双曲线历年高考真题100题 解析版

合集下载

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析1.已知双曲线,分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线C的右支交于两点,其中点位于第一象限内.(1)求双曲线的方程;(2)若直线分别与直线交于两点,求证:;(3)是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由。

【答案】(1);(2)见解析;(3)存在,,理由祥见解析.【解析】(1)由已知首先得到,再由离心率为2可求得的值,最后利用双曲线中基本量的关系求出值,从而就可写出所求双曲线的标准方程;(2)设直线的方程为:,与双曲线方程联立,消去得到关于的一个一元二次方程;再设,则由韦达定理就可用的式子表示出,再用点P,Q的坐标表示出直线AP及AQ的方程,再令就可写出点M,N的坐标,进而就可写出向量的坐标,再计算得,即证明得;(3)先取直线的斜率不存在的特列情形,研究出对应的的值,然后再对斜率存在的情形给予一般性的证明:不难获得,从而假设存在使得恒成立,然后证明即可.试题解析:(1)由题可知: 1分2分∴双曲线C的方程为: 3分(2)设直线的方程为:,另设:4分5分又直线AP的方程为,代入 6分同理,直线AQ的方程为,代入 7分9分(3)当直线的方程为时,解得. 易知此时为等腰直角三角形,其中,即,也即:. 10分下证:对直线存在斜率的情形也成立.11分12分13分∴结合正切函数在上的图像可知, 14分【考点】1.双曲线的标准方程;2.直线与双曲线的位置关系;3.探索性问题.2.已知双曲线C:(a>0,b>0)的一条渐近线与直线l:垂直,C的一个焦点到l的距离为1,则C的方程为__________________.【答案】x2-=1【解析】由已知,一条渐近线方程为,即又,故c=2,即a2+b2=4,解得a=1,b=3双曲线方程为x2-=1考点:双曲线的渐近线,直线与直线的垂直关系,点到直线距离公式3.若点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是________.【答案】10【解析】依题意得,点F1(-5,0),F2(5,0)分别为双曲线C1的左、右焦点,因此有|PQ|-|PR|≤|(|PF2|+1)-(|PF1|-1)|≤||PF2|-|PF1||+2=2×4+2=10,故|PQ|-|PR|的最大值是10.4.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.5.设的离心率为,则的最小值为( )A.B.C.D.【答案】B【解析】由题意得,所以.【考点】双曲线及重要不等式.6.设圆锥曲线I’的两个焦点分别为F1,F2,若曲线I’上存在点P满足::= 4:3:2,则曲线I’的离心率等于( )A.B.C.D.【答案】A【解析】由::= 4:3:2,可设,,,若圆锥曲线为椭圆,则,,;若圆锥曲线为双曲线,则,,,故选A.7.已知点F是双曲线的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A,B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是() A.(1,+∞)B.(1,2)C.D.【答案】B【解析】由AB⊥x轴,可知△ABE为等腰三角形,又△ABE是锐角三角形,所以∠AEB为锐角,即∠AEF<45°,于是|AF|<|EF|,,即,解得,又双曲线的离心率大于1,从而,故选B。

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。

修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。

2.理解数形结合的思想。

3.了解双曲线的实际背景及其简单应用。

一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。

点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。

2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。

点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。

双曲线的通径为 $2a$。

3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析1.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1【答案】A【解析】由x2+y2-6x+5=0知圆心C(3,0),半径r=2.又-=1的渐近线为bx±ay=0,且与圆C相切.由直线与圆相切,得=2,即5b2=4a2,①因为双曲线右焦点为圆C的圆心,所以c=3,从而9=a2+b2,②由①②联立,得a2=5,b2=4,故所求双曲线方程为-=1,选A.2.若实数满足,则曲线与曲线的()A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等【答案】D【解析】,则,,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,因此,两双曲线的焦距相等,故选D.【考点】本题考查双曲线的方程与基本几何性质,属于中等题.3.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.4.设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为A.B.C.D.3【答案】B【解析】因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以故选B.【考点】1、双曲线的定义和标准方程;2、双曲线的简单几何性质.5.已知A1,A2双曲线的顶点,B为双曲线C的虚轴一个端点.若△A1BA2是等边三角形,则双曲线的离心率e等于.【答案】2【解析】由题意可知,解得,即,所以.则.【考点】双曲线的简单几何性质.6.已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离为()A.B.C.D.【答案】A【解析】抛物线的焦点坐标为,因此双曲线的右焦点的坐标也为,所以,解得,故双曲线的渐近线的方程为,即,因此双曲线的焦点到其渐近线的距离为,故选A.【考点】1.双曲线的几何性质;2.点到直线的距离7.已知双曲线="1" 的两个焦点为、,P是双曲线上的一点,且满足,(1)求的值;(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.【答案】(1) (2)16【解析】(1)根据题意,又,,,又|P F|•|PF|="|" F F|=, |P F|<4,得在区间(0,4)上有解,所以因此,又,所以(2)双曲线方程为=1,右顶点坐标为(2,0),即所以抛物线方程为直线方程为由(1)(2)两式联立,解得和所以弦长|AB|==168.设F是抛物线的焦点,点A是抛物线与双曲线的一条渐近线的一个公共点,且轴,则双曲线的离心率为_______.【答案】【解析】由抛物线方程,可得焦点为,不妨设点在第一象限,则有,代入双曲线渐近线方程,得,则,所以双曲线离率为.故正确答案为.【考点】1.抛物线;2.双曲线.9.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为()A.B.C.D.【答案】A【解析】由于M(1,m)在抛物线上,∴m2=2p,而M到抛物线的焦点的距离为5,根据抛物线的定义知点M到抛物线的准线x=-的距离也为5,∴1+=5,∴p=8,由此可以求得m=4,=,而双曲线的渐近线方程为y=±,根据题意得,双曲线的左顶点为A(-,0),∴kAM=,∴a=.10.设双曲线的渐近线方程为,则的值为()A.4B.3C.2D.1【答案】C【解析】由双曲线方程可知渐近线方程为,故可知。

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析1.双曲线的渐近线方程是A.B.C.D.【答案】A【解析】因为双曲线的方程为,令,所以渐近线方程是.【考点】双曲线的渐近线方程.2.双曲线的虚轴长等于( )A.B.-2t C.D.4【答案】C【解析】由于双曲线,所以其虚轴长,故选C.【考点】双曲线的标准方程.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.已知、是双曲线(,)的左右两个焦点,过点作垂直于轴的直线与双曲线的两条渐近线分别交于,两点,是锐角三角形,则该双曲线的离心率的取值范围是()A.B.C.D.【答案】B是锐【解析】根据题意,易得,由题设条件可知为等腰三角形,2角三角形,只要为锐角,即即可;所以有,即解出故选B【考点】双曲线的简单性质5.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于()A.2B.18C.2或18D.16【答案】C【解析】整理准线方程得,∴,a=4,∴=2a=8或=2a=8,∴=2或18,故选C..【考点】双曲线的简单性质;双曲线的应用.6.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.7.如图,动点到两定点、构成,且,设动点的轨迹为。

