比和比例奥数训练

合集下载

六年级奥数题比和比1

六年级奥数题比和比1

六年级奥数题比和比1比和比例(一)11、小明和小方各走一段路程,小明走的路程比小方多,小方用的时间比小明 51多。

小明和小方的速度之比是多少? 82、东街小学六年级有学生46人,分成三个课外科技小组。

第一组与第二组人数比是2:3,第一组与第三组的人数比是3:4。

三个组各有多少人?3、一列火车3小时行驶150千米。

从A地到B地有240千米,需要行几小时?如果速度加快20%,要行多少小时?4、有一自助餐厅,规定每次每人用餐费是:先生交30元,女士交20元,儿童交10元。

某一天前来用餐的先生与女士人数之比是2:9,女士与儿童的人数之比是3:7,共收到所交的用餐费9450元。

求这一天用餐的先生、女士和儿童的人数。

125、圆A和圆B一局部重叠,重叠局部的面积是圆A的,也是圆B的,求A、B 515的面积比。

6、某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。

某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。

求这天三种车辆通过的数量。

比和比例〔二〕111、小军行走的路程比小红多,而小红行走所用的时间却比小军多,求小军 410和小红的速度比。

2、甲、乙两个正方体棱长的比是1:2,求他们的外表积的比和体积的比。

3、白玉兰学校有运发动108人,分成甲、乙、丙三个队进行训练,甲队与乙队人数之比为2:3,乙队与丙队的人数之比为3:4,求各队的人数。

14、三个运输队,A队有载重3吨的汽车8辆,B队有载重4吨的汽车5辆,C 2队有载重5吨的汽车4辆。

把运输612吨货物的任务按他们的运输能力分配给三个队,各应分配多少吨?5、甲、乙、丙三人共同种树,他们种树棵数的比是3:4:5,丙比甲多种6棵?问三人各种树多少棵?6、海水中水与盐的比是183:17。

现在要使它改变成水与盐之比为19:1,在400千克海水中应掺入多少千克清水?7、一根木材,据成四段,付锯板费8.4元,如果锯成5段,应付锯板费多少元?8、一次爬山活动,路程为18千米,分为上坡、平路和下坡三段,各段路长之比是2:1:3,而走各段路程所用的时间之比为5:4:6。

小学六年级数学思维能力(奥数)《比和比例》训练题

小学六年级数学思维能力(奥数)《比和比例》训练题

小学六年级数学思维能力(奥数)《比和比例》训练题1、某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.2、一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率(建设速度)之比3:1,求这两个工程队原先承包的修建公路长度之比.3某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?4、A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?5、某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?6、某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?7、一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.8、在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐元,乙捐元,丙捐元.与二班分到的9、有120个皮球,分给两个班使用,一班分到的131相等,求两个班各分到多少皮球?.210、一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数..11、幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?12、参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?13、圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?14、甲、乙两只蚂蚁同时从A 点出发,沿长方形的边爬去,结果在距B 点2厘米的C 点相遇,已知乙蚂蚁的速度是甲的1.2倍,求这个长方形的周长.15、甲乙两车分别从 A , B 两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B 地时,乙离A 地还有10千米.问:A ,B 两地相距多少千米?C B16、师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?17、师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?18、A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?19、学而思学校四五六年级共有615名学生,已知六年级学生的1 2,等于五年级学生的25,等于四年级学生的37。

奥数题比和比例

奥数题比和比例

比和比例1、比:两个数相除又叫两个数的比,表示两个数之间的倍比关系。

2、①甲数是乙数的1/2,那么乙数与甲数的比是()②甲数的3/4等于乙数的2/7,那么甲数是乙数的()3、表格中:地的面积(一定)从表格中你可获得哪些信息?主要的:方砖的面积与所需块数成反比例。

