手机无线充电系统课程设计报告
手机无线充电器设计

手机无线充电器设计作者:李昌仕来源:《科教导刊·电子版》2015年第24期摘要本文提出一种基于无线传输技术的简易手机无线充电器的设计方案,以改善传统充电器容易造成手机USB接口损坏且使用麻烦的缺点。
该无线充电器的无线距离为3cm,若需更大距离,只需要增加线圈圈数并增加功放电路级数,以使发射线圈周围产生更强的交变磁场,以便接收线圈在更远的距离接收。
关键词无线传能无线充电电磁感应中图分类号:TN99 文献标识码:A如今智能手机盛行,其耗电量大,充电频繁。
传统手机充电器容易造成手机USB接口损坏并且十分麻烦。
而无线手机充电器避免了反复插接USB接口,使用方便、高档。
1原理简介利用电磁感应原理,当发射线圈通过交变电流时,在线圈周围会产生一个交变磁场,此时接收线圈中产生的感应电动势经整流、滤波、稳压后便可给手机充电。
针对该原理手机无线充电器主要由发送部分和接收部分组成,发送部分包含振荡电路、功放电路和发射线圈,接收部分包含接收线圈和整流滤波电路。
振荡电路产生电磁振荡,经功放电路进行功率放大,振荡信号(交变电流)通过发送线圈,在发送线圈周围便会产生交变磁场;接收线圈产生的感应电动势进行整流、滤波、稳压处理,然后即可对手机进行充电。
2 产品设计过程2.1框图设计手机无线充电器由电源电路、振荡电路、功放电路、发射线圈、接收线圈和整流滤波电路5 部分组成,系统框架如图1所示,最后给手机电池充电。
从无线电路传输的原理上看,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播,要产生电磁波首先要有电磁振荡,电磁波的频率越高其向空间辐射能力的强度就越大,电磁振荡的频率至少要高于100KHZ,才有足够的电磁辐射。
2.2 振荡电路设计起初采用LC振荡电路,但振荡频率不够。
后采用 CMOS 电路六反相器 CD4069 的晶体振荡电路CD4069 构成的晶体振荡电路如图2所示用 CD4069 产生高频振荡比 LC 振荡电路的效果要好。
基于手机无线充电的设计

基于手机无线充电的设计作者:胡鹏志来源:《无线互联科技》2015年第07期摘要:该设计的原理就是通过电磁波传递电能。
用555单片机时基集成电路产生一个12kHz峰峰值为5V的方波,通过反相器整形,放大,最终放大成峰峰值为12V的方波。
最后,用三个反相器并联,驱动H桥,在H桥的输出端输出一个峰峰值为21.2v的方波。
然后,用H桥驱动发射线圈,将电能转换成电磁波发射出去。
接收线圈集成在手机里面,将手机放到底座上,两个线圈通过磁耦合就能传递能量。
接收线圈输出的交流信号通过整流桥整流,电容滤波,最后变成稳定的直流电压,这样就可以对手机进行无线充电了。
关键词:IAP15F2K61S2;H桥;12k方波1开发背景在今天这个追求高效的时代,我们使用的电子产品在向精致小巧,时尚便携的方向发展。
在日常生活中,便携设备(如手机,数码相机等)的体积也越来越小,同时许多问题也随之而来,比如,电池,不得不随着设备体积变小,但是小体积电池的储能也相应减少,只能维持基本的供应,免不了频繁为其充电,在充电中可能会遇到这样的问题:手机需要充电的时候数据线不在身边,充电手机型号不一样,数据线插头型号有时也不同,频繁的插拔数据线造成插头损坏等等。
这样我们不得不取出电池用“万能充”充电。
而且,没有备用电池还要承担漏接重要电话的风险!像iPhone一样内置电池的手机就是“万能充”也只能毫无作为。
无线充电设备彻底解决了这个问题,用户不必顾虑数据线不兼容,也不必担心充电时漏接电话,更不用重复这插拔数据线的繁琐而又磨损手机的动作,要做的只需要把手机放置充电座板上,无论什么型号的手机,只要使用该无线充电装置,就可以为电池充电,方便快捷。
