实验01_传输线理论
第2章传输线理论

j z
1 2Z0
(U1
I1Z0 )e
j z
(2―2―14)
同样可以写成三角函数表达式
U (z)
U1 cos z
jZ0
sin z
I
(
z)
j
U1 Z0
sin
z
I1
cos
z
(2―2―15)
第2章 传输线理论
三、入射波和反射波的叠加 由式(2―2―5)和式(2―2―6)两式可以看出,传输线 上任意位置的复数电压和电流均有两部分组成,即有
U (z)
A1e j z
A2e j z
Ui(z) Ur(z)
I
(z)ຫໍສະໝຸດ 1 Z0A1e j z
1 Z0
A2e j z
Ii(z)
Ir(z)
(2―2―16)
第2章 传输线理论
根据复数值与瞬时值的关系,并假设A1、A2为实数, 则沿线电压的瞬时值为
u(z,t) Re[U (Z )e ji ] A1 cos(t z) A2 cos(t z)
式中v0为光速。由此可见,双线和同轴线上行波电
压和行波电流的相速度等于传输线周围介质中的光速,
它和频率无关,只决定周围介质特性参量ε,这种波称为
无色散波。
第2章 传输线理论
(三) 相波长λp
相波长λp是指同一个时刻传输线上电磁波的相位相 差2π的距离,即有
p
2
vp f
vpT
0 r
(2―3―5)
第2章 传输线理论
这种路的分析方法,又称为长线理论。事实上,“场” 的理论和“路”的理论既是紧密相关的,又是相互补充 的。有些传输线宜用“场”的理论去处理,而有些传输 线在满足一定条件下可以归结为“路”的问题来处理, 这样就可借用熟知的电路理论和现成方法,使问题的处 理大为简化。
传输线理论(精)

jφ 2
传输线上任一点反射系数 Γ ( z ) = Γ e - j 2 β z = Γ 2 e j (φ 2 与终端反射系数的关系
2-2
β z)
= Γ2 e
jφ
传输线理论
输入阻抗与反射系数间的关系
Z in ( z ) = U (z) I (z) = U i ( z )[1 + Γ ( z ) ] I i ( z )[1 - Γ ( z ) ] = Z0 1 + Γ(z) 1 - Γ(z)
=
传输线理论
传输线上反射波的大小,可用反射系数的模、驻波比 和行波系数三个参量来描述。 反射系数模的变化范围为 驻波比的变化范围为 行波系数的变化范围为
0 ≤ Γ ≤1
1≤ ρ ≤∞
0 ≤ K ≤1
传输线的工作状态一般分为三种: (1)行波状态 (2)行驻波状态 (3)驻波状态
Γ = 0 , ρ = 1 , K = 1 (匹配状态
2
Z in ( z ) =
= Z0
Z L + jZ 0 tg β z Z 0 + jZ
L
Z0
+ I 2 cos β z
tg β z
传输线理论
对给定的传输线和负载阻抗,线上各点的输入阻抗随至终端的距 离l的不同而作周期(周期为)变化,且在一些特殊点上,有如下简单 阻抗关系:
Z in (l ) = Z L Z in (l ) = Z0
传输线理论
“路”的理论
1引 言 一、基本理论
ﻵ微波传输线 概念 特点 ﻵ传输线理论 概念 特点 ﻵ研究传输线上电磁波特性的方法 : “场”、“路”
传输线
(Transmission Line)
传输线理论基础知识..

