。

2. 实验目标本实验的主要目标如下:1. 理解传感网技术的基本原理和通信方式;2. 学习使用传感器采集环境数据,并通过传感网传输到中心节点;3. 实现传感节点之间的数据通信和协作。

3. 实验设备和材料本实验所需设备和材料如下:- 传感器节点:多个可编程节点,例如Arduino等;- 中心节点:一台计算机或单片机开发板;- 无线通信模块:用于传感节点之间的通信;- 传感器:根据实验需求选择合适的传感器;- 连接线:用于连接传感器节点和中心节点。

4. 实验步骤4.1 硬件搭建根据实验需求,将传感器节点和中心节点按照拓扑结构连接起来。

每个传感器节点连接一个或多个传感器,用于采集环境数据。

中心节点负责接收传感器节点的数据,并进行处理和存储。

4.2 软件编程针对传感器节点和中心节点,编写相应的软件程序。

传感器节点的程序需要实现数据采集、封装和发送,中心节点的程序需要实现数据接收、解析和处理。

4.3 网络通信配置配置传感节点之间的网络通信参数,包括无线通信模块的通信频率、传输速率和网络拓扑结构。

确保传感节点之间可以正常通信和协作。

4.4 实验数据采集和分析使用传感节点采集环境数据,例如温度、湿度等,并通过传感网传输到中心节点。

中心节点接收数据后进行分析和处理,比如计算平均值、最大值等。

4.5 实验结果展示将实验结果进行展示和分析,比如使用图表展示温度的变化趋势、湿度的时序分布等。

根据实验结果,可以对传感网系统进行优化和改进。

5. 实验总结本实验通过设计和构建一个简单的传感网系统,深入了解和学习了传感网技术的原理和应用。

从硬件搭建到软件编程,从网络通信配置到实验数据采集和分析,全面掌握了传感网技术的实际操作和应用方法。

无线传感实验报告

无线传感实验报告

无线传感实验报告无线传感实验报告引言无线传感技术是一种基于无线通信的传感器网络技术,它可以实时地感知、采集和传输环境中的各种信息。

本实验旨在通过搭建一个简单的无线传感网络,探索其在实际应用中的潜力和限制。

实验目的1.了解无线传感技术的基本原理和应用领域。

2.学习搭建无线传感网络的基本步骤和方法。

3.研究无线传感网络在环境监测、智能家居等方面的实际应用。

实验步骤1.硬件准备:准备一台主控节点和多个从属节点,主控节点负责接收和处理从属节点发送的数据。

2.网络搭建:通过无线通信模块将主控节点和从属节点连接起来,形成一个无线传感网络。

3.传感器连接:将各个从属节点上的传感器与主控节点相连接,实现数据的采集和传输。

4.数据采集:设置从属节点的采样频率和采样范围,开始采集环境中的各种数据。

5.数据传输:从属节点将采集到的数据通过无线通信模块发送给主控节点。

6.数据处理:主控节点接收到数据后,进行数据处理和分析,得出有用的信息。

实验结果通过本实验,我们成功搭建了一个简单的无线传感网络,并实现了环境数据的采集和传输。

在实际应用中,无线传感技术可以广泛应用于环境监测、智能家居、农业等领域。

例如,在环境监测方面,我们可以通过无线传感网络实时监测空气质量、温湿度等参数,并及时采取相应措施保障人们的健康。

在智能家居方面,无线传感技术可以实现家庭设备的自动控制和远程监控,提高生活的便利性和舒适度。

在农业方面,无线传感技术可以监测土壤湿度、光照强度等参数,帮助农民科学种植,提高农作物的产量和质量。

实验总结通过本次实验,我们深入了解了无线传感技术的原理和应用。

无线传感网络可以实现分布式的数据采集和传输,具有灵活性和可扩展性。

然而,在实际应用中,我们也发现了一些问题和挑战。

首先,无线传感网络的能耗问题仍然存在,如何延长节点的电池寿命是一个需要解决的关键问题。

其次,无线传感网络的安全性也需要重视,如何保护数据的隐私和防止网络攻击是一个亟待解决的问题。

无限传感网络实验报告

无限传感网络实验报告

一、实验目的1. 了解无线传感网络的基本概念、组成和结构。

2. 掌握无线传感网络的基本操作和实验方法。

3. 通过实验,验证无线传感网络在实际应用中的可靠性和有效性。

二、实验内容1. 无线传感网络基本概念及组成无线传感网络(Wireless Sensor Network,WSN)是一种由大量传感器节点组成的分布式网络系统,用于感知、采集和处理环境信息。