方砖的边长与所需块数不成比例。

圆的半径与面积不成比例圆的面积与半径的平方成正比例4、判断:①速度与路程成正比例。

()②S=a2,S一定,a和a成反比例。

()③d一定,c和π成正比例。

()④工作时间一定,生产每个零件用的时间和工作总量成反比例。

()5、用同样的砖铺地,铺18平方米要用618块砖。

如果铺24平方米,要用多少块砖?6、一间房子要用方砖铺地,用面积是9平方分米的方砖,需要96块。

如果改用4平方分米的方砖,需要多少块?7、一辆汽车从甲地开往乙地,1.5小时行了全程的1/6,照这样计算,剩下的路程还需要多少小时?8、毛巾厂原计划生产12000条毛巾,前3天完成40%,照这样计算,完成任务一共要用多少天?9、某工厂计划加工一批零件,如果每天加工30个,20天可以完成。

时间3天加工了120个,照这样计算,几天可以加工完?10、某一时刻,1米长的竹竿在地上的影子长3米,另有一棵高树的影子长46.5米,问这棵高树高多少米?11、一对互相咬合的齿轮,大齿轮有60个齿,每分钟转50转,小齿轮有20个齿,每分钟应转多少转?12、一批化肥,原计划80户农民分,每户分10包。

后来增加20户农民一起分,每户比原计划少分多少包?13、一个水箱,用小桶25桶、大桶12桶水可以将水箱装满;如果改用小桶15桶、大桶20桶水也可以将水箱装满。

大桶和小桶的容积的比是()。

14、路程一定,速度与时间成反比例,在比里面的具体体现:例:走完一段路程,甲要6小时,乙要8小时。

甲与乙所需时间的比是:甲与乙速度之比是:结论:15、两个相互咬合的圆形齿轮齿数之比是4∶3,大齿轮每分钟转36圈,小齿轮每分钟可转多少圈?16、甲乙两辆汽车从A、B两地相向而行,相遇时甲车比乙车多行了36千米,已知甲、乙两车的速度之比为5∶6,求甲乙两地相距多少千米?17、客车和货车同时从甲乙两地的中点反向行驶3小时后,客车到达甲地,货车离乙地还有30千米。

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)例1 淘淘和笑笑原有邮票张数的比是5:4,如果淘淘给笑笑48张后,淘淘和笑笑的张数比是3:4,淘淘原来有多少张?解析如下:练习1:甲,乙两个建筑队原有水泥的重量之比是4:3,当甲队给乙队54吨水泥后,甲乙两队水泥重量之比是3:4,原来甲队有多少水泥?(答案:216吨)例2 某学校有若干名学生参加电视邀请赛,其中男生人数与女生人数的比为8:5,后来又有20名女生报名参赛,这时女生人数占参赛总人数的 5/11 。

现在参赛的学生共有多少人?解析如下:练习2 某校图书室有图书210本,其中新书占5/7,又买进一些新书后,新书本数与现在图书本数的比是4:5,现在图书室一共有多少新书?(答案:240本)例3 有一袋糖分配给甲,乙,丙三人,三人依次所得数目之比是5:4:3,如果把糖重新分配给甲,乙,丙三人,使其比依次为7:6:5,则其中一人会比原来所得的数目多10颗,求此人原来所得的数目。

解析如下:练习3 马小跳和刘超,唐飞三人斗地主,游戏前,三人游戏币之比是6:5:4,游戏结束后,游戏币之比是5:4:3,其中一个人赢了200枚,那么这个人是?他开始有多少游戏币?(答案:马小跳,4800枚)例4 车过河需要交渡费3元,马过河需要交渡费2元,人过河需要交渡费1元。

某天过河的车与马数目比是2:9,马和人数目比是3:7,共收渡费945元,则这天车,马,人数目各是?解析如下:练习4 某商贩按大个桃子每个3角,小个桃子每个2角的价格卖出了一批桃子,共收51元。

已知他卖出的桃子大小个数比是8:5,则卖出的大小桃子各有多少个?(答案:卖出大桃120个,小桃75个)例5 一个盒子里有黑棋子和白棋子若干,若取出一粒黑子,则余下的黑白数比是9:7,若放回黑子,再取出一粒白子,则余下黑白之比是7:5,那么盒子原有黑比白多多少?解析如下:练习5 同学周末登山,男背红包,女背蓝包,他们每人只能看到背包,其中一位男生说:我看到的红蓝包之比是5:3,另一女生说:我看到的蓝包是红包的一半。