根据复数值与瞬时值的关系并假设A1、A2为实数,则沿线电压的瞬时 值为
现在研究行波状态下电压和电流的沿线变化情况。为讨论方便,距离 变量仍然从始端算起,由于U2 − Z0 I0 =0,A2=0,U r(z) =0。考虑到γ =α + jβ ,因此公式(2-14)和(2-15)简化为:
( 2)工作频带要宽,以增加传输信息容量和保证信号的无 畸变传输; (3)在大功率系统中,要求传输功率容量要大; (4)尺寸要小,重量要轻,以及能便于生产和安装。 (为了满足上述要求,在不同的工作条件下,需采用不同型式 的传输线。在低频时,普通的双根导线就可以完成传输作用,但是, 随着工作频率的升高 , 由于导线的趋肤效应和辐射效应的增大使 它的正常工作被破坏 .因此,在高频和微波波段必须采用与低频时 完全不同的传输线形式)
解得:
将上式代入式(2-6)第一式和式(2-7),注意到l − z = z′ ,并整理求得
2.2.2 已知均匀传输线始端电压U1和始端电流I1
将z=0、U(0)=U1 、I(0)=I1代入式(2-6)第一式和式(2-7)便可 求得
将上式代入式(2-6)和式(2-7),即可得
2.3 均匀传输线入射波和反射波的叠加
几种典型传输线的分布参数计算公式列于表1-1中。 表中μ0、ε分别为对称线周围介质的磁导率和介电常数。
有了分布参数的概念,我们可以将均匀传输线分割成许 多微分段dz(dz<<λ),这样每个微分段可看作集中参数电 路。其集中参数分别为R1dz、G1dz、L1dz及C1dz,其等效电 路为一个Γ型网络如图1-1(a)所示。整个传输线的等效电路 是无限多的Γ型网络的级联,如图1-1(b)所示。
传输线理论微波EDA网课件

信号完整性分析
传输线理论可以对微波EDA网中的信号完整性进行深入分 析,预测信号在传输过程中的变化,为优化设计提供根据 。
电磁兼容性设计
基于传输线理论的电磁兼容性设计,可以有效抑波EDA网的性能评估与优化
总结词
性能评估与优化
详细描述
微波EDA网的设计完成后,需要进行性能评估,以确保其满足设计要求。性能评估包括功能测试、时 序分析、功耗分析等。如果发现性能问题,需要进行优化,以提高微波EDA网的性能。优化的方法包 括算法优化、电路优化、布局布线优化等。
05
CHAPTER
传输线的分类
根据传输线结构和工作频率,可 以分为同轴线、双绞线、平行线 等。
传输线的基本参数
特性阻抗
传输线对信号的阻碍作用,与传输线的电导和电 感有关。
传播常数
描述信号在传输线上传播时的幅度和相位变化的 参数。
传输线损耗
信号在传输过程中由于电导、电感和辐射等引起 的能量损失。
传输线的应用场景
01
雷达领域
微波EDA技术用于雷达信号处 理、目标检测和跟踪等方面。
电子对抗领域
微波EDA技术用于电子对抗系 统中的信号干扰、侦查和辨认 等方面。
集成电路领域
微波EDA技术用于集成电路设 计中的布局布线、电磁场仿真
等方面。
03
CHAPTER
传输线理论在微波EDA网中 的应用
传输线理论在微波EDA网中的重要性
传输线理论是微波EDA网设计的基础
传输线理论为微波EDA网设计提供了基本的理论框架,是实现高效、稳定微波信 号传输的关键。
研究电磁波传播的传输线实验

研究电磁波传播的传输线实验电磁波传输线实验是一种常用的物理实验,在研究电磁场和电磁波传播方面具有重要的应用价值。
本文将从定律、实验准备、实验过程以及实验的应用和其他专业性角度进行详细解读。
一、基本原理与定律电磁波传输线实验基于电磁场和电磁波传播的相关定律,主要包括麦克斯韦方程组和特定介质中的电磁波方程。
1. 麦克斯韦方程组:麦克斯韦方程组是电磁场理论的基石,包括四个方程:高斯定律、法拉第定律、安培定律和电磁感应定律。
这些定律描述了电场和磁场随时间和空间变化的规律。
2. 电磁波方程:电磁波方程是麦克斯韦方程组的一个解,它描述了电磁场在特定介质中的传播行为。
电磁波方程的解是电磁波,它具有波动性质和传播性质。
二、实验准备在进行电磁波传输线实验前,需要准备以下实验器材和材料:1. 信号源和接收器:用于产生和接收电磁波信号的设备。
常用的信号源包括导线、信号发生器和天线等。
2. 传输线:用于传输电磁波信号的导线或线缆。
可以选择不同类型的传输线,如同轴电缆、双绞线和光纤等。
3. 测量仪器:用于测量电磁波信号的参数,例如信号的频率、幅度、相位和传输特性等。
常用的测量仪器有频谱分析仪、示波器和网络分析仪等。
4. 辅助器材:如电源、接线板、连接线、电容器和电阻等,用于组成电路和调节信号参数。
三、实验过程电磁波传输线实验的具体操作步骤如下:1. 实验装置搭建:根据实验要求,搭建相应的电路和传输线连接。
将信号源和接收器连接到传输线的两端,并设置适当的电源和辅助器材。
2. 设置实验参数:调节信号源的频率、幅度和相位等参数,以产生所需的电磁波信号。
可以通过示波器或频谱分析仪等测量仪器监测和调节信号的相关参数。
3. 测量实验数据:使用测量仪器测量传输线中电磁波信号的传输特性。
例如,可以通过网络分析仪测量反射系数、传输损耗和相移等参数。