(1)求轨迹的方程;(2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。

【答案】(1)(2)【解析】(1)求动点轨迹方程,一般有四步.第一步,设所求动点的坐标,第二步,将条件转化为坐标表示,本题,两边取正切,转化为斜率关系,第三步,化简关系式为常见方程形式,第四步,根据方程表示图像,去掉不满足的部分.(2)研究取值范围,首先将表示为函数关系式.因为等于,所以先求出,从而有,利用直线与双曲线有两个交点这一限制条件,得到m>1,且m2,这作为所求函数定义域,求出值域即为的取值范围是试题解析:解(1)设M的坐标为(x,y),显然有x>0,.当∠MBA=90°时,点M的坐标为(2,, ±3)当∠MBA≠90°时;x≠2.由∠MBA=2∠MAB,有tan∠MBA=,即化简得:3x2-y2-3=0,而又经过(2,,±3)综上可知,轨迹C 的方程为3x2-y2-3=0(x>1) 5分 (2)由方程消去y ,可得。

双曲线历年高考真题100题 解析版

双曲线历年高考真题100题  解析版

高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】试题分析:依题意有222{3bac c a b ===+,解得1,a b ==2213y x -=.考点:双曲线的概念与性质. A .2 B .C .D .1【答案】D 【解析】试题分析:由离心率e =ca 可得:e 2=a 2+3a2=22,解得:a =1.考点:复数的运算 A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为x 23m −y 23=1.则c 2=3m +3,c =√3m +3,设一个焦点F(√3m +3,0),一条渐近线l 的方程为y =√3√3m=√m,即x −√my =0,所以焦点F 到渐近线l 的距离为d =√3m+3√m+1=√3,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.A .B .C .D .【答案】A 【解析】2=,所以,b a ,双曲线的渐近线方程为y x =,即0x ±=,选A. 考点:椭圆、双曲线的几何性质. A .B .C .D .3【答案】B 【解析】试题分析:因为P 是双曲线x 2a2−y 2b 2=1(a >0,b >0)上一点,所以||PF 1|−|PF 2||=2a ,又|PF 1|+|PF 2|=3b所以,(|PF 1|+|PF 2|)2−(|PF 1|−|PF 2|)2=9b 2−4a 2,所以4|PF 1|⋅|PF 2|=9b 2−4a 2 又因为|PF 1|⋅|PF 2|=94ab ,所以有,9ab =9b 2−4a 2,即9(ba )2−9(ba )−4=0 解得:ba =−13(舍去),或ba =43; 所以e 2=c 2a 2=a 2+b 2a 2=1+(b a )2=1+(43)2=259,所以e =53故选B.考点:1、双曲线的定义和标准方程;2、双曲线的简单几何性质. A .(1,3) B .(]1,3C .(3,+∞)D .[)3,+∞ 【答案】B 【详解】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a 与c 的关系.A.B.C.D.【答案】B【解析】由题意,所以,由双曲线的定义,有,∴.A.(√2,2)B.(√2,√5)C.(2,5)D.(2,√5)【答案】B【详解】由题意得,双曲线的离心率e2=(ca )2=a2+(a+1)2a2=1+(1+1a)2,因为1a 是减函数,所以当a>1时,0<1a<1,所以2<e2<5,所以√2<e<√5,故选B.考点:双曲线的几何性质.【方法点晴】本题主要考查了双曲线的几何性质及其应用,其中解答中涉及到双曲线的标准方程及简单的几何性质的应用,函数的单调性及函数的最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算、转化与化归思想的应用,本题的解得中把双曲线的离心率转化为1a的函数,利用函数的单调性是解答的关键,试题有一定的难度,属于中档题.A .3B .C .D .【答案】C 【解析】可得双曲线的准线为21a x c =±=±,又因为椭圆焦点为(1=.即b 2=3故b=故C.A .B .2C .3D .6【答案】A 【解析】试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出r 的值.22163x y -=的渐近线方程是2y =±20y ±=,又圆心是(3,0),所以由点到直线的距离公式可得r =A .考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.A .2 BC .32D .1【答案】D 【详解】由222123x y c b e a a 可知虚轴-=====,解得a=1,应选D. A .B .5C .D .【答案】D 【解析】由题意知:双曲线的一条渐近线为,由方程组2{1b y x a y x ==+,消去y,得210bx x a-+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D. 【考点定位】本小题考查双曲线与抛物线的基本知识,求离心率、直线与抛物线的位置关系等.A .22124x y -=B .22142-=x yC .22146x y -= D .221410x y -= 【答案】B 【解析】由2e =得222222331,1,222c b b a a a =+==,选B.A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=【答案】A 【详解】圆心为(5,0),渐近线方程为430x y ±=,所以半径为4545⨯=,所以圆的方程是22(5)16x y -+=,即221090x y x +-+=,选A.A .B .12C .D .24【答案】B 【解析】试题分析:由已知可得121212|:|3:2,26,4,PF PF PF PF PF PF =-=⇒==又22212121212||||F F PF PF F F PF F =+=⇒∆是直角三角形146122S =⨯⨯=,故选B .考点:双曲线标准方程及其性质. A.2B.2CD【答案】B 【解析】本小题主要考查双曲线的几何性质、第二定义、余弦定理,以及转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000[()]1a PF e x a ex c =--=+=+,22000[)]1aPF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||2PF PF F F PF PF +-,即cos60222=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0y =.A .√2B .√3C .√3+12D .√5+12【答案】D 【解析】试题分析:设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),得点B (0,b ),焦点为F (c ,0),直线FB 的斜率为−bc 由垂直直线的斜率之积等于-1,建立关于a 、b 、c 的等式,变形整理为关于离心率e 的方程,解之即可得到该双曲线的离心率;设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),可得它的渐近线方程为y =±ba x ,焦点为F (c ,0),点B (0,b )是虚轴的一个端点,∴直线FB 的斜率为k FB =0−b c−0=−b c ,∵直线FB 与直线y =ba x 互相垂直,∴−bc ×ba =−1,∴b 2=ac,∵b 2=c 2−a 2,∴c 2−a 2=ac ,∴e 2−e −1=0,∴e =1±√52∵双曲线的离心率e >1,∴e=√5+12,故选:D考点:双曲线的简单性质A .By=0 C .="0" D±y=0【答案】D 【解析】不妨设12(,0),(,0)F c F c -,则11221222OF F P OF F P F P F POP ++++==因为1260F PF ∠=,所以121212cos602F P F PF P F P F P F P ⋅⋅=⋅=,22212121212||||1cos 22PF PF F F F PF PF PF +-∠==⋅ 所以2221212||4PF PF PF PF c +=⋅+ 因为P 在双曲线上,所以122PF PF a -=则2222212121212()||244PF PF PF PF PF PF c PF PF a -=+-⋅=-⋅= 所以221244PF PF c a ⋅=-,故122212222F P F PF P F P c a ⋅⋅==-222221212||484PF PF PF PF c c a +=⋅+=-因为OP =,所以1272F P F POP +==故22121212||274F P F P F P F Pa ++⋅=,即222327ca a -=故22237b a a +=,解得b =所以双曲线的渐近线方程为0x a =0y ±=,故选DA .3B .3C .D .【答案】A 【详解】由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线,双曲线的右准线方程是3x =,故点P 到y 轴的距离是3.A .12m >B .1m ≥C .1m >D .2m >【答案】C 【解析】试题分析:由题可知1a =,b =c =ce a==>1m >,故选C . 考点:双曲线的离心率.A .12B .2C .1 D【答案】B 【解析】由于对称性,我们不妨取顶点(1,0)A ,取渐近线为0x y -=,所以由点到直线的距离公式可得d ==450得到. 【考点定位】 本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=【答案】D 【详解】由题意,双曲线221x y -=的渐近线方程为y x =±,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C :()222210x y a b a b+=>>上,∴22441a b +=,∵e =∴22234a b a -=,∴224b a =, ∴22205a b ==,∴椭圆方程为:221205x y +=.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质. A .12或32B .23或2 C .12或2 D .23或32【答案】A 【分析】设1122432PF t F F t PF t ===,,,讨论两种情况,分别利用椭圆与双曲线的定义求出,a c 的值,再利用离心率公式可得结果. 【详解】因为1122::PF F F PF 4:3:2=,所以可设1122432PF t F F t PF t ===,,, 若曲线为椭圆则123262a PF PF t c t =+==,,则12c e a ==; 若曲线为双曲线则,324222a t t t a t c t ,,=-===,∴32c e a ==,故选A . 【点睛】本题主要考查椭圆的定义及离心率以及双曲线的定义及离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解. A .2B .C .4D .