(完整版)六年级奥数比和比例

(完整版)六年级奥数比和比例

1例题 1 有三盒珠子,每盒的珠子的数目互不同样。

小王从第一个盒子内拿出该盒珠子数目的 3 ,又从第1 1二个盒子内拿出该盒珠子数目的 4 ,再从第三个盒子内拿出该盒珠子数目 5 。

最后,这三个盒子内剩下的珠子的数目都相等。

请问小王从这三个盒子内所拿出的珠子数目之总和的最小可能的值是什么?2 3 4剖析依照题意有 3 A= 4 B= 5C,则 A:B:C=18:16:15例题 2 甲、乙两校原有图书的比是 7:5,假如甲校给乙校 650 本,甲、乙两校的图书籍数的比就是 3:4,本来甲校友图书多少本?随堂练习(1)有一个长方体, 长和宽的比是 2:1,宽与高的比是 3:2。

已知这个长方体的所有棱长之和是 220cm ,求这个长方体的体积。

11 ( 2)小明和小方各走一段路,小明走的行程比小方多 5 ,小方用的时间比小明多8 。

小明和小方的速度之比 是多少?( 3)甲、乙两库房存货吨数比为 4: 3,假如由甲库中提取 8 吨放到乙库中,则甲、乙两库房存货吨数比为 4: 5。

两库房原存货总吨数是多少吨? 例题 3 如图(见黑板),正方形 ABCD 的边 AB 与正方形 MNPQ 的边 PQ 平行且相等。

试求暗影部分的面积与正方形 ABCD 的面积之比。

例题 4 如图,三个齐心圆,他们的半径之比是 3:4:5,假如大圆的面积是 100 平方厘米,那么中圆和小圆之间的圆环面积是多少?练习(1)如图在四边形ABCD 中,AC 和BD 订交于O 点。

三个小三角形的面积分别是20、 16、 32。

那么暗影三角形BOC的面积是多少?ABO DC(2)如下图梯形ABCD 的上底 AD 长 12 厘米,高BD 长 18 厘米, BE=2DE, 则下底 BC 长多少厘米?A DB C1、六年级一班的男、女生比率是 3: 2,又来了 4 名女生后,全班共有 44 人,求此刻的男、女生人数之比。

2、师徒二人共加工部件 400 个,师傅加工一个部件用 9 分钟,徒弟加工一个部件用 15 分钟。

小学奥数例题大全(13、比和比例问题)

小学奥数例题大全(13、比和比例问题)

比和比例问题一.内容精要比例的意义a :b=c :d 比例的性质:两内向之积等于两外向之积 比例尺=图上距离:实际距离二.典型例题例1.甲行的路程比乙多41,而乙行的时间比甲多101,甲与乙速度的最简整数比是多少? 例2.已知a :b=3:2,b :c =3:2,则a :b :c=例3.两个相同的瓶子装满酒精溶液。

一个瓶中的酒精与水的体积之比是3:1,另一个瓶中酒精与水的体积之比是4:1。

若把两瓶酒精溶液混合,则混合溶液中酒精和水的体积之比是多少?例4.小华准备用60厘米长的铁丝围成一个长方形,若围成的长方形的长与宽之比是3:2,那么这个长方形的面积是多少?例5.丽丽、贝贝、甜甜三个小朋友共收集废旧电池420节,其中甜甜收集的比贝贝的少31,贝贝与丽丽的废旧电池的比是4:5,那么三个人各收集废旧电池多少节?例6.加工一个零件,甲、乙、丙所需的时间比为6:7:8,现在有3650个零件要加工,如果规定3人用同样的时间完成任务,那么各应加工多少个零件?例7.从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得21,二儿子分得31,小儿子分得91,但不能把牛杀掉或卖掉。

三个儿子按照老人的要求怎么也分不好。

后来一位邻居顺利地把17头牛分完了,你知道这到底怎么回事吗? 例8.甲数的43等于乙数的54,甲、乙两数的比是( ):( ) 例9.在一幅比例尺是1:200000的地图上,量的甲、乙两地相距20厘米。