4. 分析和记录实验结果:根据测量结果,分析电磁波在传输线中的传播行为,并记录实验数据、图表和结论等。
《传输线理论》课件

阻抗特性
传输线的阻抗决定信号的 匹配和功率传递效率,常 见的阻抗包括50欧姆和75 欧姆。
传输线上的信号传输
传输线上的信号反射和干扰是常见问题,可通过消除信号反射和合理终止传输线来解决。 消除信号反射的方法包括使用终端电阻、滤波器和匹配网络。
传输线的调谐
传输线的等效电路 模型
传输线可用电路模型表示, 包括传输线的电感、电容和 电阻。
传输线用于计算机网络中的局 域网和广域网等数据传输。
总结
1 传输线理论的重要性
传输线理论为电磁信号传输提供了基础理论和实践指导。
2 相关应用领域
传输线广泛应用于通信、雷达、计算机网络等领域。
3 发展趋势及未来展望
随着技术的发展,传输线将继续演进,以满足不断增长的通信需求。
什么是传输线
传输线是传输电磁信号的导体或介质,通常由金属导线、光纤或空气等构成。 传输线可分为平行线、同轴电缆、光纤等多种类型。
传输线的特性
衰减特性
传输线上信号强度随距离 递减,衰减特性决定信号 传输的距离和质量。
相位特性
传输线上的信号会因电磁 波传播速度不同而引起相 位变化,影响信号的时间 同步。
《传输线理论》PPT课件
# 传输线理论 什么是传输线?传输线的定义和分类。 传输线的特性,包括衰减特性、相位特性和阻抗特性。 如何在传输线上进行信号传输?反射与干扰,消除信号反射,传输线的终止方式。 传输线的调谐,包括等效电路模型、调谐方法和在通信系统中的应用。 传输线在通信系统、雷达系统和计算机网络中的应用。 总结传输线理论的重要性,相关应用领域,发展趋势及未来展望。
传输线的调谐方法
通过调节传输线的电性能参 数来实现传输线的谐振和优 化信号传输。
电磁场与电磁波课件7.4传输线理论

如 f = 300MHz时,l=1m, f = 3GHz时,l=0.1m
l
场和等效电压的相位变化2p的相应距离为一个波长。 而传输线的长度一般都在几米甚至是几十米之长。 因此在传输线上的等效电压和等效电流是沿线变化的。 ——→与低频状态完全不同。
传输线理论 长线理论
传输线是以TEM导模方式传 输电磁波能量。
W
ln d
d
2.传输线方程
传输线方程是研究传输线上电压、电流的变化规律及 其相互关系的方程。
1)一般传输方程
传输线上的电压和电流是 距离和时间的函数, 则线元 Dz<<l上电压和电流的差为
v(z z,t) v(z,t) v(z,t) z z
i(z z,t) i(z,t) i(z,t) z z
Dz传输线上的等效电路
ez , ez 分别表示向+z和-z方向传播的波。
用双曲函数来表示
V (d ) V0chd Z 0 I 0 shd
I (d)
V0 Z0
shd
I 0chd
写成矩阵形式:
V (d)
I
(d )
chd
shd
Z0
Z 0 shd chd
V0
I
0
③信号源和负载条件解
第二章 传输线理论
已知
v(z Dz,t) v(z,t) v(z,t) Dz z
应用基尔霍夫定律:
i(z Dz,t) i(z,t) i(z,t) Dz z
第二章 传输线理论
L上: v L di ,C上: i C dv
dt
dt
v(z,t) z
z i(z,t) z
z
Rl z i(z,t) Gl z v(z,t)
第五章 传输线理论

z
则: z U ( z) U 2 I 2 Z 0 ez U 2 I 2 Z 0 ez
2
2
o
(365.9)27
I ( z) U 2 I 2 Z 0 ez U 2 I 2 Z 0 ez
2Z0
2Z0
33 26
(5.10) 也可改写为:U (z) U 2 coshz I2Z0 sinh z
中的场强为
E 、H
:而
b
两导体间的电位差: U E dl a
内导体中的电流: I H dl C
2019/9/4
17
z
如图:设同轴线单位长度带电 根据高斯通量定理: E dS
l
q
S
分析: 电荷只与r变量有关 ,所 以,电场 强度E 也只与r有关。 E er E(r)
dz 2
2U
0
d 2I 2I 0
dz 2
(5.4)
16
此方程常被称为均匀传输线波动方程。 两个方程相似。
2019/9/4
8
1、通解:
d 2U dz 2
2U
0
d 2I dz 2
2I
0
解方程得:
I1
Zg
+
Eg ~
U1
-
z0
o
z
z
l
I (z)
I2
+ Zl
U2 -
z
G jC
9
2、特解:
I1
I(z)
I2
(1)、已知终端电压 U 2和电流 I2 时的解:Zg
+
U Eg ~
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:传输线理论 *(Transmission Line Theory)一. 实验目的:1.了解基本传输线、微带线的特性。
2.利用实验模组实际测量以了解微带线的特性。
3.利用MICROWAVE软件进行基本传输线和微带线的电路设计和仿真。
二、预习容:1.熟悉微波课程有关传输线的理论知识。
2.熟悉微波课程有关微带线的理论知识。
