有机化合物波谱解析复习指导(I_do)

合集下载

(一到四章)有机化合物波谱解析复习指导

(一到四章)有机化合物波谱解析复习指导

第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强.2、发色团:分子中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波方向移动,强度增加,增色作用.4、蓝移:吸收峰向短波方向移动,减色作用.5、增色作用:使吸收强度增加的作用.6、减色作用:使吸收强度减低的作用.7、吸收带:跃迁类型相同的吸收峰.二、选择题1、不是助色团的是:DA、-OHB、-ClC、-SHD、 CH3CH2-2、所需电子能量最小的电子跃迁是:DA、σ→σ*B、 n →σ*C、π→π*D、 n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、 UV吸收无加和性C、π→π*跃迁的吸收强度比n →σ*跃迁要强10-100倍D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:B很强吸收B、强吸收 C、中强吸收 D、弱吸收5、近紫外区的波长为:CA、 4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了CA、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量大B、波长短C、电子能级差大D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:AA、水B、乙醇C、甲醇D、正己烷10、下列化合物中,在近紫外区(200~400nm)无吸收的是:AA、 B、 C、 D、11、下列化合物,紫外吸收λmax值最大的是:A(b)A、 B、 C、 D、12、频率(MHz)为4.47×108的辐射,其波长数值为AA、σ→σ*B、π→π*C、n→σ*D、n→π*第二章红外光谱一、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动自由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频二、选择题(只有一个正确答案)1、线性分子的自由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、非线性分子的自由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最大的是:( )A B C D答案:CH2CH2CH21651 1657 1678 1680O O1716 1745 1775 1810 OOCH24、下图为某化合物的IR图,其不应含有:DA:苯环 B:甲基 C:-NH2 D:-OH5、下列化合物的νC=C的频率最大的是:A B C D答案:1646 1611 1566 164116506、亚甲二氧基与苯环相连时(1,2亚甲二氧基苯:),其亚甲二氧基的δCH 特征强吸收峰为:AA:925~935cm-1B:800~825cm-1C:955~985cm-1D:1005~1035cm-17、某化合物在3000-2500cm-1有散而宽的峰,其可能为:AA:有机酸 B:醛 C:醇 D:醚8、下列羰基的伸缩振动波数最大的是:C9、中三键的IR区域在:BA ~3300cm-1B 2260~2240cm-1C 2100~2000cm-1D 1475~1300cm-110、偕三甲基(叔丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm-1 B15~30 cm-1 C 20~30cm-1 D 30cm-1以上第三章核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫4、屏蔽效应5、远程偶合6、自旋裂分7、自旋偶合8、核磁共振CRORACROHBCROFCROClC DC NR9、屏蔽常数10.m+1规律11、杨辉三角12、双共振13、NOE效应14、自旋去偶15、两面角16、磁旋比17、位移试剂二、填空题1、1HNMR化学位移δ值范围约为 0~14 。

有机化合物波谱解析

有机化合物波谱解析

3. 紫外吸收光谱表示法及常用术语
图示法,横坐标:波长(nm); 纵坐标:吸光度A(或吸收系数ε,lgε)
术语:
吸收峰:吸收值最大处,对应波长 称最大吸收波长(λmax)。 吸收谷:最小处;最小吸收波长 (λmin), 肩峰:当吸收曲线在下降或上升处 有停顿或吸收稍有增加的现象。这 种现象由主峰内藏有其他吸收峰造 成。 末端吸收:在图谱短波端只呈现强 吸收而不成峰型的部分称为末端吸 收。
确定分子结构:
O
O
O
(A)
(B)
(C)
1.不与2,4-二硝基苯肼作用,有氧; 2.与Grignard试剂作用不给出活泼氢;
因此当时写成B 红外光谱确证其中有羰基,
紫外-可见光谱分析数据为: 211,240,314。推测为A 在红外869.5处有强谱带,怀疑为三环,写成C 核磁共振应用于化学,否认三环结构,
有机化合物 波 谱 解 析(1)
绪论
波谱法: 物质在光(电磁波)的照射下,引起分子内部某
种运动,从而吸收或散射某种波长的光,将入射光强 度变化或散射光的信号记录下来,得到一张信号强度 与光的波长、波数(频率)或散射角度的关系图,用 于物质结构、组成及化学变化的分析,这就叫波谱法
CH3
CH3
绪论
结构鉴定:
一般文献给出的数据:
NMR: 详细 MS: 分子量 IR: 主要官能团 一般无UV数据
对化合物的紫外吸收光谱(UV)、红外吸收光谱(IR)、 核磁共振(NMR)、质谱(MS)的谱图进行分析得到分子式 及结构式。
有机分子结构鉴定方法大体可以分为两个阶段,即经典的 化学分析方法为主和仪器分析为主、化学手段为辅的分析方法。
紫外可见光谱 (UV-VIS); 红外(拉曼)光谱 (IR,Raman); 质谱 (MS); 核磁共振谱 (NMR); X线衍射; 折射率; 电诱导率; 熔点;