【答案】C 【解析】2228x y -=可变形为22148x y -=,则24a =,2a =,24a =.故选C.A .4B .3C .2D .1【答案】C 【分析】先根据双曲线()222109x y a a -=>求出渐近线方程,再与320x y ±=比较即可求出a 的值. 【详解】由双曲线的几何性质可得,双曲线()222109x y a a -=>的渐近线方程为3y x a=±,又因为渐近线方程为320x y ±=,即32y x =±,故2a =,选C .【点睛】本题主要考查双曲线的渐近线方程的求法,属基础题.ABC .2D .3【答案】B 【分析】先设2(,),0aP t t c>,由两直线垂直,结合直线的斜率公式可得221tta a c c c c⋅=-+-,再结合三角形的面积公式可得24ct ab =,然后由双曲线离心率的求法求解即可. 【详解】解: 由P 是准线上一点,设2(,),0a P t t c>,又1(,0)F c -,2(,0)F c ,由12PF PF ⊥,可得221tt aa cc cc⋅=-+-,解得t =因为12·4PF PF ab =, 由三角形的面积公式有24ct ab =,2a =, 即223c a =,即==ce a, 故选:B. 【点睛】本题考查了直线的斜率公式及三角形的面积公式,重点考查了双曲线离心率的求法,属中档题.A.ab B .22b a + C .a D .b 【答案】B 【解析】略A .221520x y -=B .221205x y -=C .D .【解析】试题分析:由已知得2,2,bb a a=∴=在方程210y x =+中令0y =,得2222225,5,525,5,20,x c c a b a a b =-∴=-∴=+====∴所求双曲线的方程为221520x y -=,故选A . 考点:1.双曲线的几何性质;2.双曲线方程的求法. A .(0,)B .(1,)C .(,1)D .(,+∞)【答案】B 【解析】试题分析:求出渐近线方程及准线方程;求得它们的交点A ,B 的坐标;利用圆内的点到圆心距离小于半径,列出参数a ,b ,c 满足的不等式,求出离心率的范围. 解:渐近线y=±x . 准线x=±,求得A ().B (),左焦点为在以AB 为直径的圆内, 得出,,b <a ,c 2<2a 2 ∴,故选B .点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1. A .2B .2C .4D .4【答案】B试题分析:根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.A.B.C.D.【答案】A【解析】由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形.因为有且只有一对相较于点O、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得,即,,所以e>.同样地,当,即,所以e≤2.所以双曲线的离心率的范围是.故选A.A .a 2=B .a 2=3C .b 2=D .b 2=2【答案】C 【解析】由题意,C 2的焦点为(±,0),一条渐近线方程为y=2x ,根据对称性易知AB 为圆的直径且AB=2a∴C 1的半焦距c=,于是得a 2﹣b 2=5 ①设C 1与y=2x 在第一象限的交点的坐标为(x ,2x ),代入C 1的方程得:②,由对称性知直线y=2x 被C 1截得的弦长=2x ,由题得:2x=,所以③由②③得a 2=11b 2④ 由①④得a 2=5.5,b 2=0.5 故选CA .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D 【解析】 双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同. 故选D .A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C 【详解】c e a ===2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.本题考查双曲线的基本性质,考查学生的化归与转化能力.A .y=±2xB .y=C .12y x =±D .2y x =±【答案】B 【解析】双曲线的离心率为a=渐进性方程为b y x a =±,计算得b a =故渐进性方程为y =. 【考点定位】本小题考查了离心率和渐近线等双曲线的性质. A .B .C .D .【答案】C 【解析】由于对称性,我们不妨取顶点(2,0)A ,取渐近线为20x y -=,所以由点到直线的距离公式可得5d ==【考点定位】本题考查了双曲线的渐近线及点到直线的距离公式,属于简单题.A BC .2D .3【答案】B 【详解】通径|AB|=2222b a a =⋅得2222222222233b a c a a c aa c e =⇒-===⇒⇒⇒= BA .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A试题分析:双曲线的渐近线为b y x a=,所以0bx ay -=,22650x y x +-+=变形为()2234x y -+=,所以圆心为()3,0,2r =()222222329435,4b c c a c c a b =∴=∴-==∴==,所以双曲线方程为22154x y -=考点:双曲线方程及性质 A .1 B .2C .3D .4【答案】D 【解析】 由已知,取顶点,渐近线,则顶点到渐近线的距离为,解得.A .B .2C D .1【答案】A 【解析】试题分析:双曲线焦点到渐近线的距离为b ,所以距离为b =考点:双曲线与渐近线. A .B .C .D .【答案】A试题分析:由题意,得c=√5,ba =12,又a2+b2=c2,所以a=2,b=1,所以双曲线的方程为x24−y21=1,选A.【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【答案】C【解析】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.A B.54C.43D.53【答案】D 【解析】因为双曲线22221x y a b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴==,(),. 故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22221x y a b -=共渐近线的可设为2222(0)x y a bλλ-=≠;(2)若渐近线方程为b y x a =±,则可设为2222(0)x y a bλλ-=≠;(3) 双曲线的焦点到渐近线的距离等于虚半轴长b ;(4) 22221(0.0)x y a b a b -=>>的一条渐近线的斜率为b a ==可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】 依题意,,,因为,由于,,,所以当时,,,,,所以12e e <;当时,,,而,所以,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >. 考点:双曲线的性质,离心率.A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -【答案】C 【解析】试题分析:焦点在y 轴上的是C 和D ,渐近线方程为ay x b=±,故选C . 考点:1.双曲线的标准方程;2.双曲线的简单几何性质.A B .2C D【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.A .2 B.C .4D.【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质 A .14B .13C.4D.3【答案】A 【解析】试题分析:由已知设21,2,F A m F A m ==则由定义得12122,2,4,2.F A F A a m a F A a F A a -=∴===122,24.ce F F c a a====在12AF F ∆中,由余弦定理得()()2222222121212124441cos 22244a a a AF F F AF AF F AF F F a a+-+-∠===⋅⨯⨯,故选A . 考点:1.双曲线的几何性质(焦点三角形问题);2.余弦定理.A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B 【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. 【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .13B .1 2C .2 3D .32【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3=±y ,所以||3PF =,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得(2,0)F ,结合PF 与x 轴垂直,可得||3PF =,最后由点A 的坐标是(1,3),计算△APF 的面积.得的弦长为2,则C 的离心率为 ( ) A .2 BCD【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==,则点()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -【答案】D 【解析】试题分析:根据对称性,不妨设(,)A x y 在第一象限,则,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 【考点】双曲线的渐近线【名师点睛】求双曲线的标准方程时注意:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).A .y =B .y =C .y x =D .y x = 【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A. 点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.A .32B .3C .D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,2M N ,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y =和y x =联立,求得3(,2M N,所以3MN==,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=【答案】A【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(),0F c(c>0),则A Bx x c==,由22221c ya b-=可得:2bya=±,不妨设:22,,,b bA cB ca a⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay-=,据此可得:21bc bdc-==,22bc bdc+==,则12226bcd d bc+===,则23,9b b==,双曲线的离心率:2cea====,据此可得:23a=,则双曲线的方程为22139x y-=.