余角与补角
六年级余角和补角知识点

六年级余角和补角知识点在学习角度计算的过程中,我们常常会涉及到余角和补角的概念。
理解和掌握余角和补角的知识点,对我们正确计算角度大小,解决与角度相关的问题具有重要意义。
本文将为大家详细介绍六年级余角和补角的概念、计算方法及实际运用。
一、余角的概念与计算方法余角是指一个角的补角与原角之间的角度关系。
具体计算方法如下:设角A的补角为角B,角A和角B的和为90度,则角B就是角A的余角。
例如,若角A的度数为40度,那么角A的补角角B的度数可以通过以下步骤计算得出:步骤1:计算角A和角B的和:40度 + 角B = 90度步骤2:解方程得出角B的度数:角B = 90度 - 40度 = 50度所以,角A的余角为50度。
二、补角的概念与计算方法补角是指一个角与其余角之间的角度关系。
具体计算方法如下:设角A的余角为角B,角A和角B的和为90度,则角A就是角B的补角。
以刚才的例子为例,角A的余角为50度,我们可以通过以下步骤计算角A的补角角度:步骤1:计算角A和角B的和:角A + 50度 = 90度步骤2:解方程得出角A的度数:角A = 90度 - 50度 = 40度所以,角A的补角为40度。
三、余角和补角的实际运用余角和补角的概念和计算方法在解决与角度相关的实际问题时扮演着重要角色。
例如,对于一个完全直角的角度问题,我们可以通过求解余角或补角来计算角度大小。
举个例子,一根绳子从地面往上拔起,形成了一个与地面垂直的直角,假设这个角度为角A。
我们可以通过求解角A的余角或补角来计算与地面平行的物体与绳子之间的角度关系。
如果角A的度数为60度,我们可以计算出角A的余角和补角分别为30度和150度。
那么与地面平行的物体与绳子之间的角度就确定下来了。
通过掌握余角和补角的知识点,我们能够更加准确地计算和解决与角度相关的问题,为我们的学习和实际生活带来便利。
总结:本文详细介绍了六年级余角和补角的概念、计算方法及实际运用。
通过了解余角和补角的概念和计算方法,我们能够准确计算角度大小,并在实际问题中灵活运用。
余角与补角

问题1:余角与补角的概念 问题2:余角与补角的性质
问题3:余角与补角的应用
2
1
如果两个角的和等于90°(直角),就说这两个角互为 余角(complementary angle) 其中一个角是另一个角的余角。
2
1
图中给出的各角,那些互为余角?
10o
30o
50
o
60o
40
o
80
o
4
3
如果两个角的和等于180°(平角),就说这两个角互为 补角(supplementary angle) 其中一个角是另一个角的补角。 互余与互补是指两个
探究:余角和补角的性质
如图∠1 与∠2互余,∠3 与∠4互 余 ,如果∠1=∠3,那么∠2与∠4相 等吗?为什么?
1
2
3
4
1
2
3
4
解:∠2与∠4相等。 因为∠1与∠2互余;∠3与∠4互余, 所以∠2=90°-∠1;∠4=90°-∠3, 又因为∠1=∠3, 所以∠2=∠4。
这里,我们 用到了“等 量减等量, 差相等”。
C
(∠1+∠B=90°, ∠1+∠2=90°)
1 B
2 A D
(2)图中哪几对角是相等的角(直角除外)?为什么?
(∠B=∠2) (同角的余角相等) (∠A=∠1) (同角的余角相等)
判断下列说法是否正确
(1)30°,70°与80°的和为平角,所以这三个 角互补(× ) (2)一个角的余角必为锐角。 (√ ) (3)一个角的补角必为钝角。 (× ) (4)90°的角为余角。 ( × ) (5)两角是否互补既与其大小有关又与其位置有 关(× )
角之间的数量关系,与 它们的位置关系无关。
余角和补角课件(共23张PPT)