传感器节点负责采集环境信息,并通过无线通信方式将信息传输给其他节点或中心节点。

无线传感网络主要由以下几部分组成:(1)传感器节点:负责感知环境信息,如温度、湿度、光照等。

(2)汇聚节点:负责将多个传感器节点的信息进行融合、压缩,然后传输给中心节点。

(3)中心节点:负责收集各个汇聚节点的信息,进行处理和分析,并将结果传输给用户。

2. 无线传感网络实验(1)实验环境硬件平台:ZigBee模块、ZB-LINK调试器、USB3.0数据线、USB方口线两根、RJ11连接线;软件平台:WinXP/Win7、IAR开发环境、SmartRFFlashProgrammer、ZigBeeSensorMonitor。

(2)实验步骤① 连接硬件设备,搭建无线传感网络实验平台;② 编写传感器节点程序,实现环境信息的采集;③ 编写汇聚节点程序,实现信息融合和压缩;④ 编写中心节点程序,实现信息收集和处理;⑤ 测试无线传感网络性能,包括数据采集、传输、处理等。

(3)实验结果分析① 数据采集:传感器节点能够准确采集环境信息,如温度、湿度等;② 传输:汇聚节点将多个传感器节点的信息进行融合和压缩,传输给中心节点;③ 处理:中心节点对采集到的信息进行处理和分析,生成用户所需的结果;④ 性能:无线传感网络在实际应用中表现出较高的可靠性和有效性。

三、实验总结1. 无线传感网络是一种新型的网络技术,具有广泛的应用前景;2. 通过实验,我们掌握了无线传感网络的基本操作和实验方法;3. 无线传感网络在实际应用中具有较高的可靠性和有效性,能够满足各种环境监测需求。

无线传感网络技术实验报告

无线传感网络技术实验报告

无线传感网络技术实验报告个人文档:欢迎来到我的豆丁文档,请在阅读后给予评价~谢谢~======================================================================== ====================个人文档:欢迎来到我的豆丁文档,请在阅读后给予评价~谢谢~======================================================================== ====================无线传感网络技术实验报告学院 : 物理与机电工程学院专业 : 电子科学与技术班级 : 2013级2班学号 :姓名 :指导老师 :感谢你来到我的生命中,带来了美丽、快乐,感谢你给了我永远珍视的记忆。

==================================================================== ===欢迎下次再来学习个人文档:欢迎来到我的豆丁文档,请在阅读后给予评价~谢谢~======================================================================== ====================个人文档:欢迎来到我的豆丁文档,请在阅读后给予评价~谢谢~======================================================================== ====================一、 ADC的采样实验实验的目的:通过本次实验了解到了CC2530 ADC的相关寄存器的详细配置;通过本次实验了解到了CC2530的ADC单次采集功能的运用。

实验的内容:1. 根据相关的实验配置ADC寄存器;2. 为了实现可调电阻的电压采集。

实验设备:硬件部分:ZIGBEE调试底板一个 ZIGBEE的仿真器一个;ZIGBEE模块板一个电源一个软件部分:IAR751的安装包仿真器驱动程序实验的原理:0端口的引脚的信号作为ADC的输入,本次实验的ADC 有三种种类的控制寄存器,他们分别为:ADCCON1, ADCCON2 和ADCCON3,这些寄存器用于配置ADC,通过这个来并报告试验结果。

无线传感网实训报告万能

无线传感网实训报告万能

一、实训背景随着物联网技术的飞速发展,无线传感网作为物联网的核心技术之一,在环境监测、智能家居、工业控制等领域扮演着越来越重要的角色。

为了提高我们对无线传感网技术的理解和应用能力,我们开展了为期两周的无线传感网实训。

二、实训目标1. 理解无线传感网的基本原理和组成。

2. 掌握无线传感网的搭建和配置方法。

3. 学习无线传感网的数据采集、传输和处理技术。

4. 熟悉无线传感网在实际应用中的案例。

三、实训内容1. 无线传感网基本原理无线传感网(Wireless Sensor Network,WSN)是由大量的传感器节点组成,通过无线通信方式相互连接,协同工作,实现对特定区域进行感知、监测和控制的一种网络系统。