同时,无线充电系统还能设定充电时间,这样就不必担心电池充电时间过长而损坏电池。
当手机离开充电基座时,发射线圈不发射电磁波,这样同时可以实现节能环保。
2功能与使用说明该设计是一个手机无线充电模拟装置。
按下电源开关,在1602液晶上会有一个开机界面。
手机万能充设计报告

手机万能充设计报告1.引言1.1 概述在当今社会,手机已经成为人们生活中不可或缺的重要物品。
随着手机功能的不断增加,充电需求也变得越来越大。
然而,市面上的充电器种类繁多,使用起来存在很多不便之处。
因此,为了解决这一问题,我们设计了手机万能充,它能够满足不同品牌、不同规格手机的充电需求,极大地方便了人们的生活。
本报告将对手机万能充的设计原理、功能和优势进行全面分析,以期为手机充电领域的发展提供新的思路和方向。
1.2 文章结构文章结构部分的内容:本文分为引言、正文和结论三大部分。
引言部分概述了手机万能充设计报告的背景和重要性,介绍了文章结构和目的。
正文部分包括手机万能充的原理、功能和优势,对手机万能充的设计进行了深入的剖析和讨论,展示了技术和功能上的特点和优势。
结论部分总结了手机万能充的设计特点,并展望了未来发展的方向,最后以结束语结束全文。
1.3 目的目的是通过对手机万能充设计的分析和总结,深入了解手机万能充的原理、功能和优势,为手机充电领域的发展提供参考和指导。
同时,通过对未来发展的展望,为手机万能充的进一步改进和创新提供思路和方向。
最终旨在推动手机充电技术的不断进步,为用户提供更便捷、高效、安全的充电体验。
2.正文2.1 手机万能充的原理手机万能充的原理是利用电流的传输和转换技术,将不同的电源接口通过转换器转换成手机充电接口所需的电流和电压,从而实现对手机的快速充电。
手机万能充的原理基于电能转换的物理原理,通过电子元件和电路技术实现对不同电源的适配和充电输出,保障手机充电安全稳定。
手机万能充的原理主要包括电源识别、电压转换、温度控制等技术,通过智能控制电路实现对不同手机的充电需求的识别和满足,确保充电效率和安全性。
通过手机万能充的原理,可以实现对多种类型手机的充电需求,提高用户的充电体验,实现便捷高效的手机充电。
2.2 手机万能充的功能手机万能充具有多种功能,可以满足用户在不同场景下对手机充电的需求。
手机无线充电系统设计

第31卷第12期咸宁学院学报Vol.31,No.12 2011年12月Journal of Xianning University Dec.2011文章编号:1006-5342(2011)12-0066-02手机无线充电系统设计*李建华,陈水妹(龙岩学院物理与机电学院,福建龙岩364000)摘要:随着科技的不断发展,手机等通讯设备的种类不断增多,人类已经不再满足传统式的充电方式.这种方式的弊端就是循环使用充电设备会导致插头的损坏或者不牢固,产生漏电的危险.虽然现在已经出现了手机无线充电系统,但是还不够完善.本文通过对手机无线充电系统的剖析,让读者进一步的了解无线充电系统.关键词:无线;充电;剖析中图分类号:TN98文献标识码:A0引言早在上个世纪末期,手机无线充电设备就已经诞生了.当时,它以小巧便携等特点受到了很多年轻人的关注.但是当时的手机充电系统还是存在着很多弊端,例如传输距离短,难以让不同厂商出产的手机充电设备兼容等因素导致手机无线充电系统并没有广泛应用.据相关报道,2012年将对此进行全面的设计并争取普及.1手机无线充电的发展史自从两个世纪前的三十年代,迈克尔·法拉第在试验的过程中发现了随着周围磁场的变化就会产生电流.时隔六十年后,尼古拉·特斯拉以爱迪生助手的身份在光谱辐射研究时成功申请了一个专利.