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.A .(√2,+∞)B .(√2,2)C .(1,√2)D .(1,2)【答案】C 【解析】 c 2=a 2+1,e 2=c 2a2=a 2+1a 2=1+1a 2,∵a >1,∴0<1a 2<1 ,1<e 2<2 ,则0<e <√2,选C.A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=. 本题选择D 选项.【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .221412x y -=B .22179x y -=C .22188x y -=D .221124x y -=【答案】A 【详解】 可得渐近线方程为,将x=a 代入求得.由条件知,半焦距,所以由得,.又因,所以解得,.双曲线C 的方程为221412x y -=故选A .A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1【答案】A 【详解】由题意得,双曲线的焦距为10,即22225a b c +==, 又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上, 所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(⋃D .(,(2,)-∞+∞【答案】A 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于a,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .A .2B .C .4D .【答案】C 【解析】试题分析:双曲线方程变形为22148x y -=,所以28b b =∴=2b =考点:双曲线方程及性质A.3 B.2 CD【答案】B【详解】M N,是双曲线的两顶点,M O N,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选BA.14B.35C.34D.45【答案】C【解析】由x2-y2=2知,a2=2,b2=2,c2=a2+b2=4,∴,c=2.又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,∴|PF1,|PF2.又∵|F1F2|=2c=4,∴由余弦定理得cos∠F1PF22224+-34. 故选C.二、填空题 【答案】,.【解析】 由题意得:,,,∴焦距为,渐近线方程为.考点:双曲线的标准方程及其性质 【答案】【解析】 因为的方程为,所以的一条渐近线的斜率,所以的一条渐近线的斜率,因为双曲线、的顶点重合,即焦点都在轴上,设的方程为,所以,所以的方程为.考点:双曲线的性质,直线的斜率.【答案】y x = 【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为y x = 考点:双曲线渐近线【答案】22x y 1412-=【解析】 解:由已知得,22,4221412b c c e a a a x y==∴===∴=∴-=双曲线的方程为【答案】16 【分析】根据双曲线的焦点坐标,判断出双曲线焦点所在的坐标轴,再根据222c a b =+列方程,求得m 的值. 【详解】双曲线的焦点坐标为()0,5F ,故焦点在y 轴上,由222c a b =+得259,16m m =+=. 【点睛】本小题主要考查根据双曲线的焦点坐标求双曲线的方程,属于基础题.【答案】44 【详解】由题意因为PQ 过双曲线的右焦点(5,0), 所以P ,Q 都在双曲线的右支上, 则有6,6FP PA PQ QA -=-=,两式相加,利用双曲线的定义得28FP FQ +=,所以△PQF 的周长为284FP FQ PQ b ++=+=28+16=44. 故答案为44.【答案】1) 【详解】因为在12PF F ∆中,由正弦定理得211221sin sin PF PF PF F PF F =∠∠,则由已知,得21a c PF PF =,即12aPF cPF =,12c PF PF a=, 由双曲线的定义知212222222c a PF PF a PF PF a PF a c a-=-=⇒=-,, 由双曲线的几何性质知22222,20,a PF c a c a c ac a c a>->-⇒--<-所以2210,e e --<解得11e <<,又1()e ∈+∞,,故双曲线的离心率1)e ∈【答案】2【解析】设(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以点到直线的距离恒大于直线10x y -+=与渐近线0x y -=之间距离,因此c 的最大值为直线10x y -+=与渐近线0x y -=之间距离,为2.2=考点:双曲线渐近线,恒成立转化【答案】【分析】根据题意,根据1,,P A F 三点共线,求出直线1AF 的方程,联立双曲线方程,即可求得P 点坐标,则由11APF AFF PFF S S S ∆∆∆=-即可容易求得.【详解】设双曲线的左焦点为1F ,由双曲线定义知,12PF a PF =+,∴△APF 的周长为|P A|+|PF|+|AF|=|P A|+12a PF ++|AF|=|P A|+1PF +|AF|+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|P A|+1PF 最小,即P 、A 、1F 共线,∵(A ,()13,0F -∴直线1AF的方程为13x +=-,即3x =-代入2218y x -=整理得2960y +-=,解得y =y =-舍),所以P 点的纵坐标为∴11116622APF AFF PFF S S S ∆∆∆=-⨯⨯⨯⨯=故答案为:【点睛】本题考查双曲线中三角形面积的求解,涉及双曲线的定义,属综合中档题.【答案】2+【详解】双曲线22221x y a b-=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a =平行,其方程为()b y x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c+=,由2222a c ac +=,得2()410c c a a -+=,解之得2c a =+2c a =1ca>),故双曲线的离心率为2+考点:1.双曲线的几何性质;2.直线方程.【答案】2214x y -=【详解】依题意,设所求的双曲线的方程为224x y λ-=.点M 为该双曲线上的点,16124λ∴=-=.∴该双曲线的方程为:2244x y -=,即2214x y -=.故本题正确答案是2214x y -=.【答案】2y x =± 【解析】||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+= , 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⇒⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为2y x =±. 【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为221Ax By +=的形式,当0A >,0B >,A B ≠时为椭圆,当0AB <时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.【答案】2 【解析】222222221,,13c a b a b m e m a a +=====+=,2m =.渐近线方程是y ==.P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(,1010P ,则Q ,1(F ,2F ,则S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a-=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】48 【解析】根据双曲线方程2222y x a b -=1知a 2=16,b 2=m ,并在双曲线中有a 2+b 2=c 2,∴离心率e =c a =2,22c a=4=1616m+,m =48.【答案】 【解析】试题分析:222227,3,7310,2a b c a b c c ==∴=+=+=∴==【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,22221(0,0)x y a b a b-=>>揭示焦点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2c =b y x a =±,离心率为c a =【解析】试题分析:根据对称性,不妨设,短轴端点为,从而可知点在双曲线上,∴.考点:双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来. 【答案】11 【详解】由双曲线的方程2221(0)9x y b b-=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±, 又因为15PF =,所以2||11PF =.【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 【名师点睛】1.已知双曲线方程22221(0,0)x y a b a b -=>>求渐近线:22220x y b y x a b a-=⇒=±.2.已知渐近线y mx =设双曲线的标准方程为222m x y λ-=.3.双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】3【解析】 如图所示,由题意可得|OA|=a ,|AN|=|AM|=b , ∵∠MAN=60°, ∴, ∴=设双曲线C 的一条渐近线y=bax 的倾斜角为θ,则tanθ=||||AP OP =. 又tan θ=b a,b a =,解得a 2=3b 2,∴3==.答案:3点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,再根据222b c a=-和cea=转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).【答案】12 y x =±【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214xy-=的a=2,b=1,焦点在x轴上而双曲线22221x ya b-=的渐近线方程为y=±bxa∴双曲线2214xy-=的渐近线方程为y=±12x故答案为y=±1 2 x【点睛】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想【答案】4【详解】分析:根据离心率公式cea=,及双曲线中,,a b c的关系可联立方程组,进而求解参数a的值.。