传感器节点通常由传感模块、处理模块、通信模块和能量供应模块组成。

2. 无线传感网搭建与配置实训中,我们使用ZigBee模块搭建了一个简单的无线传感网。

首先,我们需要准备ZigBee模块、无线模块、传感器、电源等硬件设备。

然后,通过编程实现对传感器数据的采集、处理和传输。

在搭建过程中,我们学习了以下内容:- ZigBee模块的硬件连接和编程;- 传感器数据的采集和处理;- 无线通信协议的配置;- 网络拓扑结构的构建。

3. 无线传感网数据采集与传输在实训中,我们使用了温度传感器和湿度传感器进行数据采集。

通过编程,我们将采集到的数据发送到上位机进行显示和分析。

我们学习了以下内容:- 传感器数据的实时采集;- 数据的格式化和压缩;- 无线通信协议的数据传输;- 数据的加密和安全传输。

4. 无线传感网应用案例为了更好地理解无线传感网在实际应用中的价值,我们分析了以下几个案例:- 环境监测:通过无线传感网对空气质量、水质等进行实时监测;- 智能家居:利用无线传感网实现对家庭设备的远程控制和能源管理;- 工业控制:利用无线传感网对生产线进行实时监控和故障预警。

四、实训成果通过本次实训,我们取得了以下成果:1. 掌握了无线传感网的基本原理和组成;2. 熟悉了无线传感网的搭建和配置方法;3. 学会了无线传感网的数据采集、传输和处理技术;4. 深入了解了无线传感网在实际应用中的案例。

无限传感网络实验报告

无限传感网络实验报告

无线传感器网络综合实验报告小组成员:陈相艺,陈思行,丁文俊,黄世杰,林泽伟一.实验名称:光照强度信息采集实验二.实验内容传感器节点采集光照强度信息(如果没有光传感器,则采集电压参数),采用静态路由(指定父节点),通过多跳传到基站节点,基站节点通过串口与PC连接,将采集到的光照强度、节点ID、采样时间存入数据库,用户可以按照节点、时间或逻辑条件查询该数据库。

本小组实验稍作简化之后,将数据改为自动生成一个文本文档,然后记录在内。

三.实验目的1、了解如何运用节点上的传感器采集数据。

2、掌握Sense和Oscilloscope程序,实现数据采集。

3、利用上课介绍的PC与节点之间的通信工具,把采集到的数据显示出来。

4、了解TinyOS中的永久数据存储方法。

四.实验原理1、基本介绍传感(Sensing)是传感器网络应用中不可或缺的部分。

它涉及到两个任务:①配置传感器:配置会因平台的不同而不同②读传感器数据在TinyOS 2.0平台上,独立的sensing应用程序不再使用像ADCControl这样的配置接口。

取而代之地,它们使用标准的数据获取接口:Read,ReadStream或ReadNow,来收集传感器数据。

2、Sense应用程序2.1. 功能:周期性地对默认传感器采样并用LEDs显示低位2.2. Sense实现过程:①Sense.nc用Boot启动周期性计时器②计时器一到时间,Sense.nc就signal一个timer事件③读数据是分相操作的④读完用LEDs显示数据2.3.DemoSensorC组件①DemoSensorC为Sense提供了Read<uint16_t>接口②Sense.nc无法知道他所连接的传感器,甚至无法知道是否从传感器得到数据,因为它能导通到任何提供Read<uint16_t>接口的组件③事实上DemoSensorC在不同的平台下是不一样的。

平台依赖于DemoSensorC组件来定义应用程序从哪个传感器来采样。

无线传感网络实验报告

无线传感网络实验报告

无线传感网络实验报告无线传感网络实验报告引言:无线传感网络(Wireless Sensor Network,WSN)是一种由大量分布式的传感器节点组成的网络系统,用于收集、处理和传输环境信息。