有机化学-第七章有机化合物的波谱分析

有机化学-第七章有机化合物的波谱分析
课件
分子化学键的振动和红外光谱
1.振动方程式
式中:μ为折合质量;ml和m2分别为化学键所连的两个原子的质量,单位为g, 是为化学键的力常数,单位为N·cm-1(牛顿·厘米-1),其含义是两个原子由平衡位置伸长0.1 nm后的恢复力。
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的简谐振动。根据Hooke定律可得其振动频率为:
本章讨论的红外光谱和核磁共振谱为吸收光谱。质谱是化合物分子经电子流轰击形成正电荷离子,在电场、磁场的作用下按质量大小排列而成的图谱,不是吸收光谱。
7.2红外吸收光谱
用红外光照射试样分子,引起分子中化学键振动能级的跃迁所测得的吸收光谱为红外吸收光谱,简称红外光谱(Infrared Spectroscopy,缩写为IR)。红外光谱是以波长λ或波数σ为横坐标,表示吸收峰的峰位;以透射比T(以百分数表示)为纵坐标,表示吸收强度。
1H的自旋量子数I为1/2,它在磁场中有两种取向,与磁场方向相同的,用+1/2表示,为低能级;与磁场方向相反的,用-1/2表示,为高能级。两个能级之差为△E,见图7–4。
有机化学经常研究的是1H和13C的核磁共振谱,下面主要介绍1H核磁共振谱(质子核磁共振谱)。
式中:γ 称为磁旋比,是物质的特征常数,对于质子其量值为2.675×108A·m2·J-1·s-1; h为Plank常量; ν为无线电波的频率。
测量核磁共振谱时,可以固定磁场改变频率,也可以固定频率改变磁场,一般常用后者。 若以通过电流所表现的吸收能量为纵坐标,磁场强度为横坐标,则可得到如图7–6所示的NMR谱。
一张核磁共振谱图,通常可以给出四种重要的结构信息:化学位移、自旋裂分、偶合常数和峰面积(积分线)。如图7–7所示。
峰面积大小与质子数成正比,可由阶梯式积分曲线求出。峰面积(积分线高度)之比为质子个数之比,图中积分线高度比为1:2:3,等于质子个数之比(OH:CH2:CH3)。

