一元一次方程解法专项练习

合集下载

一元一次方程练习题及答案

一元一次方程练习题及答案

一元一次方程练习题及答案1.判断题:1)判断下列方程是否是一元一次方程:①-3x-6x^2=7.(不是)②x+1=3.(是)③5x+1-2x=3x-2.(是)④3y-4=2y+1.(不是)2)判断下列方程的解法是否正确:①解方程3y-4=y+3,解:3y-y=3+4,2y=7,y=7/2.(错误,应为2y-4=1,y=5/2)②解方程:0.4x-3=0.1x+2,解:0.4x-0.1x=2+3,0.3x=5,x=50/3.(正确)③解方程-(x+3)/(x-1)=1,解:-x-3=x-1,2x=4,x=2.(错误,应为-2x-6=x-1,-3x=5,x=-5/3)④解方程(x+2)/2=1-x,解:x+2=2-2x,3x=-1,x=-1/3.(正确)2.填空题:1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠3.2)关于x的方程ax=3的解是自然数,则整数a的值为:1或3.3)方程5x-2(x-1)=17的解是4.4)x=2是方程2x-3=m-x的解,则m=7.5)若-2x+1=0是关于x的一元一次方程,则m=1/2.6)当y=2时,代数式5y+6与3y-2互为相反数.7)当m=0时,方程-m=0的解为0.8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为3b/a.3.选择题:1)方程ax=b的解是().A.有一个解x=b/aB.有无数个解C.没有解D.当a≠0时,x=b/a2)解方程(x-1)/4=3,下列变形中,较简捷的是()A.方程两边都乘以4,得(x-1)=12B.去括号,得4(x-1)=12C.两边同乘以4,得(x-1)=12D.整理,得x=13/43)方程2/(x-3)=-3/6的去分母得(x-3)/2=1/2,解得x=4. 4)若代数式(4x-3)/(x+15)比1大1,则x的值是-18.5)x=1是方程5x+1/(x-0.5)=9-4x/(1.3-3x)的解.1.解方程:1) 7(2x-1)-3(4x-1)=4(3x+2)-1;2) (5y+1)+(1-y)=(9y+1)+(1-3y);3) [(x-1)-4]=x+2;4) x-1=-x;5) 3-(2.5x+1.5)+2x-5=1;6) -2x-3=-2x;7) 6/(3y-4)+3y=1;8) 20%+(1-20%)(320-x)=320×40%.改写:1) 解方程:14x-10=-8x+7;2) 解方程:5y=2y;3) 解方程:x=-1;4) 解方程:x=-1/2;5) 化简方程:-0.5x+0.5=0;6) 解方程:无解;7) 化简方程:6y^2-13y+4=0;8) 解方程:x=80.2.解答下列各题:1) 当x等于1时,代数式的值相等;2) 当y等于4时,代数式的值少3;3) 当m等于4时,代数式2m-的值与代数式-3的值的和等于5;4) 解方程:(3m+1)x=m(x-4)^3;① ax+b=bx+a;(a≠b)时,解得x=(a-b)/(a-b)=1;②解方程:x^2+mx-m=0,得x=1或x=-m;5) 填空:1) x=3;2) 1/6;3) y=-2;4) a=8;5) -1;6) x=1;7) 10;8) a=2;9) 1/2;10) a+b=0.3.选择题:1) 解得h=4cm;2) 由题意得a/b=3/(x-1),化简得3x-a=b,为一元一次方程,故选C;3) 解方程得x=-2;4) 解方程得x=2/7;5) 解得x=2,故选B.4)下列方程共有几个一元一次方程:2x+3x/12x+63x-1=2(x+1)+3=3(2x+5)-2(x-1)=4x+6.答案:共有4个。

浙教版七年级数学上册《5.3 一元一次方程的解法》同步练习-含参考答案

浙教版七年级数学上册《5.3 一元一次方程的解法》同步练习-含参考答案

浙教版七年级数学上册《5.3 一元一次方程的解法》同步练习-含参考答案一、选择题1.下面四个方程中,与方程x -1=2的解相同的一个是( ).A.2x=6B.x +2=-1C.2x +1=3D.-3x=92.下列通过移项变形,错误的是( )A.由x+2=2x -7,得x -2x=-7-2B.由x+3=2-4x ,得x+4x=2-3C.由2x -3+x=2x -4,得2x -x -2x=-4+3D.由1-2x=3,得2x=1-33.若关于x 的方程3x +5=m 与x ﹣2m =5有相同的解,则x 的值是( )A.3B.﹣3C.﹣4D.44.下面是一个被墨水污染过的方程:2x ﹣12=3x +,答案显示此方程的解是x=﹣1,被墨水遮盖的是一个常数,则这个常数是( ) A.1 B.﹣1 C.﹣12 D.125.解方程3137143y y ---=时,为了去分母应将方程两边同时乘以( ) A.12 B.10 C.9 D.46.解方程:2-13(2x-4)=-16(x-7),去分母得( ) A.2-2 (2x -4)= -(x -7) B. 12-2 (2x -4)= -x -7C.2-(2x -4)= -(x -7)D. 12-2 (2x -4)= -(x -7)7.把方程中的分母化为整数,正确的是( ) A.B. C.D.8.如果13(2a-9)与13a+1是互为相反数,那么a的值是( )A.6B.2C.12D.﹣69.若关于y的方程2m+y=1与3y﹣3=2y﹣1的解相同,则m的值为( )A.2B.-0.5C.-2D.010.关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )A.2B.3C.1或2D.2或3二、填空题11.已知关于x的方程2x﹣3a=﹣1的解为x=﹣1,则a的值等于 .12.若2x-3=0且|3y-2|=0,则xy= 。

13.当x=_____时,代数式2x-3与代数式6-x的值相等.14.若4x2m y n+1与-3x4y3的和是单项式,则m=________,n=________.15.将四个数a 、b、c、d写成两行两列,规定=,若=-9,则x= .16.定义新运算a※b满足:(a+b)※c=a※c +b, a※(b+c)=a※b-c,并规定:1※1=5,则关于x的方程(1+4x)※1 + 1※(1+2x) =12的解是x=三、解答题17.解方程:2(2x+1)﹣(10x+1)=618.解方程:x﹣12(x-1)=2﹣13(x+2).19.解方程:2﹣2x+13=1+x2;20.解方程:1.5x0.6-1.5-x2=0.5.21.根据下列条件列方程,并求出方程的解.(1)某数的13比它本身小6,求这个数;(2)一个数的2倍与3的和等于这个数与7的差.22.已知当x=-1时,代数式2mx 3-3mx+6的值为7,若关于y 的方程2my+n=11-ny -m 的解为y=2,求n 的值.23.已知关于x 的方程2(x -1)=3m -1与3x +2=-4的解互为相反数,求m 的值.24.已知:关于x 的方程2(x -1)+1=x 与3(x+m)=m -1有相同的解,求:以y 为未知数的方程13(3﹣my)=12(m ﹣3y)的解.答案1.A2.C3.B.4.D.5.A6.D7.D8.B9.B10.D11.答案为:-1 3 .12.答案为:1;13.答案为:3.14.答案为:2,2;15.答案为:x=-2;16.答案为:x=117.解:去括号,得4x+2﹣10x﹣1=6 移项,合并同类项,得﹣6x=5系数化为1,得x=﹣5 6 .18.解:去分母,得:6x﹣3(x﹣1)=12﹣2(x+2) 去括号,得:6x﹣3x+3=12﹣2x﹣4移项,得:6x﹣3x+2x=12﹣4﹣3合并同类项,得:5x=5系数化为1,得:x=1.19.解:x=1.20.解:x=5 12 .21.解:(1)设某数为x,则13x+6=x,得x=9;(2)设这个数为x,则2x+3=x-7,得x=-10.22.解:当x=-1时,2mx3-3mx+6=-2m+3m+6=7,解得m=1. 把m=1,y=2代入2my+n=11-ny-m,得2×1×2+n=11-2n-1,解得n=2.23.解:方程3x+2=-4,解得x=-2.所以关于x的方程2(x-1)=3m-1的解为x=2.把x=2代入得2=3m-1,解得m=1.24.解:由2(x-1)+1=x,得x=1.把x=1代入3(x+m)=m-1,得3(1+m)=m-1.解得m=-2.把m=-2代入方程13(3﹣my)=12(m﹣3y)解得y=-12 13 .。

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项经典练习题(含答案)

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项经典练习题(含答案)