项次设备名称数量备注1 MOTECH RF2000 测量仪1套亦可用网络分析仪2 微带线模组1组RF2KM1-1A,3 50Ω BNC 连接线2条CA-1、CA-2 (粉红色)4 1MΩ BNC 连接线2条CA-3、CA-4(黑色)5 MICROWAVE软件1套微波电路设计软件四、理论分析:(一)基本传输线理论在传输线上传输波的电压、电流信号会是时间及传输距离的函数。
一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。
假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式:)()()()()(222=+---zVLGRCjzVLCRGdzzVdωω)()()()()(222=+---zILGRCjzILCRGdzzIdωω图1-1单位长度传输线的等效电路此两个方程式的解可写成:zz e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2)其中V +,V -,I +,I -分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。
γ则是传输系数(propagation coefficient ),其定义如下:))((C j G L j R ωωγ++= (1-3)而波在z 上任一点的总电压及电流的关系则可由下列方程式表示:I L j R dzdV ⋅+-=)(ωV C j G dz dI⋅+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得:C j G I V ωγ+=++一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O :Cj G Lj R C j G I V I V Z O ωωωγ++=+===--++当R=G=0时,传输线没有损耗(Lossless or Loss-free )。
因此,一般无耗传输线的传输系数γ及特性阻抗Z O 分别为:LC j j ωβγ== , C LZ O =此时传输系数为纯虚数。
大多数的射频传输线损耗都很小;亦即R<<ωL 且G<<ωC 。
所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式:βαωγj C G L R LC LC j +=⎪⎭⎫⎝⎛++≈2 (1-5)式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为:LC j ωβ=, )(212o o GZ RY C G L R LC +=⎪⎭⎫ ⎝⎛+=α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为:LC Z Y O O ==1(二)负载传输线(Terminated Transmission Line )(A )无损耗负载传输线(Terminated Lossless Line )考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如图1-2所示。
并假设此传输线无耗,且其传输系数 γ=j β,则传输线上电压及电流方程式可以用下列二式表示:zz e V e V z V ββ--++=)( ,z z e I e I z I ββ--+-=)((1)若考虑在负载端(z=0)上,则其电压及电流为: -++==V VV V L (1-6)-+-==I II I L (1-7)而且--++==V I Z V IZ o o ,,式(1-7)可改写成:)(1-+-=V V Z I oL(1-8)合并式(1-6)及(1-8)可得负载阻抗(Load Impedance ):)(-+-+-+==VV V V Z I V Z o L L L 定义归一化阻抗(Normalized Load Impedance ):LLo L L L Z Z Z z Γ-Γ+===11 当Z L = Z O 时,则ΓL = 0时,此状况称为传输线与负载匹配(Matched )。
(2)若考虑在距离负载端L (z=-L )处,即传输线长度为L 。
则其反射系数 Γ(L) 应改成:z z e I e I z I ββ--+-=)(zzeV eV z V ββ--++=)(z = 0zz = -Lz = z I LV + + V -V L图1-2 接上负载的传输线电路Lj L L j L j L j e e V V e V e V L ββββ22)(--+-+--⋅Γ===Γ而其输入阻抗则可定义为:)tan()tan(L jZ Z L jZ Z Z Z L o o L oin ββ++=由上式可知:(a ) 当L∞时, Z inZ o .(b )当L =λ/2时, Z in =Z L.(c ) 当L=λ/4时,Z in =Z o 2/Z L.(B )有耗负载传输线(Terminated Lossy Line )若是考虑一条有耗的传输线,则其传输系数 γ=α+j β为一复数。