高中数学椭圆、双曲线、抛物线历年真题及详解

高中数学椭圆、双曲线、抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线2021年考题1、〔2021高考〕双曲线1412222222=+=-b y x y x 的准线经过椭圆〔b >0〕的焦点,则b=( )A.3B.5C.3D.2选C.可得双曲线的准线为21a x c=±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、〔2021高考〕“0m n >>〞是“方程221mxny +=〞表示焦点在y 轴上的椭圆〞的( )〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充要条件 (D) 既不充分也不必要条件【解析】选C.将方程221mxny +=转化为22111x y m n+=, 根据椭圆的定义,要使焦点在y 轴上必须 满足110,0,m n>>且11n m >,应选 C.3、〔2021高考〕抛物线28y x =-的焦点坐标是( )A .〔2,0〕B .〔- 2,0〕C .〔4,0〕D .〔- 4,0〕 【解析】选B.由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,应选B. 4、〔2021全国Ⅰ〕椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 假设3FA FB =,则||AF =( )(A)2 (B) 23 (D) 3【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与*轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=5、〔2021高考〕设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 假设12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( ) A .32 B .2 C .52D .3【解析】选B.由3tan623c b π==有2222344()c b c a ==-,则2c e a==,应选B. 6、〔2021高考〕过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,假设1260F PF ∠=,则椭圆的离心率为( )A .22B .33C .12 D .13【解析】选B.因为2(,)b P c a-±,再由1260F PF ∠=有232,b a a=从而可得33c e a ==,应选B.7、〔2021高考〕过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .假设12AB BC =,则双曲线的离心率是 ( ) A .2 B .3 C .5 D .10【解析】选C.对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b abab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭, 因222,4,5ABBC a b e =∴=∴=.8、(2021高考)设双曲线12222=-by a x 的一条渐近线与抛物线y=*2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】选D.双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b xx a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,应选D.9、(2021高考)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,假设△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =± B.28y x =± C. 24y x = D. 28y x =【解析】选B.抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a ,则直线l 的方程为2()4ay x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a⋅=,解得8a =±.所以抛物线方程为28y x =±,应选B.10、〔20216( )〔A 〕22124x y -= 〔B 〕22142x y -= 〔C 〕22146x y -= 〔D 〕221410x y -=【解析】选B.由6e =得222222331,1,222c b b a a a =+==,选B. 11、〔2021**高考〕设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为〔 〕Ax y 2±= B x y 2±= C x y 22±= D x y 21±= 【解析】选 C.由得到2,3,122=-===b c a c b ,因为双曲线的焦点在*轴上,故渐近线方程为x x a b y 22±=±=. 12、〔2021、高考〕双曲线24x -212y =1的焦点到渐近线的距离为( )〔A 〕3 〔B 〕2 〔C 3 〔D 〕1【解析】选A.双曲线24x -212y =1的焦点(4,0)到渐近线3y x =的距离为34023d ⨯-==选A.13、〔2021、高考〕设抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。

《双曲线》练习试题经典(含答案解析)