6.3.3
余角和补角
符号语言:
因为∠3 +∠4 = 180°,
所以∠3 与∠4 互为补角.
3
注意:(1) 补角是指两个角的关系;
(2) 补角只考虑两个角的数量关系,与位置无关.
4
6.3.3
余角和补角
思考
∠1 与∠2 、∠3 都互为补角,那么∠2 与∠3 的大小有什么关系?
∠1 与∠2 、∠3 都互为补角,那么∠2 = 180° -∠1,∠3 = 180° -∠1.
6.3.3
余角和补角
七年级上
6.3.3
余角和补角
学习目标
1. 了解余角、补角的概念.
重点
2. 掌握余角和补角的性质,并能利用余角、补角的性质解决相关问题.
重点
6.3.3
余角和补角
新课引入
问题1:下图中的∠A 和∠B 有怎样的数量关系?
A
A
30°
45°
90° 45°
C
B
∠A +∠B = 90°
90° 60°
6.3.3
余角和补角
例3 如图,点A,O,B在同一直线上,射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为余角?
解:因为点A,O,B在同一直线上,所以∠AOC 和∠BOC
互为补角.
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE= ∠AOC+ ∠BOC= (∠AOC+∠BOC )
6.3.3
余角和补角
3.如图,要测量两堵围墙所形成的∠AOB 的度数,但人不能进入围墙
,如何测量?
同角的余角和补角的关系

同角的余角和补角的关系
在高中数学中,我们学习了很多关于三角函数的知识,其中,余角和补角也是非常重要的一个概念。
在这篇文章中,我们将介绍同角的余角和补角的关系。
一、什么是余角和补角?
首先,我们来了解一下余角和补角的概念。
余角是指一个角的补角与它本身的差值,也就是说,如果一个角的度数为x,它的补角的度数为90-x,那么这个角的余角就是90-x。
例如,如果一个角的度数为30度,那么它的补角的度数为60度,它的余角的度数则为60度。
在三角函数中,我们经常需要求一个角的正弦、余弦、正切等值。
有时候,我们发现要求的角的值非常复杂,但是它的余角或者补角的值却非常简单,这时候就可以利用同角的余角和补角的关系来简化求解过程。
具体来说,对于一个角A,其余角B和补角C都是相对它而言的。
因此,我们可以通过求角A的余角或者补角来简化求解角A的三角函数值。
1. 正弦函数
假设角A的正弦值为sinA,那么它的余角的正弦值为cosA,而它的补角的正弦值为sin(90-A)。
因为sin(90-A)=cosA,所以sinA=sin(90-B)=cosC。
三、结论
sinA=cos(90-A)
tanA=1/tan(90-A)。
数学课件余角和补角

余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。
4.3.3余角和补角

所以∠1 = ∠2 (等角的余角相等)
互余
数量 关系
∠1+∠2=90°
互补
∠1+∠2=180°
对
应
图
形
21
21
性
等角的余角相等 等角的补角相等.
质
探索研究
如图,已知AOB是一直线,C是
∠ AOB的平分线, ∠ DOE是直角,图
中哪些角互余?哪些角互补?哪些角
相等?
C
D
E
1
3
4
2
A
O
B
A
B
C
DE
FG
如图,E、F是直线DG上两点 ∠BEF = ∠BFE ∠AED = ∠CFG = 90 °
找出图中相等的角并说明理由。
互为余角
互为补角
对应图形
1 2
21
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °
性
质
同角或等角的 余角相等。
同角或等角 的补角相等。
检测
D E
C
A
OB
1. ∠1=120 °, ∠1与∠2互补, ∠3与∠2互余,则 ∠3= 30 °.
4 倍,求这个角的度数。 解: 设这个角是x °,则它的补角是 ( 180°-x°),余角是(90°-x°) 。
根据题意得:
(180°-x°)= 4 (90°-x°) 解得: x =60
答:这个角的度数是60 °。
如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3, 那么∠2与∠4相等吗?为什 么?
图中给出的各角,那些互为补角?
10o
30o
60o
80o
余角和补角课件