一、解答题1.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh,乙、丙两队合作为(6)x h-,总工程量为1,由题意得:11111()()(6)1 1015201520x x++++-=,解得:3x=,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.2.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.解析:y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.解下列方程:(1)517 84a-=;(2)22146y y +--=1; (3)2131683x x x -+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.4.解下列方程:(1)2(x -1)=6;(2)4-x =3(2-x);(3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.5.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.6.已知数轴上的A、B两点分别对应数字a、b,且a、b满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A .求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4,并求此时点Q 对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4.此时点Q 表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a 、b 的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a ,b 满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A 、B 的位置如图所示.(2)设运动时间为ts .由题意:3t=2(16-4-3t )或3t=2(4+3t-16),解得t=83或8, ∴运动时间为83或8秒时,点P 到点A 的距离是点P 到点B 的距离的2倍; (3)设运动时间为ts .由题意:12+t-3t=4或3t-(12+t )=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4.此时点Q 表示的数为20,24,25,27.【点睛】 本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②.解析:(1)5;(2)138; 【分析】 ①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.8.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?” 解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;∴有60个客人.【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.10.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.根据题意中的等量关系列出方程是解决问题的关键11.某市居民生活用水实行“阶梯水价”收费,具体收费标准见下表:例:甲用户1月份用水25吨,应缴水费1.620 2.4(2520)44⨯+⨯-= (元).(1)若乙用户1月份用水10吨,则应缴水费________元;(2)若丙用户1月份应缴水费62.6元,则用水________吨;.(3)若丁用户1、2月份共用水60吨(1月份用水量超过了2月份),设2月份用水a 吨,求丁用户1、2月份各应缴水费多少元.(用含a 的代数式表示)解析:(1)16;(2)32; (3) 1月份应缴水费(155 3.3)a -元.当2月份用水量不超过20吨时,应缴水费1.6a 元;当2月份用水量超过20吨但不超过30吨时,应缴水费(2.416)a -元.【分析】(1)根据每户每月用水量不超过20时,水费价格为1.6元/吨,可知乙用户1月份用水10吨,则应缴水费:1.6×10,计算即可;(2)由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,列出方程,求解即可;(3)由丁用户1、2两个月共用水60吨,设2月份用水a 吨,则1月份用水(60-a )吨,根据1月份用水量超过了2月份,得出1月份用水量超过了2月份,得出1月份用水量大于30吨,2月份用水量小于30吨,根据三级收费求出1月份应缴水费,分两种情况求出2月份应缴水费, ①当2月份用水量不超过20吨时;②当2月份用水量超过20吨但不超过30吨时;【详解】解:(1)依题意得:1.6×10=16;故答案为:16(2) 依题意得:由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,设用水为x 吨,依题意得:56(30) 3.362.6x +-⨯=解得:x=32故答案为:32;(3)因为1月份用水量超过了2月份,所以1月份用水量超过了30吨,2月份用水量少于30吨.1月份应缴水费20 1.610 2.4 3.3(6030)(155 3.3)a a ⨯+⨯+--=-元.①当2月份用水量不超过20吨时,应缴水费1.6a 元;②当2月份用水量超过20吨但不超过30吨时,应缴水费1.6202.4(20)(2.416)a a ⨯+-=-元.本题主要考查了列代数式,代数式求值,掌握列代数式,代数式求值是解题的关键. 12.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?解析:180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.13.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.考点:1.一元一次方程的应用;2.方案型.15.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度)执行电价(元/度)第一档小于或等于2000.5第二档大于200且小于或等于450时,超出200的部分0.7第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?解析:(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x的一元一次方程.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x 个成人,y 个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.18.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.19.检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x-3(x=1); (2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 解析:(1)是;(2)否.【分析】(1)先求出一元一次方程的解,然后进行判断即可;(2)先求出一元一次方程的解,然后进行判断即可;【详解】解:(1)25103x x +=-,∴88x -=-,∴1x =,∴括号内的数是方程的解;(2)112(1)(1)3(1)(1)23x x x x --+=+--, ∴77(1)(1)32x x -=+, ∴2233x x -=+,∴5x =-;∴括号内的数不是方程的解.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤. 20.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?解析:大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人, 根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?解析:(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.22.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.解析:(1)960件(2)28天(3)方案三【分析】(1)由题意设这批校服共有x 件,并根据题意建立一元一次方程进行求解即可;(2)根据题意设甲工厂加工a 天,则乙工厂共加工(24)a +天,并根据题意建立一元一次方程进行求解即可;(3)根据题意分别计算三种方案所需的时间与费用,并进行比较即可得出答案.【详解】解:(1)设这批校服共有x 件. 由题意,得201624x x -=.解得960x =. 答:这批校服共有960件.(2)设甲工厂加工a 天,则乙工厂共加工(24)a +天.依题意得 (1624)24(125%)(24)960a a a ++⨯++-=.解得12a =.2424428a +=+=.答:乙工厂共加工28天.(3)①方案一:需要耗时9601660÷=(天),费用为60(1080)5400⨯+=(元); ②方案二:需要耗时9602440÷=(天),费用为40(12010)5200⨯+=(元); ③方案三:甲工厂耗时12天,乙工厂耗时28天,故需要耗时28天,费用为12(1080)28(10120)4720⨯++⨯+=(元).综上,方案三既省时又省钱.【点睛】本题考查一元一次方程的实际应用,读懂题干并依据题干条件建立一元一次方程求解是解题的关键.23.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由;(2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?解析:(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 24.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可;【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元);方案二总金额为2280009500247000x +=(元).方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.25.解方程:(1)3(26)17x x +=--;(2)4(2)13(1)x x --=-;(3)4(1)5(3)11x x +--=;(4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x =【分析】(1)去括号,移项及合并同类项,系数化为1即可求解.(2)去括号,移项及合并同类项,系数化为1即可求解.(3)去括号,移项及合并同类项,系数化为1即可求解.(4)去括号,移项及合并同类项,系数化为1即可求解.【详解】(1)去括号,得61817x x +=--.移项及合并同类项,得735x =-.系数化为1,得5x =-.(2)去括号,得48133x x --=-.移项,得43381x x -=-++.合并同类项,得6x =.(3)去括号,得4451511x x +-+=.移项,得4511415x x -=--.合并同类项,得8x -=-.系数化为1,得8x =.(4)去括号,得44311x x ---=.。