当时的科技非常落后,所以最终以效率低且存在危险而放弃.又经过了一个世纪的滞后,香港城市大学电子工程学系许树源教授对手机无线充电系统又做出了贡献,但是此充电系统必须让手机和充电器相接触.2007年初,美国麻省理工学院的马林·索尔贾希克(Marin Soljacic)带领一些学生对无线充电又登上了一个更大的台阶,他们在两米以外成功通过无线电流点亮了一盏家用灯泡.最近,英国一家公司根据电磁感应发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,将手机等放在垫上就能充电,并且可以同时给多个手机设备充电.2手机无线充电的特点手机无线充电最大的优点就是不需要手机连线进行充电,它是利用磁共振在手机无线充电器和手机之间通过空气进行充电,手机与充电器相感应,那么线圈就会与电容器在手机充电器和手机之间形成磁共振.同时,无线充电可以节省空间,只要进入到无线充电器的覆盖区域就会进行自动充电.在未来的发展中,还可以发展为通过电脑对手机芯片的控制来进行充电,预计每秒中充电的电量是现在的一百五十倍.所以,这一系统可以在未来得到广泛应用[1].从根本上说,虽然这一系统对处在充电场的人生命没有危害的,其中的原因是电量是可以控制在同一频率的共振中的线圈进行传输.但对于这种新型的无线充电技术,很多人还会产生担忧,就像几年前对Wi-Fi和手机天线杆不放心一样.现阶段的手机无线充电技术只是刚刚的开始,并没有成熟的技术与先例.我们面临的缺点主要有距离短、功率小、效率差等因素.并且假如一些无安全保证的手机电池进入充电区可能会导致火灾意外,所以从最初出现无线充电设备到现在还没有成熟的技术.新设计的无线充电系统想要达到目标,那么解决效率与安全的问题势在必行.3手机无线充电的实现方式3.1电磁感应对于手机无线充电方式来说,最重要的方法之一就是通过电磁感应原理.只有在两个共振频率相同的物体之间才能有效地传输能量,而不同频率物体之间的信号是非常弱甚至是没有的,无线充电技术中的电磁感应正是利用了这个原理.它是在初级和次级线圈中产生感应电流,然后将能量从无线充电设备传输的手机电池当中.具体来说,就是放在变化磁通量中的导体,会产生电动势.也就是说只要穿过闭合电路的磁通量发生变化,那么在闭合电路中就会产生感应电流.电磁感应不近揭示了电与磁之间的关系,还为电与磁之间的相互转化奠定了基础[2].3.2无线电波相对于电磁感应来说,无线电波是一种比较成熟的无线充电方式,无线电技术的原理在于,导体中电流强弱的改变会产生无线电波.利用这一现象,通过调制可将信息加载于无线电波之上.它是用相应的线圈来发送和接收产生感应的交流信号来进行充电的的一项技术,用户只需要将充电设备放在一个“平板”上即可进行充电.通过解调将信息从电流变化中提取出来,就达到了信息传递的目的.3.3电磁共振电磁共振技术正处于发展阶段,但是也可实现无线充电功能.当振荡电路为非理想状态而有电阻时,电阻发热,成为阻尼振荡;当振荡电路中有外加的周期性电动势作用时,将成为受迫振荡;当外加电动势的频率与电路自由振荡的固有频率ω相同时,振幅达最大值,叫电磁共振.2008*收稿日期:2011-10-10年,英特尔公司的工程师们共同研究,曾以该项技术作为基础,在距电源一米多远的地方让一个60瓦的灯泡发光,其中传输效率也保持在了百分之七十五.手机研究者的下一个目标将是利用无线方式对经过改装的手机进行充电.不过,要想实现这一目标并不是那么简单的,还需要同时解决好电磁场干扰电脑其它元器件正常工作的问题[3].4无线充电器原理与结构现阶段无线充电系统主要采用的是电磁感应原理,即通过线圈进行能量耦合实现能量的传递.充电系统的结构如图1所示,系统工作状态时输入端将交流电经全桥整流电路变换成直流电.图1无线充电系统结构图2发射电路。