如果在另一幅地图上,甲、乙两地相距10厘米,另一幅地图的比例尺是多少?例10.判断:下面各题中的两种量是否成比例?成什么比例?(1)小红从甲去学校,她行走的时间和速度。

(2)车轮的直径一定,所行使的路程和车轮转数。

(3)3x=51y ,x 和y (4)正方形的面积和边长。

(5)三角形的面积一定,底和这条底上的高。

例11.一间房子要用方砖铺地,用面积是9平方分米的方砖,需要960块。

如果改用面积是4 平方分米的方砖,需要多少块?例12.用一种方砖铺地,铺10平方米需要这种方砖40块,铺完面积是60平方米的房间,需要这种方砖多少块?例13.一根木料锯成5段要8分钟,那么锯成6段需要多少分钟?例14.一架飞机所带燃料最多可以用6小时,飞机去时顺风,每小时可以飞行1500千米;飞回时逆风,每小时可以飞行1200千米,这架飞机最多飞出多少千米就需要往回飞? 例15.客车和火车分别从甲、乙两地同时相对开出,经过若干小时在途中相遇,相遇后又行5小时货车到达甲地,这时车到乙地后又掉头行了甲、乙两地距离的25%,客车和货车从出发到相遇用了多少小时?例16.当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。

完整版六年级奥数题比和比例一

完整版六年级奥数题比和比例一

比例问题填空题1.4:( )= 20=()10=( )%2. 在3:5里,如果前项加上6,要使比值不变,后项应加 _.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是____ 毫米.4. 某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、茄子面积的比是25:1:丄,三种蔬菜各种了亩.25. 买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了____ 支.6. 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 _—7. 自然数A、B满足- 丄 -,且A:B=7:13.那么,A+B=.A B 1828. 光明小学有三个年级,一年级学生占全校学生人数的25%二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生______________ 人.9. 水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺____ 吨.黄砂多 _____ 吨.10. 甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要_____ 小时.11. 已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.12. 有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克, 求在新合金内铜与锌的比.13. 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50 千米•问:此人走完全程用了多少时间?14. 一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?练习题1有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220cm求这个长方体的体积。