一元一次方程解法

一元一次方程解法

2015年12月09日一元一次方程解法4一.填空题(共5小题)1.已知关于x的方程3x+8﹣|k|=0的根是﹣2,则k=.2.方程|x﹣|2x﹣1||=3的解是.3.显然绝对值方程|x﹣3|=5有两根:x1=8,x2=﹣2.依此类推,方程||||x﹣1|﹣9|﹣9|﹣3|=5的根的个数是.4.方程的解是.5.如果关x的方程与的解相同,那么m的值是.二.解答题(共18小题)6.(2014秋•广丰县期末)有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3解:当x≥0时,方程可化为:x+2x=3解得x=1,符合题意.当x<0时,方程可化为:x﹣2x=3解得x=﹣3,符合题意.所以,原方程的解为:x=1或x=﹣3.仿照上面解法,解方程:x+3|x﹣1|=7.7.(2014秋•瑞安市校级月考)解方程:(1)3+|2x﹣1|=x(2)3|x﹣1|﹣7=2(3)|2x+1|=|x﹣3|(4)10﹣5x=7(1﹣x)(5)﹣(x﹣2)=2+x(6)2(x﹣5)=3x+1.8.(2012秋•武侯区期末)(1)解方程:(2)解方程:|2x﹣1|=3x+2.9.解下列方程:(1)|x+1|=3;(2)|3x﹣5|+4=8;(3)|4x﹣3|﹣2=3x+4;(4)|x﹣|2x+1||=3.10.已知关于x的方程与方程的解相同,求的值.11.已知关于x的方程4x+2m=3x+1和方程3x+2m=6x+1的解相同.求代数式(﹣2m)2009﹣(m﹣)2010的值.12.已知关于x的方程和有相同的解,求a与方程的解.13.已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,求:(1)m的值;(2)代数式(m+2)2008•(2m﹣)2009的值.14.已知关于x的方程(m+3)x|m|﹣2+6m=0…①与nx﹣5=x(3﹣n)…②的解相同,其中方程①是一元一次方程,求代数式(m+x)2000•(﹣m2n+xn2)+1的值.15.若方程2x+1=3x的解与关于x的方程x﹣3a=4的解相同,求关于y的方程的解.16.若关于x的方程:与方程的解相同,求k的值.17.已知关于x的方程(m+3)x|m|﹣2+4m=0①与nx﹣5=x(3﹣n)②的解相同,其中方程①是一元一次方程,求代数式(m+x)2014•(﹣m2n+xn2)+1的值.18.若方程+=1﹣与关于x的方程x+=﹣3x的解相同,求a的值.19.(2014秋•武平县校级月考)如果方程5(x﹣3)=4x﹣10的解与方程4x﹣(3a+1)=6x+2a ﹣1的解相同,求式子(2a2+3a﹣4)﹣(﹣3a2+7a﹣1)的值.20.(2014秋•江干区校级月考)已知关于x的方程6x+2a﹣1=5x和方程4x+2a=7x+1的解相同,求:(1)a的值;(2)代数式(a+3)2012×(2a﹣)2013的值.21.(2014秋•藁城市校级期中)已知关于x的方程﹣=x﹣1与方程3(x﹣2)﹣4(x﹣)=0有相同解,求a的值.22.(2015秋•江都市期中)已知关于x的方程3[x﹣2(x﹣)]=4x和有相同的解,求a的值和这个解是什么?23.(2015秋•盐城校级期中)已知方程6x﹣9=10x﹣45与方程3a﹣1=3(x+a)﹣2a的解相同.(1)求这个相同的解;(2)求a的值;(3)若[m]表示不大于m的最大整数,求[a﹣2]的值.2015年12月09日一元一次方程解法4参考答案与试题解析一.填空题(共5小题)1.已知关于x的方程3x+8﹣|k|=0的根是﹣2,则k=±2.【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】先把x的值代入方程3x+8﹣|k|=0,再根据绝对值的性质去掉绝对值,求出k的值即可.【解答】解:x=﹣2代入方程3x+8﹣|k|=0得:(﹣2)×3+8﹣|k|=0,故|k|=2,解得:k=±2.故填±2.【点评】本题考查的是一元一次方程的解法及绝对值的性质,熟知绝对值的性质是解答此题的关键.2.方程|x﹣|2x﹣1||=3的解是4或.【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】本题就①x≥时,②x<两种情况讨论.再就所求的结果验证其合理性.【解答】解:①当x≥时,则|x﹣|2x﹣1||=3,⇒|x﹣2x+1|=3,⇒|x﹣1|=3,⇒x﹣1=3或x﹣1=﹣3,解得x=4或x=﹣2(不合题意舍去)②当x<时,则|x﹣|2x﹣1||=3,⇒|x﹣1+2x|=3,⇒|3x﹣1|=3,⇒3x﹣1=3或3x﹣1=﹣3,解得x=(不合题意舍去)或x=,综上所述方程|x﹣|2x﹣1||=3的解是:4或.故答案为:4或.【点评】本题考查含绝对值符号的一元一次方程的解法.解决本题的关键是区分好x取值范围,从而合理去掉绝对值符号,并就方程的解验证其合理性.3.显然绝对值方程|x﹣3|=5有两根:x1=8,x2=﹣2.依此类推,方程||||x﹣1|﹣9|﹣9|﹣3|=5的根的个数是6.【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】根据绝对值的意义从外到内依次去绝对值,最后得到|x﹣1|=26或|x﹣1|=﹣17(舍去)或|x﹣1|=10或|x﹣1|=8,于是易得到原方程有6个根.【解答】解:|||x﹣1|﹣9|﹣9|﹣3=±5,∴|||x﹣1|﹣9|﹣9|=8或||||x﹣1|﹣9|﹣9|=﹣2(舍去),∴||x﹣1|﹣9|﹣9=±8,∴||x﹣1|﹣9|=17或||x﹣1|﹣9|=1,∴|x﹣1|﹣9=±17或|x﹣1|﹣9=±1,∴|x﹣1|=26或|x﹣1|=﹣17(舍去)或|x﹣1|=10或|x﹣1|=8,∴x1=27,x2=﹣25,x3=11,x4=﹣9,x5=9,x6=﹣7.故答案为6.【点评】本题考查了含绝对值方程的解法:根据绝对值的意义先去绝对值,转化为多个一元一次方程,分别解一元一次方程即可原方程的解.4.方程的解是±.【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】把|x|看成整体,解一元一次方程,最后去绝对值符号.【解答】解:3|x|﹣3=+1,|x|=4,∴|x|=,∴x=±.故答案为:±.【点评】此题考查含绝对值符号的一元一次方程,掌握一元一次方程的解法和绝对值的代数定义是关键.5.如果关x的方程与的解相同,那么m的值是±2.【考点】同解方程.【分析】本题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4+2|m|得=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.二.解答题(共18小题)6.(2014秋•广丰县期末)有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3解:当x≥0时,方程可化为:x+2x=3解得x=1,符合题意.当x<0时,方程可化为:x﹣2x=3解得x=﹣3,符合题意.所以,原方程的解为:x=1或x=﹣3.仿照上面解法,解方程:x+3|x﹣1|=7.【考点】含绝对值符号的一元一次方程.【专题】阅读型.【分析】分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案.【解答】解:当x<1时,方程可化为:3﹣2x=7解得x=﹣2,符合题意.当x≥1时,方程可化为:x+3x﹣3=7,解得x=,符合题意.所以,原方程的解为:x=﹣2或x=.【点评】本题考查了含绝对值符号的一元一次方程,分类讨论是解题关键,以防遗漏.7.(2014秋•瑞安市校级月考)解方程:(1)3+|2x﹣1|=x(2)3|x﹣1|﹣7=2(3)|2x+1|=|x﹣3|(4)10﹣5x=7(1﹣x)(5)﹣(x﹣2)=2+x(6)2(x﹣5)=3x+1.【考点】含绝对值符号的一元一次方程;解一元一次方程.【分析】(1)分类讨论:x<,x≥可化简去掉绝对值,根据解方程,可得答案;(2)分类讨论:x<1,x≥1可化简去掉绝对值,根据解方程,可得答案;(3)分类讨论:x<﹣,﹣≤x<3,x≥3,可化简去掉绝对值,根据解方程,可得答案;(4)根据去括号、移项、合并同类项,系数化为1,可得方程的解;(5)根据去括号、移项、合并同类项,系数化为1,可得方程的解;(6)根据去括号、移项、合并同类项,系数化为1,可得方程的解.【解答】解:(1)当x<时,原方程等价于3+1﹣2x=x,解得x=(不符合题意要舍去), 当x≥时,原方程等价于3+2x﹣1=x,解得x=﹣2(不符合题意要舍去)综上所述,原方程无解.(2)当x<1时,原方程等价于﹣3x+3﹣7=2,解得x=﹣2,当x>1时,原方程等价于,3x﹣3﹣7=2,解得x=4,综上所述:x=﹣2或x=4.(3)当x<﹣时,原方程等价于﹣1﹣2x=3﹣x,解得x=﹣4;当﹣≤x<3时,原方程等价于1+2x=3﹣x,解得x=;当x≥3时,原方程等价于1+2x=x﹣3,解得x=﹣4(不符合题意要舍去),综上所述:x=﹣4或x=;(4)去括号,得10﹣5x=7﹣7x,移项,得﹣5x+7x=7﹣10,合并同类项,得2x=﹣3系数化为1,得x=﹣;(5)去括号,得﹣x+2=2+x,移项,得﹣x﹣x=2﹣2,合并同类项,得﹣2x=0系数化为1,得x=0;(6)去括号,得2x﹣10=3x+1,移项,得2x﹣3x=1+10合并同类项,得﹣x=11系数化为1,得x=﹣11.【点评】本题考查了解含绝对值符号的一元一次方程,分类讨论是解题关键,去括号时要注意符号:括号前是正数去括号不变好,括号前是负数去括号全变号.8.(2012秋•武侯区期末)(1)解方程:(2)解方程:|2x﹣1|=3x+2.【考点】含绝对值符号的一元一次方程;解一元一次方程.【专题】计算题.【分析】(1)方程左边第二、三项利用同分母分数的加减逆运算法则变形,去括号后移项合并,将x系数化为1,即可求出解;(2)分两种情况考虑:2x﹣1大于等于0与小于0时,利用绝对值的代数意义化简即可求出解.【解答】(1)方程变形得:x﹣(2﹣x)﹣(3+x)=12,去括号得:x﹣2+x﹣3﹣x=12,移项合并得:x=17,解得:x=85;(2)当2x﹣1≥0,即x≥时,方程化为2x﹣1=3x+2,解得:x=﹣3<,舍去;当2x﹣1<0,即x<时,方程化为1﹣2x﹣=3x+2,解得:x=﹣<,∴原方程的解为x=﹣.