WSN具有低成本、低功耗、自组织等特点,广泛应用于环境监测、智能交通、农业等领域。

本实验旨在通过搭建一个简单的无线传感网络,探索其工作原理和性能特点。

一、实验环境搭建1. 硬件准备:选用多个传感器节点和一个基站节点。

传感器节点包括传感器、微处理器、无线通信模块等;基站节点负责接收和处理传感器节点发送的数据。

2. 软件准备:选择适合的操作系统和开发工具,例如TinyOS、Contiki等。

编写传感器节点和基站节点的程序代码。

二、传感器节点部署1. 部署传感器节点:根据实验需求,在待监测区域内合理布置传感器节点。

节点之间的距离和布置密度需根据具体应用场景进行调整。

2. 传感器节点初始化:节点启动后,进行初始化工作,包括自身身份注册、与周围节点建立通信连接等。

三、无线传感网络通信1. 数据采集:传感器节点根据预设的采样频率,采集环境信息,并将数据存储到本地缓存中。

2. 数据传输:传感器节点通过无线通信模块将采集到的数据传输给基站节点。

传输方式可以是单跳或多跳,根据节点之间的距离和网络拓扑结构进行选择。

3. 数据处理:基站节点接收到传感器节点发送的数据后,进行数据处理和分析。

可以根据具体需求,对数据进行滤波、聚合等操作,提取有用信息。

四、无线传感网络能耗管理1. 能耗模型:根据传感器节点的工作状态和通信负载,建立能耗模型,评估节点的能耗情况。

2. 能耗优化:通过调整传感器节点的工作模式、通信协议等方式,降低节点的能耗。

例如,采用睡眠唤醒机制、自适应调整通信距离等。

五、实验结果与分析1. 数据传输性能:通过实验测试,评估无线传感网络的数据传输性能,包括数据传输延迟、传输成功率等指标。

2. 能耗分析:根据实验结果,分析传感器节点的能耗情况,探讨能耗优化策略的有效性和可行性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cent ral SouthUniversity无线传感器网络实验报告学院:班级:学号:姓名:时间:指导老师:第一章基础实验1了解环境1.1实验目的安装 IAR开发环境。

CC2530 工程文件创建及配置。

源代码创建,编译及下载。

1.2 实验设备及工具硬件:ZX2530A 型底板及CC2530 节点板一块,USB 接口仿真器,PC 机软件:PC 机操作系统 WinXP,IAR集成开发环境,TI 公司的烧写软件。

1.3实验内容1、安装IAR 集成开发环境IAR 集成开发环境安装文件所在光盘目录:物联网光盘\工具\C D-EW8051-76012、ZIBGEE 硬件连接安装完IAR 和 Smartrf Flash Programmer 之后,按照图所示方式连接各种硬件,将仿真器的20 芯 JTAG口连接到ZX2530A 型 CC2530 节点板上,USB 连接到PC 机上,RS-232串口线一端连接ZX2530A 型 CC2530节点板,另一端连接 P C机串口。

3、创建并配置 CC2530 的工程文件IAR是一个强大的嵌入式开发平台,支持非常多种类的芯片。

IAR 中的每一个 Project,都可以拥有自己的配置,具体包括Device 类型、堆/栈、Linker、Debugger 等。

(1)新建Workspace 和Project首先新建文件夹ledtest。

打开 IAR,选择主菜单File ->New -> Workspace 建立新的工作区域。

选择Project ->Create New Project -> Empty Project,点击 OK,把此工程文件保存到文件夹ledtest 中,命名为:ledtest.ewp(如下图)。

(2)配置Ledtest工程选择菜单Project->Options...打开如下工程配置对话框选择项 General Options,配置 Target 如下Device:CC2530;(3)Stack/Heap设置:XDATA stack size:0x1FF(4)Debugger 设置:Driver:Texas Instruments (本实验为真机调试,所以选择TI;若其他程序要使用IAR仿真器,可选 Simulator)至此,针对本实验的IAR 配置基本结束.4、编写程序代码并添加至工程选择菜单 File->New->File创建一个文件,选择File->Save 保存为main.c将 main.c 加入到 ledtest 工程,将实验代码输入然后选择 Project->Rebuild All 编译工程编译好后,选择Project->Download and debug 下载并调试程序下载完后,如果不想调试程序,可点工具栏上的按钮终止调试。