奥数题专题训练之比和比例应用题

奥数题专题训练之比和比例应用题

比和比例应用题例1、生产队饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3;求鸡、猪、马和羊的只数比;分析该题给出了三个单比,要求写出它们的连比;将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值;解由题设,鸡∶猪=26∶5,羊∶马=25∶9,猪∶马=10∶3,由比的基本性质可得:猪∶马=10∶3=30∶9,羊:马=25∶9,鸡:猪=26∶5=156∶30,从而鸡∶猪∶马∶羊=156:30∶9∶25;答:鸡、猪、马、羊的只数比为156∶30∶9∶25;注将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比;如,鸡∶猪=26∶5,猪∶马=10∶3,由此可得,鸡∶猪∶马=52∶10∶3;再注意到羊∶马=25∶9可得,鸡∶猪∶马∶羊=156∶30∶9∶25;例2.下列各题中的两个量是否成比例若成比例,请说明成正比例还是成反比例;1路程一定时,速度与时间;2速度一定时,路程与时间;3播种面积一定时,总产量与单位面积的产量;4圆的面积与该圆的半径;5两个相互啮合的大小齿轮,它们的转速与齿数;分析利用正比例、反比例的概念进行判定与说明;解 1由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例;2由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例;3由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例; 4设圆的半径为R,则圆的面积为∏R2,所以圆的面积与半径的积为∏R3,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为∏R,也随半径的变化而变化,即圆的面积与半径不成正比例;综上,圆的面积与半径不成比例;5由于齿轮的转速与齿数的积等于单位时间内齿轮转过的总齿数,而两个相互咬合的大小齿轮在单位时间内转过的总齿数相等,所以,它们的转速与齿数成反比例;注若两个相关联的量成正比例,则一个量变大小时,另一个量也变大小;若两个相关联的量成反比例,则一个量变大小时,另一个量反而变小大;因此,在上例的4中,注意到半径愈大,圆的面积也愈大,故只需判断圆的面积与半径不成正比例,就可断定圆的面积与半径不成比例;例3 某小学共有学生697人,已知低年级学生数的1/2等于中年级学生数的2/5,低年级学生数的1/3等于高年级学生数的2/7,求该校低、中、高年级各有多少名学生分析由题设条件可得低、中、高各年级的学生数的比,从而可按比例分配求得各年级的学生数;解设低年级的学生数为“1”,则中年级的学生数为1/2÷2/5=5/4,高年级的学生数为1/3÷2/7=7/6手:舌,从而,低、中、高年级的学生数的比为:低∶中∶高=1∶5/4∶7/6=12∶15∶14,按比例分配得,低年级学生数:697×12/12+15 +14=204人,中年级学生数:697×15/12+15 +14=255人,高年级学生数::697×14/12+15 +14=238人;答:该校低、中、高年级的学生数分别为204人、255人、238人;注按比例分配时,可先出每份对应的量,再求出相应的量;如:697÷12+15+17 =17人;从而,低年级有17×12=204人,中年级有17×15=255人,高年级有17×14=238人;例4 雏鹰小分队为“希望小学”搞了一次募捐活动;她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5∶6,乙商品与丙商品的数量之比为4∶11,且购买丙商品比购买甲商品多花了210元,求这次募捐所得的钱数;分析根据已知条件可先求出甲、乙、丙三种商品的数量比;即甲、乙、丙三种商品的份数比,再根据甲、丙商品的份数关系及单价,求出每份商品的实际数量,从而求出甲、乙、丙商品的数量,由此可得募捐所得的钱数;解已知:甲商品数∶乙商品数=5:6,乙商品数∶丙商品数=4∶11;于是,甲商品数∶乙商品数∶丙商品数=10∶12∶33,即甲、乙、丙商品分别有10份、12份、33份;由于购买丙商品比购买甲商品多花210元,所以,每份的商品数为210÷10×33—30×10 =7件;于是,甲商品数为:7×10=70件,乙商品数为:7×12=84件,丙商品数为:7×33=231件;由此,募捐所得到的钱数为:30×70+15×84+10×231=5670元.答:募捐所得到的钱为5670元;“比和比例”应用题错解例析2008-05-07 作者:佚名来源:网友投稿例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6;现在由三人共同加工,问完成任务时,三人各加工了多少个错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解;评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4;诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的;但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了不错,工作效率的比等于工作时间比的反比;从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5;这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的;正确的解答应当是:甲、乙、丙三人工作效率的比=容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10;例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5;现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是1+1=2,水的重量是8+5=13;1+1∶8+5=2∶13答:在混合后的盐水中盐与水重量的比是2∶13;评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比;甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样;从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有1+8=9份,在乙瓶盐水中,盐有1份,水有5份,盐和水一共有1+5=6份;因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的;上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误;正确的解答是:1∶8=2∶16,2+16=18;1∶5=3:15,3+15=10;2+3∶16+15=5:31 答:在混合后的盐水中盐与水重量的比是5∶31;小学六年级奥数题:专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1练习甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元;提示:根据已知条件可先求三种商品的数量比;练习一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克元,混合前的酥糖每千克是多少元例3、A、B、C是三个顺次咬合的齿轮;当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例;习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例奥数训练 Revised by Petrel at 2021
第一讲比和比例应用题
班级:_______姓名:_______
一、比和比例的意义:____________,叫做两个数的比。