【点评】此题考查了含绝对值的一元一次方程的解法,以及解一元一次方程,利用了分类讨论的思想,是一道基本题型.9.解下列方程:(1)|x+1|=3;(2)|3x﹣5|+4=8;(3)|4x﹣3|﹣2=3x+4;(4)|x﹣|2x+1||=3.【考点】含绝对值符号的一元一次方程.【分析】根据分类讨论,可化简去掉绝对值,根据解方程,可得答案.【解答】解:(1)当x<﹣1时,原方程等价于﹣x﹣1=3,解得x=﹣4,当x≥﹣1时,原方程等价于x+1=3,解得x=2,综上所述:x=﹣4,x=2;(2)当x<时,原方程等价于﹣3x+5+4=8,解得x=当x≥时,原方程等价于3x﹣5+4=8,解得x=3,综上所述:x=,x=3;(3)当x<时,原方程等价于﹣4x+3﹣2=3x+4,解得x=﹣,当x≥时原方程等价于4x﹣3﹣2=3x+4,解得x=9,综上所述:x=﹣,x=9;(4)当x<﹣时,原方程等价于﹣3x﹣1=3,解得x=﹣,当﹣≤x<﹣时,原方程等价于3x+1=3,解得x=(不符合题意的要舍去)当x≥﹣时,原方程等价于,x+1=3,解得x=2,综上所述:x=﹣,x=2.【点评】本题考查了含绝对值符号的一元一次方程,分类讨论是解题关键.10.已知关于x的方程与方程的解相同,求的值.【考点】同解方程.【分析】先求出方程的解,然后把x的值代入方程,求出a的值,继而可求解的值.【解答】解:解方程,得:x=﹣2,将x=﹣2代入方程,得:﹣4+3=﹣﹣a,解得:a=,则=﹣9=﹣.【点评】本题考查了同解方程,解决本题的关键是能够求解关于x的方程,要正确理解方程解的含义.11.已知关于x的方程4x+2m=3x+1和方程3x+2m=6x+1的解相同.求代数式(﹣2m)2009﹣(m﹣)2010的值.【考点】同解方程.【分析】分别求出两个方程的解,然后根据解相同,列出关于m的方程,求出m的值,再将m 的值代入(﹣2m)2009﹣(m﹣)2010,计算即可求解.【解答】解:解方程4x+2m=3x+1得:x=1﹣2m,解方程3x+2m=6x+1得:x=,则=1﹣2m,解得:m=,所以(﹣2m)2009﹣(m﹣)2010=(﹣2×)2009﹣(﹣)2010=﹣1﹣1=﹣2.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x的方程,要正确理解方程解的含义.12.已知关于x的方程和有相同的解,求a与方程的解.【考点】同解方程.【专题】方程思想.【分析】分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值,再代入求出x的值.【解答】解:由第一个方程得:(3分)由第二个方程得:(3分)所以,解得,(3分)所以(3分)【点评】本题考查了同解方程,解决的关键是能够求解关于x的方程,要正确理解方程解的含义.13.已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,求:(1)m的值;(2)代数式(m+2)2008•(2m﹣)2009的值.【考点】同解方程.【分析】(1)分别求出两方程的解,然后令它们的解相等,求出m的值;(2)将m的值代入求解.【解答】解:(1)解方程4x+2m=3x+1得:x=1﹣2m,解方程3x+2m=6x+1得:x=,则1﹣2m=,解得:m=;(2)(m+2)2008•(2m﹣)2009=()2008•(﹣)2009=[×(﹣)]2008•(﹣)=﹣.【点评】本题考查了同解方程,解决本题的关键是能够求解关于x的方程,要正确理解方程解的含义.14.已知关于x的方程(m+3)x|m|﹣2+6m=0…①与nx﹣5=x(3﹣n)…②的解相同,其中方程①是一元一次方程,求代数式(m+x)2000•(﹣m2n+xn2)+1的值.【考点】同解方程.【分析】根据一元一次方程的定义,可得m的值根据解方程,可得方程的解,根据同解方程的解满足另一个方程,把解代入另一个方程,可得关于n的一元一次方程,根据解方程,可得n的值根据代数式求值,可得答案.【解答】解;关于x的方程(m+3)x|m|﹣2+6m=0,得m+3≠0|m|﹣2=0.解得m=3.解6x+18=0,解得x=﹣3.把x=﹣3代入nx﹣5=x(3﹣n),得﹣3n﹣5=﹣3(3﹣n),解得n=.当m=3,n=,x=﹣3时,(m+x)2000•(﹣m2n+xn2)+1=(3﹣3)2000•[﹣32×+(﹣3)×()2]+1=0+1=1.【点评】本题考查了同解方程,利用了一元一次方程的定义,同解方程的解相同,代数式求值.15.若方程2x+1=3x的解与关于x的方程x﹣3a=4的解相同,求关于y的方程的解.【考点】同解方程.【专题】计算题.【分析】求出第一个方程的解得到x的值,代入第二个方程求出a的值,将a的值代入所求方程中计算即可求出y的值.【解答】解:方程2x+1=3x,解得:x=1,将x=1代入方程x﹣3a=4中,得:1﹣3a=4,即a=﹣1,把a=﹣1代入得:y+1=y+5,解得:y=﹣4.【点评】此题考查了同解方程,解决的关键是能够求解关于x的方程,要正确理解方程解的含义.16.若关于x的方程:与方程的解相同,求k的值.【考点】同解方程.【专题】计算题.【分析】解方程,把方程的解代入即可得到一个关于k的方程,从而求得k的值.【解答】解:解方程,15﹣6(x+1)=1﹣2x15﹣6x﹣6=1﹣2x﹣4x=﹣8x=2;把x=2代入方程得:10﹣=3×2﹣﹣k=﹣4k=4.【点评】本题主要考查了方程的解的定义,已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.17.已知关于x的方程(m+3)x|m|﹣2+4m=0①与nx﹣5=x(3﹣n)②的解相同,其中方程①是一元一次方程,求代数式(m+x)2014•(﹣m2n+xn2)+1的值.【考点】同解方程.【专题】计算题.【分析】由方程①为一元一次方程,求出m的值,代入方程求出方程①的解,即为方程②的解,代入方程②求出n的值,把x,m,n的值代入原式计算即可求出值.【解答】解:∵(m+3)x|m|﹣2+4m=0①与nx﹣5=x(3﹣n)②的解相同,其中方程①是一元一次方程,∴|m|﹣2=1,且m+3≠0,解得:m=3,即方程为6x+12=0,解得:x=﹣2,把x=2代入得:2n﹣5=2(3﹣n),解得:n=,则原式=(3﹣2)2014•(﹣﹣)+1=﹣.【点评】此题考查了同解方程,解决的关键是能够求解关于x的方程,要正确理解方程解的含义.18.若方程+=1﹣与关于x的方程x+=﹣3x的解相同,求a的值.【考点】同解方程.【分析】由已知方程+=1﹣与关于x的方程x+=﹣3x的解相同,所以得关于x、a的方程组,解方程组即可.【解答】解:∵方程+=1﹣与关于x的方程x+=﹣3x的解相同,∴,解得:,∴a的值为2.【点评】此题考查的知识点是同解方程,本题解决的关键是根据同解的定义建立方程组.19.(2014秋•武平县校级月考)如果方程5(x﹣3)=4x﹣10的解与方程4x﹣(3a+1)=6x+2a ﹣1的解相同,求式子(2a2+3a﹣4)﹣(﹣3a2+7a﹣1)的值.【考点】同解方程;整式的加减—化简求值.【分析】求出方程5(x﹣3)=4x﹣10的解,代入方程求出a的值,即可解答.【解答】解:方程5(x﹣3)=4x﹣10的解为:x=5,把x=5代入方程4x﹣(3a+1)=6x+2a﹣1得:20﹣(3a+1)=30+2a﹣1,解得:a=﹣2,(2a2+3a﹣4)﹣(﹣3a2+7a﹣1)=2a2+3a﹣4+3a2﹣7a+1=5a2﹣4a﹣3,当a=﹣2时,原式=5×(﹣2)2﹣4×(﹣2)﹣3=25.【点评】本题考查了方程的解的定义,解决本题的关键是熟记方程的解就是能使方程左右两边相等的未知数的值.20.(2014秋•江干区校级月考)已知关于x的方程6x+2a﹣1=5x和方程4x+2a=7x+1的解相同,求:(1)a的值;(2)代数式(a+3)2012×(2a﹣)2013的值.【考点】同解方程.【分析】(1)分别求出两个关于x的方程,根据两个方程的解相同,可得到一个关于a的方程,即可求得a的值;(2)根据同底数的幂的乘法法则即可求得式子的值.由4x+2a=7x+1得x=②,∵关于x的方程6x+2a﹣1=5x和方程4x+2a=7x+1的解相同,∴﹣2a+1=,解得:a=;(2)当a=时,(a+3)2012×(2a﹣)2013=(+3)2012×(2×﹣)2013=()2012×(﹣)2013=[×(﹣)]2012×(﹣)=﹣.【点评】本题主要考查了方程的解的定义,正确利用同底数的幂的运算性质即可求解.21.(2014秋•藁城市校级期中)已知关于x的方程﹣=x﹣1与方程3(x﹣2)﹣4(x﹣)=0有相同解,求a的值.【考点】同解方程.【分析】先求出第二个方程的解,把x=﹣1代入第一个方程,求出方程的解即可.【解答】解:3(x﹣2)﹣4(x﹣)=0,3x﹣6﹣4x+5=0,3x﹣4x=﹣5+6,﹣x=1,x=﹣1,把x=﹣1代入方程﹣=x﹣1得:﹣=﹣1﹣1,解得:a=﹣11.【点评】本题考查了解一元一次方程的应用,解此题的关键是得出关于a的方程,难度不是很大.22.(2015秋•江都市期中)已知关于x的方程3[x﹣2(x﹣)]=4x和有相同的解,求a的值和这个解是什么?【考点】同解方程.【分析】分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.由,得x=.)因为它们的解相同,所以=.所以a=.所以x=×=.【点评】本题考查了同解方程,本题解决的关键是能够求解关于x的方程,要正确理解方程解的含义.23.(2015秋•盐城校级期中)已知方程6x﹣9=10x﹣45与方程3a﹣1=3(x+a)﹣2a的解相同.(1)求这个相同的解;(2)求a的值;(3)若[m]表示不大于m的最大整数,求[a﹣2]的值.【考点】同解方程.【分析】(1)解第一个方程即可求得两个方程相同的解;(2)将求得的方程的解代入第二个方程即可求得a的值;(3)根据定义代入a的值求解即可.【解答】解:(1)原方程6x﹣9=10x﹣45移项得6x﹣10x=﹣45+9,合并同类项得到﹣4x=﹣36,解得:x=9;(2)将x=9代入第二个方程得:3a﹣1=3(9+a)﹣2a,解得:a=14;(3)[a﹣2]=[×14﹣2]=[]=2.【点评】本题考查了同解方程和解一元一次方程的应用,关键是得出关于a的方程.。