到此,程序已经下载到了cc2530 芯片的flash 内,按下ZX2530A 上的复位按钮可看到程序的运行效果。

2 LED 实验2.1 实验目的通过I/O 控制小灯闪烁的过程。

在 ZX2530A型CC2530 节点板上运行自己的程序。

2.2 实验设备及工具硬件:ZX2530A 型底板及 CC2530 节点板一块,USB接口仿真器,PC 机软件:PC机操作系统WinXP,IAR 集成开发环境。

2.3 实验结果1.正确连接下载线和 ZX2530A 型CC2530 节点板,打开 ZX2530A型 CC2530 节点板电源。

2.在文件夹“基础实验\2 LED”下打开工程led,编译工程,并下载到CC2530节点板。

3. 观察 LED的闪烁情况。

4. 修改延时函数,可以改变 LED小灯的闪烁间隔时间。

5. 重新编译,并下载程序到 CC2530 节点板,观察 LED 的闪烁情况。

答:增加延时就会发现小灯闪烁的频率降低了。

3 串口实验3.1实验目的本次实验将会学习如果使用串口实现与 PC机的通讯。

(实验中需要 PC 机与开发板之间使用RS232 交叉串口连接线)。

能正确配置 CC2530 的串口。

3.2 实验设备及工具硬件:ZX2530A型底板及 CC2530节点板一块,USB 接口仿真器,PC 机,交叉串口线一根。

软件:PC 机操作系统 WinXP,IAR 集成开发环境、串口调试助手。

3.3实验结果CC2530 能与上位机通过串口正常通信1.正确连接下载线和ZX2530A 型CC2530 节点板,用串口线正确连接上位机和 ZX2530A型板,使能通过串口交换数据。

2.在文件夹“基础实验\5uart”下打开工程uart,编译工程,并下载到CC2530节点板。

3. 通过上位机上的串口调试助手,发送数据到 cc2530,然后检查cc2530 回送给上位机的数据。

3.4实验总结通过这次实验,让我对无线传感器网络有了进一步的了解。

在无线的世界,感觉一切都是那么神奇,二一切又是那么理所当然,记得小时候常常想,那些无线好神秘,画面,声音等怎么可以从一方到达另一方而可以完全不接触。

虽然今天做的实验都是很小很简单的,比起显示中那些绚丽的感觉没什么值得赞扬的,但对于我来说,这个更有魅力,那些绚丽的我是以仰望的视角来对待,而这次我能深入它的原理去真正接触它,以平视来看待它。

第二章射频实验点对点射频通信实验1实验目的在ZX2530A型 CC2530 节点板上运行相应实验程序。

熟悉通过射频通信的基本方法。

练习使用状态机实现收发功能。

2 实验内容接收节点上电后进行初始化,然后通过指令 ISRXON 开启射频接收器,等待接收数据,直到正确接收到数据为止,通过串口打印输出。

发送节点上电后和接收节点进行相同的初始化,然后将要发送的数据输出到 TXFIFO中,再调用指令 ISTXONCCA通过射频前端发送数据。

3实验设备及工具硬件:ZX2530A 型CC2530 节点板2块、USB 接口的仿真器,PC机Pentium100 以上。

软件:PC 机操作系统 WinXP、IAR 集成开发环境、串口监控程序。

4 实验原理发送节点通过串口接收用户的输入数据然后通过射频模块发送到指定的接收节点,接收节点通过射频模块收到数据后,通过串口发送到pc 在串口调试助手中显示出来。

如果发送节点发送的数据目的地址与接收节点的地址不匹配,接收节点将接收不到数据。

以下为发送节点程序流程图:以下为接收节点流程图:5实验步骤1. 打开光盘“无线射频实验\2.点对点通信”双击 p2p.eww 打开本实验工程文件。

2.打开main.c 文件下面对一些定义进行介绍RF_CHANNEL此宏定义了无线射频通信时使用的信道,在多个小组同时进行实验是建议每组选择不同时信道。

但同一组实验中两个节点需要保证在同一信道,才能正确通信。

PAN_ID 个域网ID标示,用来表示不同在网络,在同一实验中,接收和发送节点需要配置为相同的值,否则两个节点将不能正常通信。

SEND_ADDR发送节点的地址RECV_ADDR 接收节点的地址NODE_TYPE 节点类型:0 接收节点,1:发送节点,在进行实验时一个节点定义为发送节点用来发送数据,一个定义为接收节点用来接收数据。