表示两个比相等的式子,叫做比例。

二、应用比和比例的方法解答的应用题,叫做比和比例应用题。

涉及广泛,主要我们要来研究的是按比例分配和正反比例应用题。

三、正比例;[意义]:如果两个相关联的量x 、y 可以写成
k x
y
=,k 是一个定值,那么称x 、y 为成正比例的量,他们的关系叫做正比例关系。

成正比例的两个量的[关键]:(1)、两个相关联的量必须有相除关系;(2)、比值(也就是商)一定。

[特征]:两个相关联的量同时扩大或缩小相同的倍数。

[性质]:如果两种量成正比例,那么一种量中任意两个数值的比,等于另一个量中相对应的两个数值的比。

四、反比例;[意义]:如果两个相关联的量x 、y 可以写成x ·y=k ,k 是一个定值,那么称x 、y 为成反比例的量,他们的关系叫做反比例关系。

成反比例的两个量的[关键]:(1)、两个相关联的量必须有_______关系;(2)、______一定。

[特征]:一个量扩大(缩小)几倍,另一个量反而缩小(扩大)相同的倍数。

[性质]:如果两种量成反比例,那么一种量中任意两个数值的比,等于另一个量中相对应的两个数值的比的反比。

例1(1)工作效率一定,工作时间和工作总量是不是成正比例? 证明:∵
工作效率(一定)工作时间
工作总量
=
∴工作效率一定,工作时间和工作总量成正比例(工作总量和工作时间的比值一定) (2)长方形的面积一定,长和宽是否成反比例?
证明:∵长×宽=长方形的面积(一定)
∴长方形的面积一定,长和宽成反比例(长方形的长和宽相乘的积一定)
(3)被减数一定,减数和差是否成比例?成比例的话,成的是正比例还是反比例? 证明:∵减数+差=被减数(一定)
被减数一定时,减数和差只有相加和一定关系,没有相乘积一定或相除商一定的关系 ∴被减数一定,减数和差不成比例
例2、加工一个零件,甲、乙、丙所需时间比为6∶7∶8。

现有3650个零件要加工,如果规定3人用同样的时间完成任务,各应加工多少个?
分析:∵成正比例--[
工作效率(一定)工作时间
工作总量
丙乙甲∶∶v v v =
61∶71∶8
1
=_______(根据正比例的性质,工效之比就是工总之比) ∴丙乙甲∶∶s s s =______________ 接着做完:
例3、小明和小刚两个人的钱数之比是5:4,小明给小刚77元后,他们的钱数比变成1:3,那么他们原来各有多少元钱?
例4、一块合金,铜与锌的比是2∶3,现在加入铜120克,锌40克,可得合金660克,求新合金中铜与锌的比?
例5、A 、B 两车行车测试,测得A 、B 路程之比是3∶2,花的时间之比是4∶5,求A 、B 两车的速度之比。

例6、分数5
29
,分子、分母加上m 以后,分子与分母的比为19∶7,求m 是多少?
例7、硬糖每千克5.1元,软糖每千克8.9元,现在要求混合后的糖价为每千克5.4元,求硬、软两种糖应取怎样的重量比才合适?
例8、一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?
【课后练习】
练1、判断以下两个量成比例吗成比例的话,成的是正比例还是反比例
(1)正方形的周长和边长。

(2)一个人的年龄和体重。

(3)圆的半径和面积。

(4)化肥总量一定,每公顷施肥量和公顷数
练2、两城之间相距300千米,快慢两车行完全程的时间比是2∶3。

现在两车相向而行,2两小时后向遇,两车速度各是多少练3、母亲节小明和小刚两个人的钱数之比是5:4,他们都花了77元钱买了礼物送给妈妈,后来他们的钱数比变成3:1,那么他们原来各有多少元钱?
练4、有两瓶同样重的盐水,甲瓶盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1∶5。

现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?练5、甲、乙两工人上班,甲比乙多走
5
1

路程,而乙比甲走的时间少
11
1
,求甲、乙两人的速度比是多少?
练6、新光村1989年旱田与水田的比是5∶3,去年将2800公亩旱田改成水田后,旱田与水田的比是1∶2,新光村共有水旱田多少公亩?
练7、甲种酒精的纯酒精含量为72%,乙种酒精的纯酒精含量为58%,混合后纯酒精的含量为62%。

如果每种酒精取的数量都比原来多取15升,混合后的酒精含量为
63.25%,问第一次混合时,甲、乙两种酒精各取多少升?
练8、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地
还有10千米。

那么A,B两地相距多少千米?
练9、甲、乙、丙三人进行200米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?。

相关文档
最新文档