解一元一次方程专项练习(含答案)

解一元一次方程专项练习(含答案)

一、“移项+系数化1”针对练习(1)8x﹣5=3x;(2)6x﹣7=4x﹣5;(3)2x+17=32﹣3x;(4)7x+6=16﹣3x;(5)3x﹣4=2x+5;(6)4x﹣1=2x+5;(7)4﹣3x=6﹣5x;(8).(9)3x+7=32﹣2x;(10)5x+3=﹣2x﹣11;(11)3x﹣8=x+4;(12)5x+2=3x﹣18;(13)2﹣5x=3x+4;(14)5x﹣2x=9;(15)9﹣3y=5y+5.(16)5x﹣8=8x+1;(17)4x﹣1=2x+2.(18)3x+3=8﹣12x;(19)4x﹣2=2x+6;(20)3x﹣2=4x+1;(21)3x﹣6=2x+1;(22)x+4=x﹣2.(23);(24);(25).(26);(27)1.5:6=1:x.(28)6x﹣7=4x﹣5;(29)x+3x=﹣16;(30)9﹣3x=5x+5.(31);(32).(33);(34).(35)6x+6=2x﹣2;(36)3x+9=12;(二)“去括号”针对练习(1)3﹣5(x+1)=2x;(2)3(x﹣3)=x+1;(3)3(1﹣x)=1+2x;(4)8x=﹣2(x+4);(5)7﹣3(x﹣1)=﹣x;(6)2x﹣2(3x+1)=6;(7)5x﹣2(x﹣1)=3;(8)8﹣3(3x+2)=6;(9)x﹣3;(10)7x+2(3x﹣3)=20;(11)4﹣2x=﹣3(2﹣x);(12)4﹣3(2﹣x)=5x;(13)3(x+2)﹣2=x+2;(14)3(x﹣7)+5(x﹣4)=15;(15)x+2(x﹣3)=3(1﹣x);(16)2(3﹣x)=﹣4(x+5);(17)4﹣2(x+4)=2(x﹣1);(18)4(2x﹣1)﹣3(5x+1)=14;(19)3(2x﹣1)=5﹣2(x+2);(20)2((x﹣2)﹣3((4x﹣1)=5((1﹣x).(21)3(20﹣y)=6y﹣4(y﹣11);(22)1﹣3(x+1)=2(1﹣0.5x);(23)3(2x﹣7)=1﹣(x+8);(24);(25)3(x﹣1)+5(x﹣1)=16.(26)7x+2(3x﹣3)=20;(27)3x﹣4(x+1)=6﹣2(2x﹣5);(28)3(x﹣1)﹣2(x+10)=﹣6;(29)3(y﹣7)﹣5(4﹣y)=15;(30)2x﹣3(x﹣1)=5(1﹣x);(31)3x﹣2(x﹣1)=2+3(4﹣x).(32)5(x﹣4)+3(x+6)=14.(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);(34)2(x+1)=﹣5(x﹣2);(35)x﹣3=2(x﹣3)﹣6(1﹣x);(36)2(x+2)=3(x﹣1);(37)3x﹣2=5(x+2);(38)2(x+4)﹣10=5(x﹣2)+10x;(39)9y﹣2(﹣y+4)=3.(40)2(x﹣3)=1﹣3(x+1);(三)“去分母”针对练习(1);(2).(3).(4).(5)=1.(6);(7).(8).(11).(12).(13).(14).(15).(16).(17).(18).(19).(20).(23).(24).(25);(26).(27)﹣1.(28).(29).(30)5x=2x+5;(31)=.(32).(35).(36).(37)﹣1=.(38)=4.(39).(40).(41).(42)﹣1=.(43)=1.(44).(45)=1﹣.(46).(47).(48).(49).答案与解析(一)“移项+系数化1”针对练习(1)8x﹣5=3x;【解答】解:(1)移项得:8x﹣3x=5,合并同类项得:5x=5,系数化为1得:x=1,∴原方程的解为:x=1;(2)6x﹣7=4x﹣5;【解答】解:(1)移项,可得:6x﹣4x=﹣5+7,合并同类项,可得:2x=2,系数化为1,可得:x=1.(3)2x+17=32﹣3x;【解答】解:(1)2x+3x=32﹣17,5x=15,x=3;(4)7x+6=16﹣3x;【解答】解:(1)7x+6=16﹣3x,移项,得7x+3x=16﹣6,合并同类项,得10x=10,系数化为1,得x=1;(5)3x﹣4=2x+5;【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(6)4x﹣1=2x+5;【解答】解:(1)4x﹣1=2x+5,移项,得:4x﹣2x=5+1,合并同类项,得:2x=6,系数化为1,得:x=3;(7)4﹣3x=6﹣5x;﹣3x+5x=6﹣4,2x=2,x=1;(8)解方程:.【解答】解:,移项,得,合并同类项,得,系数化为1,得x=.(9)3x+7=32﹣2x;【解答】解:(1)移项合并得:5x=25,解得:x=5;(10)5x+3=﹣2x﹣11;【解答】解:(1)5x+3=﹣2x﹣11,移项,得5x+2x=﹣11﹣3,合并同类项,得7x=﹣14,系数化成1,得x=﹣2;(11)3x﹣8=x+4;【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(12)5x+2=3x﹣18;【解答】解:(1)5x+2=3x﹣18,移项,5x﹣3x=﹣18﹣2,合并同类项,2x=﹣20,系数化为1,x=﹣10;(13)2﹣5x=3x+4;移项,得﹣5x﹣3x=4﹣2,合并同类项,得﹣8x=2,系数化为1,得x=;(14)5x﹣2x=9;【解答】解:(1)5x﹣2x=9,合并同类项,得3x=9,系数化为1,得x=3;(15)9﹣3y=5y+5.【解答】(2)9﹣3y=5y+5,移项,得﹣3y﹣5y=5﹣9,合并同类项,得﹣8y=﹣4,系数化为1,得.(16)5x﹣8=8x+1;【解答】解:(1)5x﹣8=8x+1移项得:5x﹣8x=1+8,合并同类项得;﹣3x=9,系数化为1得;x=﹣3;(17)4x﹣1=2x+2.【解答】解:(1)移项,可得:4x﹣2x=2+1,合并同类项,可得:2x=3,系数化为1,可得:x=1.5.(18)3x+3=8﹣12x;【解答】解:(1)3x+3=8﹣12x,移项,得3x+12x=8﹣3,合并同类项,得15x=5,系数化为1,得x=;(19)4x﹣2=2x+6;【解答】解:(1)4x﹣2=2x+6,移项,得4x﹣2x=6+2,合并同类项,得2x=8,系数化为1,得x=4;(20)3x﹣2=4x+1;【解答】解:(1)移项,可得:3x﹣4x=1+2,合并同类项,可得:﹣x=3,系数化为1,可得:x=﹣3.(21)3x﹣6=2x+1;【解答】解:(1)3x﹣6=2x+1,移项,得3x﹣2x=6+1,合并同类项,得x=7;(22)x+4=x﹣2.【解答】(2)x+4=x﹣2,移项,得﹣=﹣2﹣4,合并同类项,得﹣=﹣6,系数化为1,得x=9.(23);【解答】解:(1)移项,可得:x=5%+14,合并同类项,可得:x=14.05,系数化为1,可得:x=.(24);【解答】(2)合并同类项,可得:1.4x=2.1,系数化为1,可得:x=1.5.(25).【解答】(3)∵,∴1.6x=,系数化为1,可得:x=.(26);【解答】解:(1)整理原方程,得:;系数化为1,得:x=;所以原方程的解为:x=;(27)1.5:6=1:x.【解答】(2)整理原方程,得:1.5x=6;系数化为1,得:x=4;所以原方程的解为:x=4.(28)6x﹣7=4x﹣5;【解答】解:(1)6x﹣7=4x﹣5,6x﹣4x=﹣5+7,2x=2,x=1;(29)x+3x=﹣16;【解答】解:(1)4x=﹣16,x=﹣4;(30)9﹣3x=5x+5.【解答】(2)﹣3x﹣5x=5﹣9,﹣8x=﹣4,x=.(31);【解答】解:(1),去分母,得:18x=2,系数化为1,得:x=;(32).【解答】(2).整理方程,得:=12,去分母,得:8x=36,系数化为1,得:x=.(33);【解答】解:(1)x系数化为1得:x=;(34).【解答】(2)方程整理得:x=6×,即x=4,解得:x=8.(35)6x+6=2x﹣2;【解答】解:(1)移项得:6x﹣2x=﹣2﹣6,合并同类项得:4x=﹣8,解得:x=﹣2;(36)3x+9=12;【解答】解:(1)移项得,3x=12﹣9,合并同类项得,3x=3,两边都除以3得,x=1;(二)“去括号”针对练习(1)3﹣5(x+1)=2x;【解答】(1)3﹣5(x+1)=2x,3﹣5x﹣5=2x,﹣5x﹣2x=5﹣3,﹣7x=2,x=﹣;(2)3(x﹣3)=x+1;【解答】解:(2)去括号,得3x﹣9=x+1,移项,得3x﹣x=9+1,合并,得2x=10,系数化为1,得x=5;(3)3(1﹣x)=1+2x;【解答】解:(3)去括号,得3﹣3x=1+2x,移项,得﹣3x﹣2x=1﹣3,合并同类项,得﹣5x=﹣2,解得x=0.4;(4)8x=﹣2(x+4);【解答】(4)去括号,可得:8x=﹣2x﹣8,移项,可得:8x+2x=﹣8,合并同类项,可得:10x=﹣8,系数化为1,可得:x=﹣0.8.(5)7﹣3(x﹣1)=﹣x;【解答】(5)7﹣3(x﹣1)=﹣x,7﹣3x+3=﹣x,﹣3x+x=﹣3﹣7,﹣2x=﹣10,x=5;(6)2x﹣2(3x+1)=6;【解答】解:(6)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(7)5x﹣2(x﹣1)=3;【解答】解:(7)原方程去括号得:5x﹣2x+2=3,移项得:5x﹣2x=3﹣2,合并同类项得:3x=1,系数化为1得:x=;(8)8﹣3(3x+2)=6;【解答】解:(8)去括号得:8﹣9x﹣6=6,移项合并得:﹣9x=4,解得:x=﹣;(9)x﹣3;【解答】(9)x﹣3,5(3x﹣6)=12x﹣90,15x﹣30=12x﹣90,15x﹣12x=﹣90+30,3x=﹣60,x=﹣20;(10)7x+2(3x﹣3)=20;【解答】解:(10)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(11)4﹣2x=﹣3(2﹣x);【解答】解:(11)4﹣2x=﹣3(2﹣x),去括号得:4﹣2x=﹣6+3x,移项合并得:5x=10,系数化为1得:x=2;(12)4﹣3(2﹣x)=5x;【解答】解:(12)4﹣3(2﹣x)=5x,去括号,得:4﹣6+3x=5x,移项,得:3x﹣5x=﹣4+6,合并同类项,得:﹣2x=2,系数化为1,得:x=﹣1;(13)3(x+2)﹣2=x+2;【解答】解:(13)3(x+2)﹣2=x+2;3x+6﹣2=x+2,3x﹣x=2﹣6+2,2x=﹣2x=﹣1.(14)3(x﹣7)+5(x﹣4)=15;【解答】解:(14)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(15)x+2(x﹣3)=3(1﹣x);【解答】解:(15)x+2(x﹣3)=3(1﹣x),去括号,得:x+2x﹣6=3﹣3x,移项、合并同类项,得:6x=9,系数化为1,得:;(16)2(3﹣x)=﹣4(x+5);【解答】(16)2(3﹣x)=﹣4(x+5),去括号,得6﹣2x=﹣4x﹣20,移项,得4x﹣2x=﹣20﹣6,合并同类项,得2x=﹣26,系数化为1,得x=﹣13;(17)4﹣2(x+4)=2(x﹣1);【解答】解:(17)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:;(18)4(2x﹣1)﹣3(5x+1)=14;【解答】解:(18)原方程去括号得:8x﹣4﹣15x﹣3=14,移项得:8x﹣15x=14+4+3,合并同类项得:﹣7x=21,系数化为1得:x=﹣3;(19)3(2x﹣1)=5﹣2(x+2);【解答】解:(19)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=;(20)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【解答】(20)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=﹣.(21)3(20﹣y)=6y﹣4(y﹣11);【解答】解:(21)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(22)1﹣3(x+1)=2(1﹣0.5x);【解答】(22)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;(23)3(2x﹣7)=1﹣(x+8);【解答】解:(23)3(2x﹣7)=1﹣(x+8),6x﹣21=1﹣x﹣86x+x=﹣7+21,7x=14,x=2;(24);【解答】(24),去分母,得2x﹣1+3=18(2x﹣1),去括号,得2x﹣1+3=36x﹣18,移项,得2x﹣36x=﹣18+1﹣3,合并同类项,得﹣34x=﹣20,系数化为1,得x=;(25)3(x﹣1)+5(x﹣1)=16.