基于电磁感应原理的手机无线充电技术设计应用

基于电磁感应原理的手机无线充电技术设计应用一、本文概述随着科技的飞速发展和人们生活节奏的加快,手机作为日常生活中不可或缺的通讯和娱乐工具,其电池续航能力和充电效率成为了消费者日益关注的焦点。
传统的有线充电方式虽然在一定程度上满足了充电需求,但其带来的插拔不便、线缆混乱等问题也日益凸显。
因此,基于电磁感应原理的手机无线充电技术应运而生,以其高效、便捷的特性,逐渐成为了手机充电技术的新趋势。
本文旨在探讨基于电磁感应原理的手机无线充电技术的设计与应用。
我们将简要介绍电磁感应的基本原理及其在无线充电技术中的应用。
我们将详细分析手机无线充电系统的基本架构和关键技术,包括发射器与接收器的设计、功率传输与控制策略等。
在此基础上,我们将探讨无线充电技术在手机领域的应用现状和未来发展趋势。
我们将对无线充电技术面临的挑战和解决方案进行讨论,以期为该领域的研究者和开发者提供有益的参考和启示。
通过本文的阐述,我们期望能够增进对手机无线充电技术的理解和认识,推动其在实际应用中的普及和优化,为人们的日常生活带来更多便利和乐趣。
二、电磁感应原理及其在手机无线充电中的应用电磁感应原理是无线充电技术的核心理论基础。
简而言之,电磁感应是指当一个导体回路中的磁通量发生变化时,会在该回路中产生感应电动势,从而驱动电流的产生。
这一原理最早由迈克尔·法拉第在19世纪初发现,并被广泛应用于电机、发电机以及各类电磁设备中。
在手机无线充电领域,电磁感应原理的应用主要体现在两个方面:无线充电发射器和接收器。
无线充电发射器通常包含一个或多个线圈,通过交流电(AC)驱动产生变化的磁场。
手机内置的接收器同样是一个线圈,当它与发射器的磁场对准时,线圈中就会产生感应电流。
这个感应电流随后被用来为手机电池充电。
无线充电的效率、速度和距离主要受到几个因素的影响,包括发射器和接收器线圈的大小、形状和位置,以及它们之间的磁场耦合效率。
为了提高充电效率,现代无线充电系统通常采用高频交流电(如MHz级别)来驱动发射器线圈,同时利用磁场共振技术来提高磁场耦合效率。
无线充电设备的设计与实现

无线充电设备的设计与实现随着科技的不断进步,无线充电技术逐渐成为我们生活中的一项重要技术。
无线充电设备的设计与实现是解决电子设备充电需求的关键。
本文将从无线充电技术的原理、设备设计与实现等方面进行探讨。
首先,我们来了解无线充电技术的原理。
无线充电是一种通过电磁感应或者电磁辐射的方式将能量传递到需要充电的设备中的技术。
它主要通过两个部分进行实现,即无线发射器和无线接收器。
无线发射器将电能转换为电磁能,并通过电磁感应或者辐射将能量传递到无线接收器中。
无线接收器接收到电磁能,并将其转换为电能用于充电。
这种技术的优势在于摆脱了传统充电器的束缚,不需要连接电源线,提供了更为便利的充电方式。
接下来,我们探讨无线充电设备的设计与实现。
无线充电设备的设计主要包括无线发射器和无线接收器的设计。
无线发射器通常由发射线圈、电源和电子控制器组成。
发射线圈是将电能转换为电磁能的核心部件。
它通常采用铜线绕制成线圈,然后通过电源来为线圈提供工作电流。
电子控制器用于控制发射器的工作状态,包括开关、功率调节、频率调节等。
无线接收器与发射器类似,也由接收线圈、电源和电子控制器组成。
接收线圈负责接收发射器传输过来的电磁能,并将其转换为电能用于充电,电源为接收器提供工作电流,电子控制器控制接收器的工作状态。
此外,为了提高充电效率,可以采用谐振充电技术。
谐振充电技术可以通过调整发射器和接收器的谐振频率,使得能量的传输效率更高。
随着无线充电技术的不断发展,无线充电设备的实现也越来越多样化。