有机化合物波谱综合解析详解

有机化合物波谱综合解析详解
有机化合物波谱综合解析
波谱综合解析的含义:利用各种波谱分
析方法获得尽可能多的结构信息,通过 对各种波谱分析信息之间的相互对比、 印证,从而获得被分析化合物准确结构 的定性分析方法。 不同波谱分析方法在功能上既有重叠部 分,也有互补部分,在综合解吸时应该 充分发挥各自优势。 在条件允许的情况下,要充分关注 1HNMR和13CNMR,因为NMR提供数据 最丰富,可靠性最高。
MS裂解机理
例题2:UV(甲醇):λmax=236 nm,(ε=8200), 300 nm(ε=3500), 1NMR, 13CNMR, IR, MS如下,推测结构:
主要依靠NMR,特别关注偶合常数关系,
积分关系,充分利用二维NMR,以及其 他特殊NMR技术,如DEPT, 结合IR, MS, UV-Vis等数据,将可能的碎 片合理连接。 最后充分利用所有波谱分析数据对可能 结构进行确证,排除所有不合理结构。
1.
例题1:根据提 供的IR, HNMR, 13CNMR和MS 推测结构
解:设MS中m/z250为M+峰,因该峰与相邻碎片离子峰 m/z 206(M-44).m/z 178(M-72)之间关系合理,故m /z 250为分子离子峰。分子量250为偶数,说明化合 物不含氮或偶数个氮。MS中无明显含S、F、C1、Br、I 的特征碎片离子峰存在。
13C
NMR谱中有12种化学环境不同的碳,由峰的相对强 度判断,分子中应含有14个碳。1H NMR谱中积分简比 (由低场至高场)为3:2:1:2:3:4:3,简比数字之 和为18.表明分子中至少含有18个H。由以上分析可知, 当N=0时,O=4,可能分子式为C14H18O14,当N=2 时.O=2.5.不合理应舍去,故该化合物的分子式为 C14H18O14,因UN=6,所以分子中可能有苯基存在。

有机化合物的波谱分析

有机化合物的波谱分析
子中一价、三价和四价原子的数目。
双键和饱和环状结构的Ω为1、三键为2、苯环为4。
编辑ppt
26
1.烷烃:
谱图解析示例
1. 2853~2962cm-1 C—H 伸缩振动;
2. 1460cm-1、1380cm-1 C—H(—CH3、—CH2)面内弯曲振动
3. 7收23峰cm将-1出C现—在H[—73(4C~H27)4n—3编c辑,mn-p1p≥处t 。4]平面摇摆振动;若n<4 吸
编辑ppt
5
微粒性:可用光量子的能量来描述:
E hv hc
式中:E为光量子能量,单位为 J h 为Planck 常数,其量值为 6.63×10-34 J s-1
该式表明:分子吸收电磁波,从低能级跃迁到高能级,其吸
收光的频率与吸收能量的关系。由此可见,与E,v 成反比, 即 ↓,v↑(每秒的振动次数↑),E↑。
12:16:19
编辑ppt
21
重要官能团的红外特征吸收
类别 醛、酮
羧酸
酰卤 酸酐 酯 酰胺 腈
键和官能团
拉 伸 (cm-1)
C=O R-CHO
C=O
OH
C=O
C=O C=O C=O NH2 CN
1750-1680
2720
1770-1750(缔合时在1710) 气相在3550,液固缔合时在 3000-2500(宽峰)
第九章 有机化合物的波谱分析(1)
主要内容
红外光谱 核磁共振谱 质谱
编辑ppt
1
前言
有机化合物的结构表征(即测定) —— 从分子水平认识物 质的基本手段,是有机化学的重要组成部分。过去,主要依靠 化学方法进行有机化合物的结构测定, 其缺点是:费时、费力、 费钱,需要的样品量大。

有机化合物波谱解析复习2012

有机化合物波谱解析复习2012

• 芳环上亚甲二氧基: C-H(-O-CH2-O-)在925~935cm-1有强吸收。
• 3.影响红外光谱吸收峰位、峰强的因素 • 诱导效应: 值, F>Cl>Br>I>OCH3>NHCOCH3>C6H5>H>CH3 • 共轭效应: 值,-共轭体系;p-共轭体系:I 效应和C效应共存 • 空间效应: • 场效应,如,-卤代酮规律: -卤原子处于平伏 键,C=O的值增高。 • 空间障碍:影响共轭效应,使值增高 • 跨环效应值 • 环张力:环外双键和环上羰基随着环的张力增加,其 频率增加。环内双键值随着环的张力增大而降低。 • 氢键效应:分子内、间氢键 • 互变异构;振动偶合效应;费米共振;样品的物理状 态的影响