【解答】解:(25)3(x﹣1)+5(x﹣1)=16,去括号,得3x﹣3+5x﹣5=16,移项,得3x+5x=16+3+5,合并同类项,得8x=24,系数化成1,得x=3;(26)7x+2(3x﹣3)=20;【解答】解:(26)7x+2(3x﹣3)=20,去括号,得7x+6x﹣6=20,移项,得7x+6x=20+6,合并同类项,得13x=26,系数化成1,得x=2;(27)3x﹣4(x+1)=6﹣2(2x﹣5);【解答】解:(27)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;;(28)3(x﹣1)﹣2(x+10)=﹣6;【解答】解:(28)去括号得,3x﹣3﹣2x﹣20=﹣6,移项得,3x﹣2x=﹣6+3+20,合并同类项得,x=17;(29)3(y﹣7)﹣5(4﹣y)=15;【解答】解:(29)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(30)2x﹣3(x﹣1)=5(1﹣x);【解答】解:(30)2x﹣3(x﹣1)=5(1﹣x),去括号得:2x﹣3x+3=5﹣5x,移项得:2x﹣3x+5x=5﹣3,合并同类项得:4x=2,把系数化为1得:x=.(31)3x﹣2(x﹣1)=2+3(4﹣x).【解答】(31)3x﹣2(x﹣1)=2+3(4﹣x),去括号,得3x﹣2x+2=2+12﹣3x,移项,得3x﹣2x+3x=2+12﹣2,合并同类项,得4x=12,系数化为1,得x=3.(32)5(x﹣4)+3(x+6)=14.【解答】(32)去括号,可得:5x﹣20+3x+18=14,移项,可得:5x+3x=14+20﹣18,合并同类项,可得:8x=16,系数化为1,可得:x=2.(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);【解答】解:(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);去括号得:2x﹣4﹣4x+1=3﹣3x移项得:2x﹣4x+3x=3+4﹣1,合并得:x=6;(34)2(x+1)=﹣5(x﹣2);【解答】解:(34)2(x+1)=﹣5(x﹣2),去括号得:2x+2=﹣5x+10,移项得:2x+5x=10﹣2,合并同类项得:7x=8,系数化为1得:;(35)x﹣3=2(x﹣3)﹣6(1﹣x);【解答】解:(35)x﹣3=2(x﹣3)﹣6(1﹣x),去括号,得x﹣3=2x﹣6﹣6+6x,移项,得x﹣2x﹣6x=﹣6﹣6+3,合并同类项,得﹣7x=﹣9,系数化成1,得x=;(36)2(x+2)=3(x﹣1);【解答】(36)去括号得:2x+4=3x﹣3,移项得:2x﹣3x=﹣3﹣4,合并同类项得:﹣x=﹣7,解得:x=7;(37)3x﹣2=5(x+2);【解答】解:(37)去括号得,3x﹣2=5x+10,移项合并得:2x=﹣12,解得:x=﹣6;(38)2(x+4)﹣10=5(x﹣2)+10x;【解答】解:(38)去括号得:2x+8﹣10=5x﹣10+10x,移项得:2x﹣5x﹣10x=﹣10﹣8+10,合并同类项得:﹣13x=﹣8,解得:x=;(39)9y﹣2(﹣y+4)=3.【解答】(39)去括号得:9y+2y﹣8=3,移项得:9y+2y=3+8,合并同类项得:11y=11,解得:y=1.(40)2(x﹣3)=1﹣3(x+1);【解答】解:(40)去括号得:2x﹣6=1﹣3x﹣3,移项得:2x+3x=1﹣3+6,合并同类项得:5x=4,解得:x=0.8;(三)“去分母”针对练习(1);【解答】(1)去分母,可得:3(3y﹣1)﹣12=2(5y﹣7),去括号,可得:9y﹣3﹣12=10y﹣14,移项,可得:9y﹣10y=﹣14+3+12,合并同类项,可得:﹣y=1,系数化为1,可得:y=﹣1.(2).【解答】(2).去分母,可得:4(5y+4)+3(y﹣1)=24﹣(5y﹣5),去括号,可得:20y+16+3y﹣3=24﹣5y+5,移项,可得:20y+3y+5y=24+5﹣16+3,合并同类项,可得:28y=16,系数化为1,可得:y=.(3).【解答】(3)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:.(4).【解答】(4),去分母,得:6﹣2(2x﹣1)=3+x,去括号,得:6﹣4x+2=3+x,移项、合并同类项,得:﹣5x=﹣5,系数化为1,得:x=1.(5)=1.【解答】(5)3(x﹣2)+2(5﹣2x)=6,3x﹣6+10﹣4x=6,3x﹣4x=6+6﹣10,﹣x=2,x=﹣2.(6);【解答】(6),去分母,得2(2x﹣1)=3(3x+5),去括号,得4x﹣2=9x+15,移项,得4x﹣9x=2+15,合并同类项,得﹣5x=17,系数化为1,得x=﹣;(7).【解答】(7),去分母,得2(3x﹣2)﹣(5x+1)=18,去括号,得6x﹣4﹣5x﹣1=18,移项,得6x﹣5x=18+4+1,合并同类项,得x=23.(8).【解答】(8),去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.(9).【解答】(9)分母化为整数得:,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,即:9x=10x﹣4,移项、合并同类项得:x=4.(10).【解答】(10),去分母,得:2(2x+1)﹣(x﹣1)=6,去括号,得:4x+2﹣x+1=6,移项,合并同类项,得3x=3,系数化为1,得:x=1.(11).【解答】(11)去分母得:2(2x﹣1)﹣(x+2)=12,去括号得:4x﹣2﹣x﹣2=12,移项得:4x﹣x=12+2+2,合并同类项得:3x=16,系数化为1得:,∴原方程的解为:.(12).【解答】(12),3(3x﹣1)=6﹣(x﹣1),9x﹣3=6﹣x+1,9x+x=6+1+3,10x=10,x=1;(13).【解答】(13),4(2x﹣1)﹣12x=3(2x+1)﹣12,8x﹣4﹣12x=6x+3﹣12,8x﹣12x﹣6x=3﹣12+4,﹣10x=﹣5,x=.(14).【解答】(14)原方程去分母得:2(7﹣5x)=4﹣(3x﹣1),去括号得:14﹣10x=4﹣3x+1,移项得:﹣10x+3x=4+1﹣14,合并同类项得:﹣7x=﹣9,系数化为1得:x=.(15).【解答】(15),去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=.(16).【解答】(16),去分母得,2(2x﹣3)=5(3x﹣1)+10,去括号得,4x﹣6=15x﹣5+10,移项得,4x﹣15x=﹣5+10+6,合并同类项得,﹣11x=11,x的系数化为1得,x=﹣1.(17).【解答】(17)原方程去分母得:3x﹣2=6+2(x﹣1),去括号得:3x﹣2=6+2x﹣2,移项得:3x﹣2x=6﹣2+2,合并同类项得:x=6.(18).【解答】(18)去分母得:3(2x+1)﹣12=12x﹣2(5x﹣3),去括号得:6x+3﹣12=12x﹣10x+6,移项合并得:4x=15,解得:x=.(19).【解答】(19)方程去分母得:18x+3x﹣3=18﹣4x+4,移项合并得:25x=25,解得:x=1.(20).【解答】(20)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=﹣.(21).【解答】(21),去分母,得2x+1=6﹣2(5x﹣2),去括号,得2x+1=6﹣10x+4,移项,得2x+10x=6+4﹣1,合并同类项,得12x=9,系数化成1,得x=.(22).【解答】(22),3(3y﹣1)﹣12=2(5y﹣7),9y﹣3﹣12=10y﹣14,9y﹣10y=﹣14+12+3,﹣y=1,y=﹣1.(23).【解答】(52)去分母得:10y﹣5(y﹣1)=30﹣2(y+2),去括号得:10y﹣5y+5=30﹣2y﹣4,移项得:10y﹣5y+2y=30﹣4﹣5,合并同类项得:7y=21,解得:y=3.(24).【解答】(24),去分母,方程两边同时乘以最小公倍数6,2(2x+1)=3(x﹣1),去括号,4x+2=3x﹣3,移项,合并同类项,4x﹣3x=﹣3﹣2,系数化为1,x=﹣5.(25);【解答】(25),去分母,得3(3y﹣1)﹣2(5y﹣7)=12,去括号,得9y﹣3﹣10y+14=12,移项,得9y﹣10y=12+3﹣14,合并同类项,得﹣y=1,系数化为1,得y=﹣1;(26).【解答】(26),原方程可化为,去分母,得4(x﹣20)+3(30﹣7x)=12,去括号,得4x﹣80+90﹣21x=12,移项,得4x﹣21x=12+80﹣90,合并同类项,得﹣17x=2,系数化为1,得x=﹣.(27)﹣1.【解答】(51)去分母得:4(2y﹣1)=3(y+2)﹣12,去括号得:8y﹣4=3y+6﹣12,移项合并得:5y=﹣2,解得:y=﹣.(28).【解答】(28),去分母,得7(1﹣2x)=3(3x+1)﹣63,去括号,得7﹣14x=9x+3﹣63,移项,得﹣14x﹣9x=3﹣63﹣7,合并同类项,得﹣23x=﹣67,系数化成1,得x=.(29).【解答】(29)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=﹣.(30)5x=2x+5;【解答】解:(30)5x=2x+5,5x﹣2x=5﹣,3x=5,x=;(31)=.【解答】(31)=,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.(32).【解答】(32)整理得:,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;.(33).【解答】(33)去分母得,4(2x﹣6)﹣3(x+18)=12,去括号得,8x﹣24﹣3x﹣54=12,移项得,8x﹣3x=12+24+54,合并同类项得,5x=90,系数化为1得,x=18.(34).【解答】(34)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,.(35).【解答】(35),去分母得:3(x+2)﹣2(x﹣1)=12,去括号得:3x+6﹣2x+2=12,移项合并得:x=4.(36).【解答】(36),去分母,得:4x﹣2(2x+3)=24﹣(8﹣x),去括号,得:4x﹣4x﹣6=24﹣8+x,移项,得:4x﹣4x﹣x=24﹣8+6,合并同类项,得:﹣x=22,系数化为1,得:x=﹣22.【解答】(37)﹣1=去分母得:3(x+1)﹣6=2(2﹣3x),去括号得:3x+3﹣6=4﹣6x,移项并合并得:9x=7,系数化为1得:x=.(38)=4.【解答】(38)去分母,可得:3(x﹣3)+2(x﹣1)=24,去括号,可得:3x﹣9+2x﹣2=24,移项,可得:3x+2x=24+9+2,合并同类项,可得:5x=35,系数化为1,可得:x=7.(39).【解答】(39),去分母,得2(2x+1)﹣(5x﹣1)=﹣6,去括号,得4x+2﹣5x+1=﹣6,移项,得4x﹣5x=﹣6﹣1﹣2,合并同类项,得﹣x=﹣9,系数化为1,得x=9.(40).【解答】(40).2(2x+1)﹣(10x+1)=4,4x+2﹣10x﹣1=4,4x﹣10x=4﹣2+1,﹣6x=3.x=﹣0.5.【解答】(41)1﹣=,去分母得:15﹣3(x﹣3)=5(4﹣x),去括号得:15﹣3x+9=20﹣5x,移项得:﹣3x+5x=20﹣15﹣9,合并同类项得:2x=﹣4,把系数化为1得:x=﹣2.(42)﹣1=.【解答】(42)去分母得:3(3y﹣1)﹣12=2(5y﹣7),去括号得:9y﹣3﹣12=10y﹣14,移项得:9y﹣10y=﹣14+3+12,合并得:﹣y=1,解得:y=﹣1.(43)=1.【解答】(43)﹣=1,5(x+2)﹣3(2x﹣3)=15,5x+10﹣6x+9=15,5x﹣6x=15﹣10﹣9,﹣x=﹣4,x=4.(44).【解答】(44),去分母得:3(3x+5)=2×2x,去括号得:9x+15=4x,移项得:9x﹣4x=﹣15,合并同类项得:5x=﹣15,系数化为1得:x=﹣3.(45)=1﹣.【解答】(45)=1﹣,去分母,得2(2x﹣1)=4﹣(3﹣x),去括号,得4x﹣2=4﹣3+x,移项,得4x﹣x=4﹣3+2,合并同类项,3x=3,系数化成1,得x=1.(46).【解答】(46)去分母,得5×3x﹣2(4x﹣2)=﹣10,去括号,得15x﹣8x+4=﹣10,移项,得15x﹣8x=﹣10﹣4,合并同类项,得7x=﹣14,系数化为1,得x=﹣2.(47).【解答】(47)去分母得:2(1+2x)=3(1﹣x),去括号得:2+4x=3﹣3x,移项得:4x+3x=3﹣2,合并同类项得:7x=1,解得:x=.(48)解方程:.【解答】(50)解:,去分母,得2x+3(30﹣x)=30,去括号,得2x+90﹣3x=30,移项,得2x﹣3x=30﹣90,合并同类项,得﹣x=﹣60,系数化为1,得x=60.(49).【解答】(49)去分母,得3(x+2)﹣2(2x﹣3)=24,去括号,得3x+6﹣4x+6=24,移项,得3x﹣4x=24﹣6﹣6,合并,得﹣x=12,系数化为1,得x=﹣12.。