《双曲线》练习试题经典(含答案解析)

《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7的圆相切,则双曲线的离心率为( A )A B C D8.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A .9B .4C .2D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线历年高考真题一、单选题1.(2015·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()2223x y -+=相切,则双曲线的方程为( )A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】试题分析:依题意有222{3bac c a b ===+,解得1,a b ==2213y x -=.考点:双曲线的概念与性质.2.(2014·全国高考真题(文))已知双曲线的离心率为2,则A .2B .C .D .1【答案】D 【解析】试题分析:由离心率e =ca 可得:e 2=a 2+3a2=22,解得:a =1.考点:复数的运算3.(2014·全国高考真题(理))已知为双曲线:的一个焦点,则点到的一条渐近线的距离为( ) A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为x 23m −y 23=1.则c 2=3m +3,c =√3m +3,设一个焦点F(√3m +3,0),一条渐近线l 的方程为y =√3√3m=√m,即x −√my =0,所以焦点F 到渐近线l 的距离为d =√3m+3√m+1=√3,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.4.(2014·山东高考真题(理))已知,椭圆1C 的方程为,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为,则2C 的渐近线方程为( ) A .B .C .D .【答案】A 【解析】2=,所以,b a =,双曲线的渐近线方程为y x =,即0x ±=,选A. 考点:椭圆、双曲线的几何性质.5.(2014·重庆高考真题(理))设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为A .B .C .D .3【答案】B 【解析】试题分析:因为P 是双曲线x 2a 2−y 2b 2=1(a >0,b >0)上一点,所以||PF 1|−|PF 2||=2a ,又|PF 1|+|PF 2|=3b所以,(|PF 1|+|PF 2|)2−(|PF 1|−|PF 2|)2=9b 2−4a 2,所以4|PF 1|⋅|PF 2|=9b 2−4a 2 又因为|PF 1|⋅|PF 2|=94ab ,所以有,9ab =9b 2−4a 2,即9(ba )2−9(ba )−4=0 解得:ba =−13(舍去),或ba =43;所以e 2=c 2a 2=a 2+b 2a 2=1+(b a )2=1+(43)2=259,所以e =53故选B.考点:1、双曲线的定义和标准方程;2、双曲线的简单几何性质.6.(2008·福建高考真题(文))双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( ) A .(1,3) B .(]1,3C .(3,+∞)D .[)3,+∞ 【答案】B 【详解】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a 与c 的关系.7.(2008·全国高考真题(文))设ABC 是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .B .C .D .【答案】B 【解析】 由题意,所以,由双曲线的定义,有,∴.8.(2008·全国高考真题(理))设a >1,则双曲线x 2a 2−y 2(a+1)2=1的离心率e 的取值范围是( )A .(√2,2)B .(√2,√5)C .(2,5)D .(2,√5)【答案】B 【详解】由题意得,双曲线的离心率e 2=(ca)2=a 2+(a+1)2a 2=1+(1+1a)2,因为1a 是减函数,所以当a >1时,0<1a <1,所以2<e 2<5,所以√2<e <√5,故选B. 考点:双曲线的几何性质. 【方法点晴】本题主要考查了双曲线的几何性质及其应用,其中解答中涉及到双曲线的标准方程及简单的几何性质的应用,函数的单调性及函数的最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算、转化与化归思想的应用,本题的解得中把双曲线的离心率转化为1a 的函数,利用函数的单调性是解答的关键,试题有一定的难度,属于中档题.9.(2009·湖北高考真题(文))已知双曲线(b >0)的焦点,则b=() A .3 B .C .D .【答案】C 【解析】可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为(1=.即b 2=3故b=故C.10.(2009·全国高考真题(文))双曲线的渐近线与圆相切,则( )A .B .2C .3D .6【答案】A 【解析】试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出r 的值.22163x y -=的渐近线方程是y =,20y ±=,又圆心是(3,0),所以由点到直线的距离公式可得r =A .考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.11.(2009·福建高考真题(文))若双曲线()22213x y a o a-=>的离心率为2,则a 等于( )A .2 BC .32D .1【答案】D 【详解】由222123x y c b e a a a可知虚轴-=====,解得a=1,应选D.12.(2009·山东高考真题(理))设双曲线的一条渐近线与抛物线y=x +1 只有一个公共点,则双曲线的离心率为( ) A .B .5C .D .【答案】D 【解析】由题意知:双曲线的一条渐近线为,由方程组2{1by x a y x ==+,消去y,得210bx x a-+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D. 【考点定位】本小题考查双曲线与抛物线的基本知识,求离心率、直线与抛物线的位置关系等. 13.(2009·安徽高考真题(理) ) A .22124x y -=B .22142-=x yC .22146x y -= D .221410x y -= 【答案】B 【解析】由e =得222222331,1,222c b b a a a =+==,选B.14.(2007·福建高考真题(理))以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=【答案】A 【详解】圆心为(5,0),渐近线方程为430x y ±=,所以半径为4545⨯=,所以圆的方程是22(5)16x y -+=,即221090x y x +-+=,选A.15.(2007·辽宁高考真题(理))设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12:3:2PF PF =,则12PF F 的面积为( )A .B .12C .D .24【答案】B 【解析】试题分析:由已知可得121212|:|3:2,26,4,PF PF PF PF PF PF =-=⇒==又22212121212||||F F PF PF F F PF F =+=⇒∆是直角三角形146122S =⨯⨯=,故选B .考点:双曲线标准方程及其性质.16.(2010·全国高考真题(理))已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为A .2B .2C D【答案】B 【解析】本小题主要考查双曲线的几何性质、第二定义、余弦定理,以及转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000[()]1a PF e x a ex c =--=+=+,22000[)]1aPF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||2PF PF F F PF PF +-,即cos60222=2052x =,所以2200312y x =-=,故P 到x轴的距离为0y =. 17.(2010·辽宁高考真题(理))设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A .√2 B .√3 C .√3+12D .√5+12【答案】D 【解析】试题分析:设该双曲线方程为x 2a2−y 2b 2=1(a >0,b >0),得点B (0,b ),焦点为F (c ,0),直线FB 的斜率为−b c由垂直直线的斜率之积等于-1,建立关于a 、b 、c 的等式,变形整理为关于离心率e 的方程,解之即可得到该双曲线的离心率;设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),可得它的渐近线方程为y =±ba x ,焦点为F (c ,0),点B (0,b )是虚轴的一个端点,∴直线FB 的斜率为k FB =0−b c−0=−b c ,∵直线FB 与直线y =ba x 互相垂直,∴−bc ×ba =−1,∴b 2=ac,∵b 2=c 2−a 2,∴c 2−a 2=ac ,∴e 2−e −1=0,∴e =1±√52∵双曲线的离心率e >1,∴e=√5+12,故选:D考点:双曲线的简单性质18.(2010·浙江高考真题(文))(10)设O 为坐标原点,1F ,2F 是双曲线2222x y 1a b-=(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠1F P 2F =60°,∣OP ∣,则该双曲线的渐近线方程为 A .By=0 C .