目前市场上已经有了许多无线充电设备,如无线充电手机支架、无线充电汽车垫等。
无线充电手机支架是一种可以将手机固定在支架上并同时进行充电的设备。
它通常由无线发射器和支架组成,用户只需将手机放置在支架上,就可以实现充电。
无线充电汽车垫是一种可以在汽车内部进行充电的设备。
它通过无线发射器将电能传输到汽车垫上的无线接收器,从而实现对电动汽车的充电。
除了以上的设备实现方式,还有一些新兴的无线充电技术在不同领域进行应用。
无线充电系统的研究与设计

无线充电系统的研究与设计一、本文概述随着科技的快速发展,无线充电技术以其便利性、高效性和环保性,正逐渐改变着我们的生活方式。
无线充电系统作为实现无线充电的关键技术,其研究与设计对于推动无线充电技术的广泛应用具有重要意义。
本文旨在对无线充电系统的研究与设计进行深入探讨,以期为相关领域的研究者和从业人员提供有益的参考。
本文将首先介绍无线充电系统的基本原理和分类,分析各种无线充电技术的优缺点及其适用场景。
随后,将重点探讨无线充电系统的关键技术,包括无线充电效率的提升、充电安全性的保障、系统兼容性的增强等方面。
在此基础上,本文将介绍一种基于电磁感应原理的无线充电系统设计,详细阐述其电路结构、功率控制、能量传输等关键环节的实现方法。
本文还将对无线充电系统的实际应用和发展趋势进行展望,分析其在移动设备、电动汽车、智能家居等领域的应用前景,以及面临的挑战和机遇。
通过本文的研究,希望能够为无线充电系统的设计与优化提供理论支持和实践指导,推动无线充电技术的快速发展和广泛应用。
二、无线充电技术原理无线充电技术,又称为非接触式电能传输,是一种通过电磁场或磁场实现电能无线传输的技术。
其基本原理主要基于电磁感应、磁场共振或无线电波传输等原理。
无线充电技术的实现,无需物理接触,既提高了使用的便捷性,也避免了物理接口可能带来的磨损和接触不良等问题。
电磁感应原理是无线充电技术中最为常见的一种。
其基本原理类似于变压器的工作原理,通过发送端和接收端之间的磁场耦合实现电能的无线传输。
发送端通常是一个带有交流电(AC)的线圈,产生变化的磁场,而接收端则是一个线圈,用来捕获这个磁场并转换成电流(DC)。
这种方式的充电距离通常较短,但传输效率较高。
磁场共振原理则是一种较新的无线充电技术。
发送端和接收端的线圈在相同的频率下发生共振,使得磁场能量在两者之间传输。
这种方式可以实现中等距离的无线充电,且传输效率也较高。
无线电波传输原理则是通过发送端将电能转化为无线电波,接收端再将无线电波转化回电能。
手机无线充电解决方案

手机无线充电解决方案
《手机无线充电解决方案》
手机无线充电技术作为一种方便实用的充电方式,近年来已经逐渐成为了手机行业的一大趋势。
传统的有线充电方式可能会让人感到束手束脚,而无线充电则能够让用户摆脱这一纠缠,轻松便捷地给手机充电。
无线充电技术通过电磁感应原理,将电能传输给手机电池,实现手机的充电。
这种技术不仅能够省去用户接触插座和插拔数据线的麻烦,同时还能避免插拔数据线长期使用导致的插口磨损问题,有效延长了手机的使用寿命。
而且,无线充电技术还使得手机的外观更加简洁美观,不再被长长的数据线所束缚。
目前市场上已经出现了多种手机无线充电解决方案,其中最常见的是无线充电器和无线充电宝。
无线充电器一般采用电磁感应技术,用户只需将手机放置在充电器上即可实现充电。
而无线充电宝则是将无线充电器和移动电源结合在一起,用户可以在任何地方随时使用充电宝给手机充电。
此外,还有一些手机厂商在手机设计中就已经内置了无线充电功能,使得用户不需要外接任何设备,即可享受到无线充电的便利。
尽管手机无线充电技术已经有了较大的发展,但是在充电效率、充电距离以及成本等方面还存在一定的挑战。