一元一次方程专题训练

一元一次方程专题训练

专题一:一元一次方程的解法1.解方程:(1)5x+5=9-3x;解:移项、合并同类项得8x=4,解得x=1 2 .(2)5x=3(2+x);解:去括号得5x=6+3x.移项、合并同类项得2x=6,解得x=3.(3)7-2x=3-4(x-2);解:去括号得7-2x=3-4x+8,移项、合并同类项得2x=4,解得x=2.(4)3(2x+1)=9-2(x-1);解:去括号得6x+3=9-2x+2,移项、合并同类项得8x=8,解得x=1.(5)753 48x-=;解:去分母得14x-10=3,移项、合并同类项得14x=13,解得x=13 14.(6)2154 36x x-+=;解:去分母得2(2x-1)=5x+4,去括号得4x-2=5x+4,移项、合并同类项得-x=6,解得x=-6.(7)4353146x x-+-=;解:去分母得12-3(4-3x)=2(5x+3),去括号得12-12+9x=10x+6,移项、合并同类项得-x=6,解得x=-6.(8)34=1.6 0.50.2x x-+-;解:方程整理得10305x--10402x+=1.6,去分母得2(10x-30)-5(10x+40)=16,去括号得20x-60-50x-200=16,移项、合并同类项得-30x=276,解得x=-9.2.(9)1+2=224x xx---;解:去分母得4x-2(x-1)=8-(x+2),去括号得4x-2x+2=8-x-2,移项、合并同类项得3x=4,解得x=4 3 .(10)(x-4)-(4)12x--=3-(4)23x-+.解:方法一:令x-4=y,则原方程可变形为y-12y-=3-23y+.去分母得6y-3(y-1)=18-2(y+2),去括号得6y-3y+3=18-2y-4,移项、合并同类项得5y=11,解得y=115,则x-4=115,解得x=315.方法二:方程整理得x-52x-=7-23x-,去分母得6x-3(x-5)=42-2(x-2),去括号得6x-3x+15=42-2x+4,移项、合并同类项得5x =31,解得x =315. 2.方程2(x -1)-3(x +1)=0的解与关于x 的方程2k x +-3k -2=2x 的解互为相反数,求k 的值.解:方程2(x -1)-3(x +1)=0,去括号得2x -2-3x -3=0,移项、合并同类项得-x =5,解得x =-5. 由题意得2k x +-3k -2=2x 的解为x =5. 把x =5代入得52k +-3k -2=10, 去分母得k +5-6k -4=20,移项、合并同类项得-5k =19,解得k =-195. 3.已知关于x 的一元一次方程4x +2m =3x -1.(1)求这个方程的解;解:(1)移项,得4x -3x =-1-2m .所以x =-1-2m .(2)若这个方程的解与关于x 的方程3(x +m )=-(x -1)的解相同,求m 的值.(2)去括号,得3x +3m =-x +1.移项、合并同类项,得4x =1-3m .解得x =134m -. 由于两个方程的解相同, 所以-1-2m =134m -. 去分母、去括号得-4-8m =1-3m ,移项、合并同类项,得-5m =5.解得m =-1.4.已知m 为整数,且满足关于x 的方程(2m +1)x =3mx -1.(1)当m =2时,求方程的解;解:(1)当m =2时,原方程为5x =6x -1,解得x =1.(2)该方程的解能否为3,请说明理由;(2)方程的解不能为3.理由如下:将x=3代入原方程,得3(2m+1)=9m-1,解得m=4 3 .∵m为整数,∵方程的解不可能为3.(3)当x为正整数时,请求出m的值.(3)(2m+1)x=3mx-1,移项、合并同类项,得(m-1)x=1.∵x为正整数,∵m-1为正数且为1的约数.∵m为整数,∵m-1=1.∵m=2.5.小王在解关于x的方程2-243x-=3a-2x时,误将-2x看作+2x,得方程的解为x=1. (1)求a的值;解:(1)把x=1代入2-243x-=3a+2x,得2+23=3a+2,解得a=29.(2)求此方程正确的解.(2)把a=29代入原方程得2-243x-=23-2x.去分母得6-(2x-4)=2-6x.去括号得6-2x+4=2-6x.移项得-2x+6x=-10+2.合并同类项得4x=-8.解得x=-2.6.定义:若关于x的一元一次方程ax=b的解为x=b+a,则称该方程为“和解方程”.例如:2x=-4的解为x=-2,且-2=-4+2,则方程2x=-4是“和解方程”.(1)判断-3x=94是否是“和解方程”,说明理由;解:(1)∵-3x=94,∵x=-3 4 .∵94-3=-34,∵-3x=94是“和解方程”.(2)若关于x的一元一次方程5x=m-2是“和解方程”,求m的值.(2)∵关于x的一元一次方程5x=m-2是“和解方程”,∵m-2+5=25m. 解得m=-174.故m的值为-174.专题二:方程中与的字母问题1.已知关于x的方程(m+2)x|m+1|-3=0是一元一次方程,则m的值是( B)A.-2B.0C.1D.0或-22.若(|m|-1)x2-(m-1)x-8=0是关于x的一元一次方程,则m的值为( A)A.-1B.1C.±1D.不能确定3.已知关于x的方程ax-1=x为一元一次方程,则|a-1|的值一定为( A)A.正数B.非负数C.零D.不能确定4.若(m-4)x2|m|-7-4m=0是关于x的一元一次方程,求m2-2m+1996的值.解:∵(m -4)x 2|m |-7-4m =0是关于x 的一元一次方程,∵m -4≠0且2|m |-7=1.解得m =-4.∵原式=16+8+1996=2020.5.已知关于x 的方程2x -93a -=0的解是x =-2,则a 的值为( C ) A.-21 B.21 C.-3 D.38.已知关于x 的方程x -46ax -=43x +-1的解是正整数,则符合条件的所有整数a 的积是 . 9.在做解方程练习时,学习卷中有一个方程“2y -13=13y +W ”中的W 没印清晰,小聪问老师,老师只是说:“W 是个有理数,该方程的解与方程3(x -1)-2(x -2)=3的解相同.”小聪很快补上了这个常数,聪明的你能补上这个常数吗? 解:解方程3(x -1)-2(x -2)=3得x =2.由题意知y =x =2.将y =2代入2y -13=13y +W 中, 得2×2-13=13×2+W , 解得W =3.10.如果a ,b 为常数,且不论k 取何值时,关于x 的方程2kx a --1=24x bk -的解总是x =-1,求a b 的值. 解:把x =-1代入2kx a --1=24x bk -, 得2k a ---1=24bk --. 整理,得(b -2)k -2a -2=0.∵无论k 取何值时,关于x 的方程的解总是x =-1,∵b -2=0,-2a -2=0.解得b =2,a =-1.∵a b =(-1)2=1.11.若a ,b 互为相反数(a ≠0),则关于x 的方程ax +b =0的解是( A )A.x=1B.x=-1C.x=1,或x=-1D.不能确定12.已知|n+2|+(5m-3)2=0,求关于x的方程10mx+4=3x+n的解.解:因为|n+2|+(5m-3)2=0,所以n+2=0,5m-3=0.解得m=35,n=-2.将m=35,n=-2代入方程10mx+4=3x+n,得6x+4=3x-2.移项、合并同类项得3x=-6.解得x=-2.专题三:一元一次方程的应用1.我国一航空母舰始终以60千米/时的速度由西向东航行,飞机以500千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行3个小时,那么它在起飞几小时后就必须返航,才能安全停在舰上?解:设飞机在起飞x小时后就必须返航,才能安全停在舰上.根据题意得500(3-x)-500x=60×3,解得x=1.32.答:飞机在起飞1.32小时后就必须返航,才能安全停在舰上.2.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解:设有x 位客人,则2x +3x +4x =65, 解得x =60.答:有60位客人.3.如图,一块长4厘米、宽1厘米的长方形纸板∵,一块长5厘米、宽2厘米的长方形纸板∵与一块正方形纸板∵以及另两块长方形纸板∵和∵,恰好拼成一个大正方形,求大正方形的面积.解:设小正方形∵的边长为x 厘米.依题意得1+x +2=4+5-x ,解得x =3.则1+x +2=6.∵大正方形的边长为6厘米.∵大正方形的面积是6×6=36(平方厘米).4.一鞋店老板以每件60元的价格购进了一种品牌的布鞋360双,并以每双100元的价格销售了240双.冬季来临,老板为了清库存,决定促销.请你帮老板算一下,每双鞋降价多少元时,销售完这批鞋正好能达到盈利50%的目标.解:设每双鞋降价x 元.依题意有(100-60)×240+(100-x -60)×(360-240)=360×60×50%,解得x =30.答:每双鞋降价30元时,销售完这批鞋正好能达到盈利50%的目标.5.在国庆节社会实践活动中,盐城某校甲、乙、丙三位同学一起调查了高峰时段盐靖高速、盐洛高速和沈海高速的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“盐靖高速车流量为每小时2000辆.”乙同学说:“沈海高速的车流量比盐洛高速的车流量每小时多400辆.”丙同学说:“盐洛高速车流量的5倍与沈海高速车流量的差是盐靖高速车流量的2倍.”请你根据他们所提供的信息,求出高峰时段盐洛高速和沈海高速的车流量分别是多少?解:设盐洛高速车流量为每小时x辆.由题意得5x-(x+400)=2000×2,解得x=1100.则x+400=1500.答:高峰时段盐洛高速和沈海高速的车流量分别是每小时1100辆、1500辆. 6.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如下表:(1)A、B两种商品分别购进多少件?解:(1)设购进A种商品a件,则购进B种商品(100-a)件.由题意得25a+35(100-a)=3100,解得a=40.则100-a=60.答:A、B两种商品分别购进40件、60件.(2)两种商品售完后共获取利润多少元?(2)(30-25)×40+(45-35)×60=800(元).答:两种商品售完后共获取利润800元.7.为了鼓励节约用电,某地用电标准规定:如果每户每月用电不超过a度,那么每度按0.55元缴纳;超过部分则按每度0.85元缴纳.(1)某户5月份用电200度,共交电费125元,求a的值;解:(1)因为200×0.55=110<125,所以该用户用电量超过a度.由题意可知0.55a+0.85(200-a)=125,解得a=150.(2)在(1)的条件下,若该户6月份的电费平均每度0.6元,则6月份共用电多少度?应交电费多少元?(2)设6月份共用电x度.由题意得150×0.55+0.85×(x-150)=0.6x,解得x=180.∵应交电费0.6x=108(元).答:6月份共用电180度,应交电费108元.8.完成一项工作,如果由两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?解:(1)设开始安排了x名工人.根据题意,得24(1)11621622x x++=⨯⨯,解得x=2.答:开始安排了2名工人.(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?(2)设还需再增加y名工人.根据题意,得314322y+⨯=. 解得y=1.答:还需再增加1名工人.9.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?解:(1)设一个暖瓶x元,则一个水杯(38-x)元.根据题意得2x+3(38-x)=84,解得x=30,则38-x=8.答:一个暖瓶的售价是30元,一个水杯的售价是8元.(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.(2)这个单位在甲商场购买更合算.理由:在甲商场购买所需费用为(4×30+16×8)×85%=210.8(元);在乙商场购买所需费用为4×30+(16-4)×8=216(元).因为210.8<216,所以这个单位在甲商场购买更合算.综合训练四:一元一次方程的解法一、选择题(每小题3分,共24分)1.方程x-14x-=-1去分母正确的是( C)A.x-1-x=-1B.4x-1-x=-4C.4x-1+x=-4D.4x-1+x=-12.方程2-3x=4-2x的解是( B)A.x=1B.x=-2C.x=2D.x=-13.如果3ab2m-1与9ab m+1是同类项,那么m等于( A)A.2B.1C.-1D.04.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是( A)A.x=0B.x=3C.x=-3D.x=25.将一根长为12 cm的铁丝围成一个长与宽之比为2∵1的长方形,则此长方形的面积为( C)A.2 cm2B.4.5 cm2C.8 cm2D.32 cm26.若关于x的一元一次方程23x k--32x k-=1的解是x=-1,则k的值是( B)A.27B.1C.-37D.07.若a、b表示非零常数,整式ax+b的值随x的取值而发生变化,如下表:则关于x的一元一次方程-ax-b=-3的解为( C)A.x=-3B.x=-1C.x=0D.x=38.已知关于x的方程52x-a=3x-14,若a为正整数,方程的解也为正整数,则a的最大值是( B)A.12B.13C.14D.15二、填空题(每小题4分,共24分)9.方程3x=5x-14的解是x=.10.当x=时,式子x-1与式子214x的值相等.11.若关于x的方程x+k=1与2x-3=1的解相同,则k的值为.12.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.13.在有理数范围内定义一种新运算“∵”,其运算规则为:a∵b=-2a+3b,如1∵5=-2×1+3×5=13,则方程2x∵4=0的解为.14.若关于x的方程12019x+2019=2x+m的解是x=2019,则关于y的方程12019y+2019+12019=2y+m+2的解是y=.解析:12019y+2019+12019=2y+m+2可整理为12019(y+1)+2019=2(y+1)+m,则由题可得y+1=2019,∵y=2018.三、解答题(共52分)15.(16分)解下列方程:(1)9x+6=6x-2;解:x=-83.(4分)(2)13x-14=23x+34;解:x=-3.(8分)(3)6(2x-5)+15=4(1-2x)-5;解:x=710.(12分)(4)1241 262x x x+---=-.解:x=15.(16分)16.(8分)当x为何值时,整式(2x-1)的值比(x+3)的值的3倍少5?解:由题意得2x-1=3(x+3)-5,(2分)解得x=-5,(6分)即当x=-5时,整式(2x-1)的值比(x+3)的值的3倍少5.(8分)17.(8分)聪聪在对方程315362x mx x+---=∵去分母时,错误地得到了方程2(x+3)-mx-1=3(5-x)∵,因而求得的解是x=52,试求m的值,并求方程的正确解.解:把x=52代入方程∵得25+32⎛⎫⎪⎝⎭-52m-1=3552⎛⎫-⎪⎝⎭,解得m=1.(4分)把m=1代入方程∵得315362x x x+---=,解得x=2,则方程的正确解为x=2.(8分)18.(10分)(1)解关于x的方程:2(-2x+a)=3x;解:(1)去括号得-4x+2a=3x,移项、合并同类项得7x=2a,解得x=27a.(4分)(2)若(1)中方程的解与关于x的方程x-13x-=6x a+的解互为相反数,求a的值.(2)由题意知方程x-13x-=6x a+的解为x=-27a.解方程x-13x-=6x a+得x=27a+.(7分)则27a+=-27a,解得a=-23.(10分)19.(10分)阅读以下例题.解方程:|3x|=1.解:∵当3x>0时,原方程可化为3x=1,它的解为x=13;∵当3x<0时,原方程可化为-3x=1,它的解为x=-1 3 .所以原方程的解为x1=13,x2=-13.仿照例题解方程:|2x+1|=5.解:当2x+1>0时,原方程可化为2x+1=5,(3分)解得x=2.(5分)当2x+1<0时,原方程可化为-(2x+1)=5,解得x=-3.(9分)∵原方程的解为x1=2,x2=-3.(10分)。