="0" D±y=0【答案】D 【解析】不妨设12(,0),(,0)F c F c -,则11221222OF F P OF F P F P F P OP ++++==因为1260F PF ∠=,所以121212cos602F P F PF P F P F P F P ⋅⋅=⋅=,22212121212||||1cos 22PF PF F F F PF PF PF +-∠==⋅ 所以2221212||4PF PF PF PF c +=⋅+ 因为P 在双曲线上,所以122PF PF a -=则2222212121212()||244PF PF PF PF PF PF c PF PF a -=+-⋅=-⋅= 所以221244PF PF c a ⋅=-,故122212222F P F PF P F P c a ⋅⋅==-222221212||484PF PF PF PF c c a +=⋅+=-因为OP =,所以1272F P F POP +==故22121212||274F P F P F P F Pa ++⋅=,即222327c a a -=故22237b a a +=,解得b =所以双曲线的渐近线方程为0x a =0y ±=,故选D19.(2007·四川高考真题)如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )A .3B .3C .D .【答案】A 【详解】由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线右准线的距离是3,双曲线的右准线方程是3x =,故点P 到y 轴的距离是3.20.(2013·北京高考真题(文))双曲线221y x m-=的充分必要条件是( )A .12m >B .1m ≥C .1m >D .2m >【答案】C 【解析】试题分析:由题可知1a =,b =c =ce a==>1m >,故选C . 考点:双曲线的离心率.21.(2013·福建高考真题(文))双曲线221x y -=的顶点到其渐近线的距离等于( )A .12B .2C .1 D【答案】B 【解析】由于对称性,我们不妨取顶点(1,0)A ,取渐近线为0x y -=,所以由点到直线的距离公式可得d ==450得到. 【考点定位】 本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.22.(2012·山东高考真题(理))已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=【答案】D 【详解】由题意,双曲线221x y -=的渐近线方程为y x =±,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C :()222210x y a b a b+=>>上,∴22441a b+=,∵2e =,∴22234a b a -=,∴224b a =, ∴22205a b ==,∴椭圆方程为:221205x y +=.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.23.(2011·福建高考真题(理))设圆锥曲线τ的两个焦点分别为12,F F ,若曲线τ上存在点P 满足1122::PF F F PF 4:3:2=,则曲线τ的离心率等于A .12或32B .23或2 C .12或2 D .23或32【答案】A 【分析】设1122432PF t F F t PF t ===,,,讨论两种情况,分别利用椭圆与双曲线的定义求出,a c 的值,再利用离心率公式可得结果. 【详解】因为1122::PF F F PF 4:3:2=,所以可设1122432PF t F F t PF t ===,,, 若曲线为椭圆则123262a PF PF t c t =+==,,则12c e a ==; 若曲线为双曲线则,324222a t t t a t c t ,,=-===,∴32c e a ==,故选A .【点睛】本题主要考查椭圆的定义及离心率以及双曲线的定义及离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.24.(2011·安徽高考真题(文))A .2B .C .4D .【答案】C 【解析】2228x y -=可变形为22148x y -=,则24a =,2a =,24a =.故选C.25.(2011·湖南高考真题(文))设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .1【答案】C 【分析】先根据双曲线()222109x y a a -=>求出渐近线方程,再与320x y ±=比较即可求出a 的值. 【详解】由双曲线的几何性质可得,双曲线()222109x y a a -=>的渐近线方程为3y x a =±,又因为渐近线方程为320x y ±=,即32y x =±,故2a =,选C .本题主要考查双曲线的渐近线方程的求法,属基础题.26.(2007·浙江高考真题(理))已知双曲线22221()00a x y a bb >-=>,的左、右焦点分别为1F ,2F ,P是准线上一点,且12PF PF ⊥,12·4PF PF ab =,则双曲线的离心率是( ) ABC .2D .3【答案】B 【分析】先设2(,),0aP t t c>,由两直线垂直,结合直线的斜率公式可得221tta a c c c c⋅=-+-,再结合三角形的面积公式可得24ct ab =,然后由双曲线离心率的求法求解即可. 【详解】解: 由P 是准线上一点,设2(,),0a P t t c>,又1(,0)F c -,2(,0)F c ,由12PF PF ⊥,可得221tta a c c c c⋅=-+-,解得t c=,因为12·4PF PF ab =, 由三角形的面积公式有24ct ab =,2a =, 即223c a =,即==ce a, 故选:B. 【点睛】本题考查了直线的斜率公式及三角形的面积公式,重点考查了双曲线离心率的求法,属中档题.27.(2007·陕西高考真题(理))已知双曲线C :12222=-by c a (a >0,b >0),以C 的右焦点为圆心且与C的浙近线相切的圆的半径是A.ab B .22b a + C .a D .b【解析】略28.(2014·天津高考真题(理))已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221520x y -=B .221205x y -=C .D .【答案】A 【解析】试题分析:由已知得2,2,bb a a=∴=在方程210y x =+中令0y =,得2222225,5,525,5,20,x c c a b a a b =-∴=-∴=+====∴所求双曲线的方程为221520x y -=,故选A . 考点:1.双曲线的几何性质;2.双曲线方程的求法.29.(2011·重庆高考真题(文))(5分)(2011•重庆)设双曲线的左准线与两条渐近线交于A ,B 两点,左焦点为在以AB 为直径的圆内,则该双曲线的离心率的取值范围为( ) A .(0,)B .(1,)C .(,1)D .(,+∞)【答案】B 【解析】试题分析:求出渐近线方程及准线方程;求得它们的交点A ,B 的坐标;利用圆内的点到圆心距离小于半径,列出参数a ,b ,c 满足的不等式,求出离心率的范围. 解:渐近线y=±x . 准线x=±,求得A ().B (),左焦点为在以AB 为直径的圆内, 得出,,c2<2a2∴,故选B.点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1.30.(2011·天津高考真题(文))已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.4【答案】B【解析】试题分析:根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.31.(2013·重庆高考真题(文))设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是()A.B.C.D.【答案】A由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形.因为有且只有一对相较于点O、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得,即,,所以e>.同样地,当,即,所以e≤2.所以双曲线的离心率的范围是.故选A.32.(2011·浙江高考真题(理))已知椭圆C1:=1(a>b>0)与双曲线C2:x2﹣=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则()A.a2=B.a2=3 C.b2=D.b2=2【答案】C【解析】由题意,C2的焦点为(±,0),一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a ∴C1的半焦距c=,于是得a2﹣b2=5 ①设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:②,由对称性知直线y=2x被C1截得的弦长=2x,由题得:2x=,所以③由②③得a2=11b2④由①④得a2=5.5,b2=0.5故选C33.(2013·湖北高考真题(理))已知,则双曲线的()【解析】 双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同. 故选D .34.(2013·全国高考真题(文))已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( ) A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C 【详解】2c e a ===2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±. 【考点】本题考查双曲线的基本性质,考查学生的化归与转化能力.35.(2013·北京高考真题(理))若双曲线22221x y a b-= )A .y=±2xB .y=C .12y x =±D .2y x =±【答案】B 【解析】=渐进性方程为b y x a =±,计算得b a =故渐进性方程为y =. 【考点定位】本小题考查了离心率和渐近线等双曲线的性质.36.(2013·福建高考真题(理))双曲线的顶点到渐进线的距离等于( )【解析】由于对称性,我们不妨取顶点(2,0)A ,取渐近线为20x y -=,所以由点到直线的距离公式可得5d ==【考点定位】本题考查了双曲线的渐近线及点到直线的距离公式,属于简单题.37.