探究:补角的性质
等角的补角相等
如图∠1 与∠2互补,∠3 与∠4互补 ,如 果∠1=∠3,那么∠2与∠4相等吗?为什么?
2
1
4
3
解:∵ ∠1 +∠2=180°, ∠3 +∠4=180° ∴ ∠2=180°-∠1 , ∠4=180°- ∠3 ∵ ∠1 =∠3 ∴ 180°-∠1 =180°- ∠3 即:∠2 =∠4
答:相等的角有: ∠AOC= ∠BOC= ∠DOE = 90° ; ∠ 1= ∠ 4; ∠ 2= ∠ 3; 互余的角有: ∠ 1 + ∠ 2= 90° ; ∠ 3 + ∠ 4= 90° ; ∠ 1 + ∠ 3= 90° ; ∠ 2 + ∠ 4= 90° ; 互补的角有: ∠AOC +∠BOC = 180°; ∠ 4+ ∠ EOB= 180°; ∠ 1+ ∠ EOB= 180°; ∠ 2+ ∠ AOD= 180°; ∠ 3+ ∠ AOD= 180°; 等等
C 3
D
E
1
2
4
A
O
B
请认真观察下图,回答下列问题: (1)图中有哪几对互余的角?
C
∠A+∠B=90° ∠A+∠2=90° ∠1+∠B=90° ∠1+∠2=90° A
2
D
B
(2)图中哪几对角是相等的角(直角除外)? 为什么? ∠B=∠2 (同角的余角相等) ∠A=∠1 (同角的余角相等)
互余的角 数量 关系
对应 图形
1+ 2=90°
互补的角
1+ 2=180°
C
D
N E A O
M
B
性质 同角(等角)的余角相等
《余角与补角》课件