一元一次方程练习(含经典解析)

一元一次方程练习(含经典解析)

一元一次方程练习(含经典解析)兰波儿广超一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x ﹣0.7=5.2﹣1.3(x ﹣1); (2)=﹣2.24.解方程:(1)﹣0.5+3x=10; (2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x ﹣1); (4).25.解方程:.26.解方程:(1)10x ﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7 (2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5 (II).30.解方程:.。

一元一次方程的解法典型例题

一元一次方程的解法典型例题

典型例题例1 判断下面的移项对不对,如果不对,应怎样改正?(1)从得到;(2)从得到;(3)从得到;(4)从得到;分析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变.解:(1)不对,等号左边的7移到等号右边应改变符号.正确应为:(2)对.(3)不对.等号左端的-2移到等号右边改变了符号,但等号右边的移到等号左边没有改变等号.正确应为:(4)不对.等号右边的移到等号左边,变为是对的,但等号右边的-2仍在等号的右边没有移项,不应变号.正确应为:选题角度:关于利用移项法则判断移项是否正确的题目例2 判断下列各式哪些是一元一次方程.(1);(2);(3);(4);(5);(6)分析:判断一个数学式子是不是一元一次方程,首先看它是不是方程,其次再看它含有几个未知数,并且未知数的最高次数是多少.解:(1)是,因为是方程,且方程只含有一个未知数,且含未知数的项最高次数是1.(2)不是.不是方程.(3)不是.因为虽然是方程但含有两个未知数、.(4)不是.因为不是方程.(5)不是.因为含有两个未知数.(6)不是.因为中未知数最高次数为2次.例3 解方程:(1);(2)(3);(4)分析:本题都是简单的方程,只要根据等式的性质2.把等号左边未知的系数化为1,即可得到方程的解.解:(1)把的系数化为1,根据等式的性质2.在方程两边同时除以3得,检验左边,右边左边=右边.所以是原方程的解.(2)把的系数化为1,根据等式的性质2,在方程两边同时除以4得,.检验:左边,右边=2,左边=右边所以是原方程的解.(3)把的系数化为1.根据等式性质2,在方程的两边同时乘以得,检验,左边右边左边=-右边,所以是原方程的解;(4)把的系数化为1,根据等式的性质2,在方程两边同时乘以-2得:检验:左边,右边,左边=右边.所以是原方程的解.说明:①在应用等式的性质2把未知数的系数化为1时,什么情况适宜用“乘”,什么情况下适宜用“除”,要根据未知数的系数而定.一般情况来说.当未知数的系数是整数时,适宜用除;当未知数的系数是分数(或小数)适宜用乘.(乘以未知数系数的倒数).②要养成进行检验的习惯,但检验可不必书面写出.选题角度:关于判断方程是不是一元一次方程的题目例4 解方程分析:题给方程不是一元一次方程的标准形式,我们利用移项法则把含x的项全部移到等式左边,把常数项全部移到等式右边.转化成标准形式就容易求解了.解:移项,得合并同类项,得方程两边同除以一5,得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档