(2011·全国高考真题(理))设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为A BC .2D .3【答案】B 【详解】通径|AB|=2222b a a =⋅得2222222222233b a c a a c a a c e =⇒-===⇒⇒⇒= B38.(2011·山东高考真题(理))已知双曲线()222210,0x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A 【解析】试题分析:双曲线的渐近线为b y x a=,所以0bx ay -=,22650x y x +-+=变形为()2234x y -+=,所以圆心为()3,0,2r =()222222329435,4b c c a c c a b =∴=∴-==∴==,所以双曲线方程为22154x y -=考点:双曲线方程及性质39.(2008·辽宁高考真题)已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,A.1 B.2 C.3 D.4【答案】D【解析】由已知,取顶点,渐近线,则顶点到渐近线的距离为,解得.40.(2009·宁夏高考真题(理))双曲线221412x y-=的焦点到渐近线的距离为( )A.B.2C D.1【答案】A【解析】试题分析:双曲线焦点到渐近线的距离为b,所以距离为b=考点:双曲线与渐近线.41.(2016·天津高考真题(文))已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为A.B.C.D.【答案】A【解析】试题分析:由题意,得c=√5,ba =12,又a2+b2=c2,所以a=2,b=1,所以双曲线的方程为x24−y21=1,选A.【考点】双曲线(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).42.(2015·广东高考真题(理))已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【答案】C【解析】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.43.(2015·湖南高考真题(文))若双曲线22221x ya b-=的一条渐近线经过点()3,4-,则此双曲线的离心率为( )A B.54C.43D.53【答案】D 【解析】因为双曲线22221x ya b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴==,(),. 故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22221x y a b -=共渐近线的可设为2222(0)x y a bλλ-=≠;(2)若渐近线方程为b y x a =±,则可设为2222(0)x y a bλλ-=≠;(3) 双曲线的焦点到渐近线的距离等于虚半轴长b ;(4) 22221(0.0)x y a b a b -=>>的一条渐近线的斜率为b a ==.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.44.(2015·湖北高考真题(理))将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】 依题意,,,因为,由于,,,所以当时,,,,,所以12e e <;当时,,,而,所以,所以12e e >.考点:双曲线的性质,离心率.45.(2015·安徽高考真题(理))下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -【答案】C 【解析】试题分析:焦点在y 轴上的是C 和D ,渐近线方程为ay x b=±,故选C . 考点:1.双曲线的标准方程;2.双曲线的简单几何性质.46.(2015·全国高考真题(理))已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2C D【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.47.(2014·全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则C 的焦距等于( ). A .2 B.C .4D.【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质48.(2014·全国高考真题(理))已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠= ( ) A .14B .13C.4D.3【答案】A 【解析】试题分析:由已知设21,2,F A m F A m ==则由定义得12122,2,4,2.F A F A a m a F A a F A a -=∴===122,24.ce F F c a a====在12AF F ∆中,由余弦定理得()()2222222121212124441cos 22244a a a AF F F AF AF F AF F F a a+-+-∠===⋅⨯⨯,故选A . 考点:1.双曲线的几何性质(焦点三角形问题);2.余弦定理.49.(2017·天津高考真题(理))已知双曲线22221(0,0)x y a b ab-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B.【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.50.(2017·全国高考真题(文))已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则APF 的面积为 A .13 B .1 2C .2 3D .32【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3=±y ,所以||3PF =,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得(2,0)F ,结合PF 与x 轴垂直,可得||3PF =,最后由点A 的坐标是(1,3),计算△APF 的面积.51.(2018·全国专题练习)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2B CD .3【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==,则点()2,0到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).52.(2016·天津高考真题(理))已知双曲线222=14x y b-(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -【答案】D 【解析】试题分析:根据对称性,不妨设(,)A x y 在第一象限,则,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选 D.【考点】双曲线的渐近线【名师点睛】求双曲线的标准方程时注意:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).53.(2018·全国高考真题(文))双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y x = 【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A. 点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.54.(2018·全国高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=A .32B .3C .D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,2M N ,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为3±(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得3(,22M N -,所以3MN ==,故选B. 点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN 的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.55.(2018·天津高考真题(理))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【详解】分析:由题意首先求得A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后利用离心率求解a 的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.56.(2017·全国高考真题(文))若a >1,则双曲线x 2a 2−y 2=1的离心率的取值范围是( )A .(√2,+∞)B .(√2,2)C .(1,√2)D .(1,2)【答案】C 【解析】c 2=a 2+1,e 2=c 2a2=a 2+1a 2=1+1a 2 ,∵a >1,∴0<1a 2<1 ,1<e 2<2 ,则0<e <√2,选C.57.(2017·天津高考真题(文))(陕西省西安市长安区第一中学上学期期末考)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.58.(2014·江西高考真题(文))过双曲线22221x y C a b-=:的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过A O O 、两点(为坐标原点),,则双曲线C 的方程为( ) A .221412x y -=B .22179x y -=C .22188x y -=D .221124x y -=【答案】A 【详解】 可得渐近线方程为,将x=a 代入求得.由条件知,半焦距,所以由得,.又因,所以解得,.双曲线C 的方程为22x y。

相关文档
最新文档