什么是补角?
补角也是角度的一种重要概念。它指的是两角相交时,其中一个角与另一个 角相加等于90°的角。 举例说明:角C和角D相交,角C的补角是90°减去角D的度数。
余角与补角的性质和关系
性质
余角与原角相加等于180° 补角与原角相加等于90°
关系
一个角的余角与补角的差是90° 一个角的余角与另一个角的补角互为对角
《余角与补角》PPT课件
欢迎来到《余角与补角》PPT课件!在本课程中,我们将探讨余角与补角的概 念、性质和应用,并深入探究它们之间的关系。
什么是余角?
余角是角度的一种重要概念。它指的是两角相交时,其中一个角与另一个角相加等于180°的角。 举例说明:角A和角B相交,角A的余角是180°减去角B的度数。
余角与补角的应用
在解题中,我们可以利用余角与补角的概念和性质来简化问题并找到解题的思路。 举例说明:通过确定角的余角或补角,我们可以推导出其他角度的关系,从而解决复杂的几何问题。
ቤተ መጻሕፍቲ ባይዱ
总结
1 概念和性质
余角与补角的定义和计算 方法
2 关系
余角与补角的关系及其重 要性
3 应用
在解题中如何利用余角与 补角简化问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补角和余角
数科院 曾淑娜
一、 教学目标
1、知识目标
(1)、在具体的现实情境中,认识一个角的余角与补角。
(2)、掌握余角和补角的性质,并能用它解决相关问题。
(3)、初步掌握图形语言与符号语言之间的相互转化。
2、技能目标
进一步提高学生的抽象概括能力,认图能力,发展空间观念。
并且学会简单的逻辑推理,以及能对问题的结论进行较合理的猜想。
3、情感目标
体会观察、推理、归纳对数学知识获取的重要作用,感受数学与现实生活的密切关系及其应用价值。
(三)、教学重、难点
重点:认识互余、互补关系及其性质。
难点:通过简单推理,归纳出余角补角的性质,并用规范语言描述。
二、 教学过程
(一)、创设情境
1、余角和补角
如左图所示,打台球时,择当的方向用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,然后把左图简单地表为图1。
其中∠EDC=900,提问:各个角与∠1有什么关系?
学生观察得出:有与∠1的和等于900的角,有与∠1和等于1800的角。
(二)探究新课
1、教师归纳:如果两角的和是900,称这两个角互为余角,如果两个角的和为1800,那么称这两个角互为补角。
问:图中∠1的余角是______,补角是________。
设计意图:以上教学过程是从学生身边出发,比较自然地引出余角、补角的概念,图1 A C B
D F
E 2 1 1 2
引起学生兴趣,可使学生认识到数学存在于生活之中。
2、提出问题,加强理解
(1)
图2
(2)、定义中的“互为”是什么意思?
(3)、你能举出生活中有哪些角是互为余角的例子吗?
(4)、若∠1与∠2互余,如何用∠2表示∠1?∠1与∠2互补呢?
设计意图:为加深对定义的理解,提出几个问题很关键,避免学生认为互为余角或补角只有公共顶点与公共边的角,加深学生对定义的理解。
3、链接练习
(1)、若∠1与∠2互补,则∠1+∠2=_____0,∠2=______。
若∠3与∠4互余,则∠3+∠4=_____0,∠3=______。
(2)、一个角是70039`,则它的余角为______0,补角为_________0。
(3)、如图3:O是直线AB上点,OC是∠AOB平分线,
①∠AOD的补角是___________。
余角是__________。
②∠DOB的补角是_______。
(4)、一个角的补角是它的3倍,这个角是多少度?
设计意图:(1)、(2)题主要是熟悉定义,第(3)培养学生的识图能力,第(4)题体现了用代数的方程思想解决几何问题。
(三)、例题讲解
1 、范例讲解
例1 ∠1与∠2互补,∠3与∠4互补,若∠1 =∠3,那么∠2和∠4 相等吗?为什么?
图4
若学生对说理感到困难,可引导:∠1与∠2互补,∠2可怎样表示?∠3与∠4互补,∠4可怎样表示?
2、补角和余角的性质
引导学生由例1纳补角性质,并用符号语言表示,类比得出补角的性质。
图3
设计意图:此题主要让学生自己讨论,着重引导学生用数学语言表达思考过程,并归纳性质,培养学生由具体问题抽象出几何命题的能力和语言表达能力。
3、链接练习
(1)、如图5,若∠1与∠2互余,∠2与∠3互余,
则_____=______,根据是______。
图5
如图6,若∠3与∠4互补,∠4与∠5互补,
则_____=______,根据是_______。
图6
(2)、如图7,O是直线AB上的一点,∠AOE=∠FOD=90。
OB平分∠COD,图中与∠DOE相等的角有哪些?
与∠DOB相等的角有哪些?为什么?
4、讨论探索:图7
(1)、若两个角互为补角,则一个是锐角,一个是钝角,对吗?
(2)、一个角是钝角,它的一半是什么角?
(3)、互余的两个角,一定是锐角吗?互补的两角呢?
(4)、一个角的补角一定比这个角大吗?
(5)、相等且互补的两个角各是多少度?相等且互余的呢?
设计意图:通过一系列问题,加深学生对互余、互补内涵与外延的理解。
体现“自主学习,交互讨论,合作探究”的学习方式,凸显“学生是学习的主人”,同时也培养学生全面分析考虑问题的能力。
(四)、巩固练习
练习(1)、图中给出的各角中,哪些互为余角?哪些互为补角?
练习(2)、如果要测量两堵围墙所形成的角AOB的度数,但人不能进入围墙,如何测量?
练习(3)、已知:如图,点A,O,B在同一直线上,∠1与∠2互余,OE,OF分别是∠AOC,∠AOD的角平分线,,求EOF的度数?
练习(4)、一个角的补角和这个角的余角的2倍互为补角,求这个角的度数?
设计意图:此部分练习对学生的要求进一步提高,其中综合运用了前面的知识,有融会贯通的效果。
四、课堂小结与作业
(1)谈谈你在这节课的收获。
(2)布置作业。