但随着科技的不断进步,相信这些问题也会逐渐得到解决,使得手机无线充电
技术能够更好地满足用户的需求。
总的来说,手机无线充电技术的出现无疑是给手机用户带来了更便捷、更优质的充电体验。
随着技术的不断发展,相信手机无线充电技术会成为未来的主流充电模式,为用户创造更加无忧无虑的充电环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家电工电子实验教学中心电子系统课程设计设计报告设计题目:手机无线充电系统目录1设计任务要求 (2)2 设计方案及论证 (4)2.1 任务分析 (4)2.2 方案比较 (7)3 制作及调试过程 (17)3.1 制作与调试流程 (17)3.2 遇到的问题与解决方法 (20)4 系统测试 (21)4.1 测试方法 (21)4.2 测试数据 (22)5 系统使用说明 (24)5.1 系统外观及接口说明 (24)5.2 系统操作使用说明 (26)6 总结 (26)6.1 本人所做工作 (26)6.2 收获与体会 (27)7 参考文献 (27)1.设计任务要求(1)制作一个输入直流电压12V,输出为3.6V手机电池充电(充满电压为4.2V)的无线充电系统。
(2)发射器与接收器之间采用电感线圈耦合方式进行无线能量传输。
(3)发射器采用12V直流单电源供电,接收器供电只能来自耦合线圈。
(4)接收器考虑给手机电池充电,输出电压变换围0~4.2V,500mA恒流充电。
充电特性如下图所示。
1.基本部分(50分)(1)接收器工作指示(20分)要求:接受器接收到能量后用发光二极管指示。
测试方法:发射器采用 12V直流供电。
接收线圈靠近发射线圈时(距离和角度不限),观察接收器工作指示灯是否点亮。
(2)接收器恒压功能(20分)要求:当接收器不接负载时输出电压为 4.2V±0.1V。
测试方法:发射器采用 12V直流供电。
在接收器不接任何负载条件下,当接收线圈靠近发射线圈并固定不动时(距离和角度不限),测量接收器输出电压是否为 4.2V±0.1V。
轻微移动接收线圈时,测量该电压应保持在 4.2V±0.1V围。
(3)接收器恒流功能(10分)要求:接收器带负载条件下,当输出电压在 0~4VDC变化时输出电流稳定在10mA或大于10mA(当满足发挥部分时,可直接得分),要求恒流误差小于 5mA(两线圈距离和角度不限)。
测试方法:发射器采用 12V直流供电。
当接收线圈靠近发射器线圈时(距离和角度不限),测量恒流值是否大于10mA及是否满足恒流误差要求。
2.发挥部分(50分)(1)充电指示(20分)要求:当接收器给负载充电时,充电指示灯亮;充满后,充满指示灯亮。
测试方法:发射器采用 12V直流供电。
当接收器线圈靠近发射器线圈时(距离和角度不限),测量恒流充电阶段充电指示灯是否点亮;测量当恒流充电电流减小后充满指示灯是否点亮。
(2)扩大充电电流(30分)要求:尽可能提高恒流充电电流。
测试方法:当接收器线圈靠近发射器线圈时(距离和角度不限),测量所能达到的最大恒流指标,要求恒流误差小于 5mA,充满后输出电压为 4.1~4.2VDC(按下图计算得分)。
2 设计方案及论证2.1 任务分析1.发射模块:由振荡信号发生器和并联谐振功率放大器两部分组成; (1)功能和指标要求:1):发射器采用12V 直流单电源供电,产生一定频率变化的电流; 2):发射器与接收器之间采用电感线圈耦合方式进行无线能量传输;接收器感应到的变化的电流应满足一定的数值,以驱动充电电路正常工作。