3. 修改NODE_TYPE 的值为 0,并编译下载到节点板。

此节以下称为接收节点。

4.修改 NODE_TYPE的值为 1,并编译下载到另外一个节点板。

此节点板以下称为发送节点。

5.将接收节点的串口与pc 的串口相连,并在 pc 端打开串口调试助手,配置波特率为 115200。

6. 先将接收节点上电,然后将发送节点上电。

7.从串口调试助手观察接收节点收到的数据。

8.修改发送数据的内容,然后编译并下载程序到发送节点,然后从串口调试助手观察收到的数据。

9. 修改接收节点的地址,然后重新编译并下载程序到接收节点,然后从发送节点发送数据观察接收节点能否正确接收数据。

6实验数据分析及结论发送节点将数据发送出去后,接收节点接收到数据,并通过串口调试助手打印输出。

发送数据的最大长度为125(加上发送的据长度和校验,实际发送的数据长度为 128 字节)。

7 实验心得这次实验在原来的短距离无线通信中有所涉猎,所以应该这个对于我们来说还是很简单的,所以很快就做完实验了,就和几个同学好好研究了一下它的原理和一些它的展望,感觉这个学科以后有很大的发展前途,作为一个物联网的学生,对无线射频技术应该得很了解,指望它吃饭呢。

这次实验也很简单,但是还是可以解除它的最底层的东西可以更加激发我们的兴趣。

第三章 ZStack组网实验多点自组织组网实验1 实验目的理解 zigbee协议及相关知识。

在 ZX2530A 型CC2530 节点板上实现自组织的组网。

在 ZStack协议栈中实现单播通信。

2 实验内容先启动协调器节点,协调器节点上电后进行组网操作,再启动路由节点和终端节点,路由节点和终端节点上电后进行入网操作,成功入网后周期的将自己的短地址,父节点的短地址,自己的节点ID 封装成数据包发送给协调器节点,协调器节点接收到数据包后通过串口传给 PC,从PC上的串口监控程序查看组网情况。

发送数据格式为(16进制):FF 源节点(16bit) 父节点(16bit) 节点编号 ID(8bit)例如 FF 4B 00 00 00 01 ,表示01 号节点的网络地址为004B,发送数据到父节点,其网络地址为00 00(协调器)。

3 实验设备及工具硬件:DZ2530 型CC2530 节点板、USB 接口的仿真器,PC 机Pentium100 以上。

软件:PC 机操作系统WinXP、IAR 集成开发环境、ZTOOL 程序。

4 实验原理程序执行的流程图如图 5-4 所示,在进行一系列的初始化操作后程序就进入事件轮询状态。

对于终端节点,若没有事件发生且定义了编译选项 POWER_SAVING,则节点进入休眠状态。

协调器是 Zigbee 三种设备中最重要的一种。

它负责网络的建立,包括信道选择,确定唯一的PAN 地址并把信息向网络中广播,为加入网络的路由器和终端设备分配地址,维护路由表等。

Z-Stack 中打开编译选项 ZDO_COORDINATOR,也就是在 IA R开发环境中选择协调器,然后编译出的文件就能启动协调器。

具体工作流程是:操作系统初始化函数 osal_start_system 调用ZDAppInit初始化函数,ZDAppInit调用ZDOIn itDevice 函数,ZDOInitDevice 调用ZDApp_NetworkInit 函数,在此函数中设置 ZDO_NETWORK_I NIT事件,在 ZDApp_event_loop 任务中对其进行处理。

由第一步先调用ZDO_StartDevice 启动网络中的设备,再调用NLME_NetworkFormationRequest 函数进行组网,这一部分涉及网络层细节,无法看到源代码,在库中处理。

相关文档
最新文档