所以,反射系数 Γ(L )应改成:Lj L Le L βα22)(--⋅Γ=Γ 而其输入阻抗则改成为:)tanh()tanh(L jZ Z L jZ Z Z Z L o o L oin γγ++=(三)微带线理论(Microstrip Line ) 实际使用的传输线有许多种类,常见的有同轴线、微带线、条线、平面波导、波导等,而其中又以微带线最常见于射频电路设计上。
所以,本单元便以介绍微带线为主。
微带线的结构如图1-8所示,而其相关设计参数如下所列。
图1-8微带线的结构(1)基板参数(Substrate Parameters ) 基板介电常数——(Dielectric constant ),εr常见的基板有Teflon (εr =2.2),FR4(εr =4~5),Alumina (εr =10)Whe rt L损耗正切(Tangent dielectric loss),tandδ基板高度(Height),h基板导线金属常见有铜(Copper)、金(Gold)、银(Silver)、锡(Sn)、铝(Al)。
基板导线厚度(Thickness),t(2)电特性参数:(Electrical parameters)特性阻抗Zo 、波长(角度)θ、使用主频率fo(3)微带线参数(Microstrip Parameters)宽度(width)W长度(Length)L单位长度衰减量(Unit-length Attenuation),AdB相关计算公式如下:(A)合成公式(Synthesis Formula)(已知传输线的电特性参数(Z O、θ),(B)分析公式(Analysis Formula)(已知微带线的物理性参数,求出其其中,五、硬件测量:(模组编号:RF2KM1-1A)1.测量开路传输线(MOD-1A),短路传输线(MOD-1B),50Ω微带线(MOD-1C),适用频率均为50-500MHZ。
2.准备好实验用的器件和设备,以及相关软件。
3.测量步骤:⑴ MOD-1A的S11测量:设定频段BAND-3;对模组P1端子做S11测量,并将测量结果记录在表(1-1)。
⑵ MOD-1B的S11测量:设定频段BAND-3;对模组P2端子做S11测量,并将测量结果记录在表(1-2)。
⑶MOD-1C的S11测量:设定频段BAND-3;对模组P3端子做S11测量,并将测量结果记录在表(1-3)。
⑷ MOD-1C的S21测量:设定频段BAND-3;对模组P3及P4端子做S21测量,并将测量结果记录于表(1-4)。
4、实验记录:表1-1,1-2,1-3,1-4的格式均为下面此表5.硬件测量的结果建议如下为合格MOD-1A S11 ≥-1dBMOD-1B S11 ≥-1dB (推荐)MOD-1C S11 ≤-15dBMOD-1C S21 ≥-0.5dB6.测试模组方框图:六、软件仿真1、进入微波软件MICROWAVE。
2、在原理图上设计好相应的电路,设置好P1,P2,P3,P4端口(如果需要的话),完成频率设置、尺寸规、器件的加载、仿真图型等等的设置。
3、最后进行仿真,结果应接近实际测量所得到的仿真图形。
4、电路图(推荐以下)图1-9 单位长度传输线的等效电路七、实例分析:(一)计算负载为50Ω的无损耗传输线(Z O=75 ohm,θ=30O f O=900MHz)的特性。
(1)反射系数ΓL,回波损耗RL,电压驻波比VSWR(2)输入阻抗Zin ,输入反射系数Γin(3)基板为FR4的微条线宽度W 、长度L 及单位损耗量A dB 基板参数: 基板介电常数(Dielectric constant ),ε r = 4.5切线损耗 (Tangent dielectric loss), tand δ = 0.015基板高度(Height ),h = 62mil 基板导线金属(Conduction Metal ),铜(Copper ) 基板导线厚度(Thickness ),t = 0.03mm解:(1) 反射系数2.075507550-=+-=+-=Γo L o L L Z Z Z Z反射损耗dB RL L 98.13)log(20-=Γ= 电压驻波比 5.111=Γ-Γ+=LL VSWR(2) 输入阻抗 Ω+=++=)2058()tan()tan(j jZ Z jZ Z Z Z L o o L oin θθ输入反射系数 odj j d inee)60180(2.0-⋅=Γ=Γθ(3) 微带线参数W =1.38mm ,L =15.54mm ,A dB =0.0057dB/m八、mathcad 分析:除microwave 软件以外,mathcad 软件也同样能够实现仿真功能,并以图形或者数据的形式表示出来。
微带线主要容(我们将给出来参考文件夹‘中文mcd ’里的‘微带线.mcd ’文件)为:1、综合结果:已知传输线电特性参数(Z0,θ,f0),求出相对微带线其物理性参数(W,L,AdB )2、分析结果:已知为带线的物理性参数(W,L ),求出其相对传输线电特性参数(Z0,θ),在mathcad 里面,θ是由φ表示的。
3、列的是分析式和合成式所依据的具体计算公式,mathcad 将依据这些公式,进行计算,并将结果在综合结果和分析结果上表示出来。