(2)理论实现方法:利用将变化的电流转化成变化的磁场,通过并联谐振的方式,在接收端产生感应电流来实现能量的传输,但此方式有很大的能量衰耗,即接收端感应得到的能量并不大,所以需要在发射端采用功率放大电路提高功率,使得接收端感应产生的变化的电流达到满足要求一定数值;1):振荡信号发生器电路:采用NE555芯片构成振荡频率在一定围可以调节的信号发生器,为功放电路提供激励信号;频率CR R f )2(43.1211+=;V12+2): 并联谐振功率放大器电路:由功率放大器电路和LC 并联谐振回路构成。
采用LC 并联谐振电路满足发射器与接收器之间通过电感线圈耦合方式进行无线能量传输,频率11221C L f π=且需要满足21f f = :当功率放大器的并联谐振回路的谐振频率2f 与振荡信号发生器的频率1f 相同时,并联谐振功率放大器发生谐振,此时线圈中的电压和电流达最大值,从而产生最大的交变电磁场。
当发射线圈回路与接收线圈回路均处于谐振状态时,有最好的能量传输效果,即满足2233221其中,C L f f f π==发射端与接收端的谐振回路由于场效应管功率放大具有激励功率小,输出功率大,功耗低等特性,所以采用场效应管构成的功率放大电路来提高发射端的输出频率;2.接收模块:由并联谐振电路、整流及滤波电路、恒流电路、稳压电路和充电指示灯电路五部分组成;(1)功能和指标要求:1):通过感应产生满足一定数值要求的感应电流;2):将感应过来的交流电转化成直流电,接收器工作指示灯点亮。
;3):恒流:接收器带负载条件下,当输出电压在0~4VDC 变化时输出电流稳定在大于500mA ,要求恒流误差小于 5mA (两线圈距离和角度不限)。
4):稳压:当接收器不接负载时输出电压为 4.2V ±0.1V 。
5):当接收器给负载充电时,充电指示灯亮;充满后,充满指示灯亮。
(2)理论实现方法:利用将变化的磁场转化成变化的电流,通过并联谐振回路的方式,当发射线圈回路与接收线圈回路均处于谐振状态时,有最好的能量传输效果,在接收端产生感应电流; 通过单相桥式整流电路将交流电转化成直流电,再通过电容滤波电路进行滤波,去除交流分量,并利用产生的直流电压驱动发光二极管,实现接收器工作指示灯的点亮;利用LM317芯片进行恒流和稳压的实现;通过LM324电压比较器,将负载端的电压与充电的稳压值进行比较,实现充电指示灯和充满指示灯的点亮;1):并联谐振电路:与发射端的并联谐振电路构成谐振回路,当发射线圈回路与接收线圈回路均处于谐振状态时,有最好的能量传输效果,即满足:2231123221,21其中,C L f C L f f f ππ===发射端与接收端的谐振回路 2):整流及滤波电路:对交流电压变成直流电压,滤波电容在滤去交流分量,得到稳定的直流电压;由于二极管的单向导电性将交流电压变换成直流电压,但这部分直流电压仍含有很大的交流分量,再通过滤波电容的充放电过程,除去交流分量,得到平稳的直流分量;选择的二极管所能承受的最大电压要大于22U ,所能承受的电流要大于回路里面电路;电容充放电过程:C 越大, R L 越大, τ放电将越大,曲线越平滑,脉动越小。
3):恒流电路:利用LM317芯片实现;4):稳压电路:利用LM317芯片实现;5):充电指示灯电路:利用TL431提供基准电压,再利用LM324构成电压比较器在输出端点亮发光二极管,其中发光二极管串联一个电阻用来限制电流过大;2.2 方案比较一、设计方案一发射电路:发射电路由振荡信号发生器和谐振功率放大器两部分组成;由NE555构成振荡出一定频率的信号发生器,为功放电路提供激励信号;功率放大器由场效应管IRF840构成,当功率放大器的选频回路的谐振频率与激励信号频率相同时,功率放大器发生谐振,此时线圈中的电压和电流达最大值;接收电路:1):由并联谐振电路与发射端的并联谐振电路构成并联谐振回路,当发射线圈回路与接收线圈回路均处于谐振状态时,具有最好的能量传输效果;2):产生的交流电压经过整流及滤波电路转换成直流电压,电源工作的发光二极管指示灯并联在滤波电容的两端,指示电源工作;3):该直流电压驱动LM317芯片构成的恒流电路工作,保证了负载的恒流充电;4):TL431构成稳压电路,提供负载充电的稳压值并接到由一片LM324构成的电压比较器的同相端,而反相端接R2采样电阻的电压,这部分作为反馈电路,已达到负载充电时的稳压条件,反馈电路的工作原理:若充电负载两端电压小于稳压值时,由于反相端电压小于同相端的电压,电压比较器输出高电平,由于二极管导通时其两端电压恒定,所以R2端电压跟随电压比较器的输出电压而变大,直至R2端电压等于稳压值;若充电负载两端电压大于稳压值,由于反相端电压大于同相端的电压,电压比较器输出低电平,由于二极管导通时其两端电压恒定,所以R2端电压跟随电压比较器的输出电压而变小,直至R2端电压等于稳压值,由此,通过采样电阻R2的电压反馈,使得充电负载两端的电压恒定不变,已达到稳压的目的;5):TL431构成稳压电路,提供负载充电的稳压值并接到由一片LM324构成的电压比较器的同相端,而反相端接充电负载的电压,当负载充电时,由于反相端的电压小于同相端的电压,所以LM324构成的电压比较器输出高电平,点亮充电指示灯,当负载充满电后,由于反相端的电压不小于同相端的电压,电压比较器的输出电压发生跳变,熄灭充电指示灯;6):TL431构成稳压电路,提供负载充电的稳压值并接到由一片LM324构成的电压比较器的反相端,而同相端接充电负载的电压,当负载充电时,由于同相端的电压小于反相端的电压,所以LM324构成的电压比较器输出低电平,充满电指示灯不会亮,当负载充满电后,由于同相端的电压不小于反相端的电压,电压比较器的输出电压发生跳变,点亮充满电指示灯;二、设计方案二发射电路:由NE555构成振荡出一定频率的信号发生器,为功放电路提供激励信号;功率放大器由乙类互补推挽功率放大电路和场效应管构成功率放大电路组成,乙类互补推挽功率放大电路对一定频率的信号进行小功率放大后,再用小功率激励场效应管构成的大功率放大电路工作;当功率放大器的选频回路的谐振频率与激励信号频率相同时,功率放大器发生谐振,此时线圈中的电压和电流达最大值;接收电路:1):由并联谐振电路与发射端的并联谐振电路构成并联谐振回路,当发射线圈回路与接收线圈回路均处于谐振状态时,具有最好的能量传输效果;2):产生的交流电压经过整流及滤波电路转换成直流电压并驱动电源指示灯工作;3):由两片LM317芯片构成了恒流稳压功能的充电电路;4):TL431作为辅助电源,给两片LM324构成的电压比较器提供基准电压,两个电压比较器驱动充电指示灯和充满电指示灯工作;三、两种方案进行比较:1):发射电路:方案一的发射电路直接由场效应管IRF840进行功率发大,但由于场效应管栅极所加信号是一定频率的信号,所以仅在半个周期对信号有功率放大作用,可能不够驱动充电电路恒流500mA以上的效果,所以第二种方案的发射电路采用乙类互补推挽功率放大电路将完整周期的信号先进行小功率放大,再利用小功率激励场效应管放大电路,在信号的完整周期里面输出大功率,使得功率放大的效果更好;2):接收电路:方案一由LM317构成的恒流电路实现恒流并采用了LM324构成的电压比较器,通过对采样电阻的电压反馈实现稳压,但是由于电压比较器反相和同相两端电压相差较小时,会有一定的误差产生,使实现的稳压有微小的变化,而方案二是由两片LM317构成的恒流稳压电路实现恒流稳压功能,不同于前一种方案通过电压比较器反馈电压实现稳压,它没有电压比较器带来的微小误差,稳压效果相对更好一些;所以由以上比较,我们组采用了第二种方案。