(3). 远程偶合: W型偶合(4J) 烯丙偶合、高烯丙偶合J = 0-3 Hz 苯环间位偶合Jm = 1-3 Hz 折线偶合J = 1-3 Hz
• 苯环几种取代模式 • ABX系统
• AA’BB’系统
dd t d t d dd
第四章 质谱
• 1. 概念: EI-MS, HRMS, ESI-MS, FAB-MS及应用 • 2.离子开裂类型 • 离子峰的相对丰度 • 具有离域电子系统的化合物(芳香族、共轭多烯类等), 分子离子的丰度较大。 • 具有环状或多环类结构的化合物,分子离子的丰度较大。 • 含杂原子的化合物(如醇、胺等),分子离子的稳定性较差, 丰度较小。 • 具有高度分支的化合物,分子离子的丰度较小。稳定性顺 序:叔正离子 > 仲正离子> 伯正离子
华会明 2011-12
一、紫外光谱
• 1. 概念:UV及应用 • 2.紫外光谱的主要吸收带(max) (1) R带:n*跃迁。如C=O, -N=N-, -N=O等)。 max: 250~ 500nm,<100。 (2) K带:共轭双键*跃迁。max: 210~250nm,> 10000 (lg > 4)。 (3) B带:苯环的*跃迁。 max: 230~270nm,≈220。

有机化合物波谱解析教案

有机化合物波谱解析教案

有机化合物波谱解析教案一、教学目标1. 理解有机化合物波谱解析的基本概念和方法。

2. 学会使用红外光谱、核磁共振谱、质谱等波谱进行分析。

3. 能够解析有机化合物的结构based on the information from the spectra.二、教学内容1. 红外光谱(IR)基本原理谱图解析功能团振动频率与结构的关系2. 核磁共振谱(NMR)基本原理谱图解析化学位移、耦合常数与结构的关系三、教学方法1. 讲授:讲解基本原理、概念和谱图解析方法。

2. 示例分析:分析具体化合物的红外光谱、核磁共振谱和质谱。

3. 练习:学生自行分析给定的谱图,得出结构结论。

四、教学准备1. 教学PPT:包含基本原理、概念、谱图解析方法和示例。

2. 谱图数据:用于示例分析和学生练习。

五、教学过程1. 导入:介绍有机化合物波谱解析的重要性。

2. 红外光谱(IR)讲解基本原理和谱图解析方法。

分析示例谱图,引导学生理解谱图与结构的关系。

3. 核磁共振谱(NMR)讲解基本原理和谱图解析方法。

分析示例谱图,引导学生理解谱图与结构的关系。

4. 练习:学生分析给定的谱图,得出结构结论。

教学反思:在课后,教师应反思教学效果,根据学生的反馈和练习情况,调整教学方法和难度,以便更好地达到教学目标。

六、质谱(MS)1. 基本原理介绍质谱仪的工作原理和质谱图的获取。

解释质谱图中的峰代表分子离子、碎片离子等。

2. 谱图解析讲解质谱图的解析方法,包括分子离子峰的确定、碎片离子的识别等。

引导学生理解质谱图与分子结构的关系。

七、紫外光谱(UV)1. 基本原理介绍紫外光谱的产生原理,如π-π、n-π等电子跃迁。

解释紫外光谱图中的吸收峰与分子结构的关系。

2. 谱图解析讲解紫外光谱图的解析方法,包括吸收峰的位置、强度和形状等。

引导学生理解紫外光谱图与分子结构的关系。

八、圆二色光谱(CD)1. 基本原理介绍圆二色光谱的产生原理,如手性分子的CD光谱。

08有机化合物的波谱分析

08有机化合物的波谱分析
用下产生一个感应磁场。
• 一般,感应磁场H感存在使质子实际感受到
的 效磁 应场 叫强做屏度蔽H’0效比应外。加磁场强度H0小,这种
• 所以要发生共振必须:

H0=H’0+ H感
由于不同化学环境的质子受到的屏蔽效应不同, 因此它们发生核磁共振所需的外磁场强度也不同。
质子周围电子云密度 感应磁强 H感 屏蔽效应 发生共振吸收的磁场强度 H0
倍频区
官能团特征区
指纹区
8.3. 有机化合物的红外光谱 烷烃:
~2850
~1370 ~1470
~720
2850~3000 cm-1 1450~1470 -1 1370~1380 –1 720~725 -1
C-H 伸缩振动
-CH3 –CH2-剪式弯曲振动 CH3-平面摇摆弯曲振动 (注意分裂峰) -CH2-平面摇摆弯曲振动(n>=4)
总之:在核磁共振谱中:
吸收峰的个数(组数)——质子的类型
吸收峰的强度(面积)之比— 各类质子的 相对数目
吸收峰的位置(化学位移) 质子所处的
吸收峰的裂分情况
化学环境
【例6-1】 图6-22所 示两个 1HNMR谱 图分别代 表化合物 1-氯丙烷 和2-氯丙 烷。试说 明其归属 。
【例6-2】
每个有机化合物都有它自己的吸收光谱。
(一) 红外光谱 (IR)
• 红外光谱图的表示方法 • 红外光谱与分子结构的关系 • 有机化合物的红外光谱
8.1. 红外光谱的表示方法
红外光谱(infrared,spectroscopy,简记为IR) 是分子吸收红外区光波时,分子中原于的振动能级 和转动能级发生跃迁而产生的吸收光谱。
在核磁共振谱上就出现不同位置的吸收峰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强.2、发色团:分子中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波方向移动,强度增加,增色作用.4、蓝移:吸收峰向短波方向移动,减色作用.5、增色作用:使吸收强度增加的作用.6、减色作用:使吸收强度减低的作用.7、吸收带:跃迁类型相同的吸收峰.二、选择题1、不是助色团的是:DA、-OHB、-ClC、-SHD、CH3CH2-2、所需电子能量最小的电子跃迁是:DA、ζ→ζ*B、n →ζ*C、π→π*D、n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、UV吸收无加和性C、π→π*跃迁的吸收强度比n →ζ*跃迁要强10-100倍D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:BA、很强吸收B、强吸收C、中强吸收D、弱吸收5、近紫外区的波长为:CA、4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了CA、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量大B、波长短C、电子能级差大D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:AA、水B、乙醇C、甲醇D、正己烷10、下列化合物中,在近紫外区(200~400nm)无吸收的是:AA、B、C、D、11、下列化合物,紫外吸收λmax值最大的是:A(b)A、B、C、D、13、化合物中,下面哪一种跃迁所需的能量最高AA、ζ→ζ*B、π→π*C、n→ζ*D、n→π*第二章红外光谱一、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动自由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频二、选择题(只有一个正确答案)1、线性分子的自由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、非线性分子的自由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最大的是:DA B C D4、下图为某化合物的IR图,其不应含有:DA:苯环B:甲基C:-NH2D:-OH5、下列化合物的νC=C 的频率最大的是:AA B C6、亚甲二氧基与苯环相连时,其亚甲二氧基的δCH 特征强吸收峰为:AA : 925~935cm -1B :800~825cm -1C : 955~985cm -1D :1005~1035cm -17、某化合物在3000-2500cm -1有散而宽的峰,其可能为:AA : 有机酸B :醛C :醇D :醚8、下列羰基的伸缩振动波数最大的是:C9、 中三键的IR 区域在:BA ~3300cm -1B 2260~2240cm -1C 2100~2000cm -1D 1475~1300cm -110、偕三甲基(特丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm -1 B15~30 cm -1 C 20~30cm -1 D 30cm -1以上第三章 核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫4、屏蔽效应5、远程偶合6、自旋裂分7、自旋偶合8、核磁共振9、屏蔽常数10.m+1规律12、双共振16、磁旋比17、位移试剂二、 填空题1、1HNMR 化学位移δ值范围约为 0~14 。

2、自旋量子数I=0的原子核的特点是 不显示磁性 ,不产生核磁共振现象 。

C R O R A C R O H B C R O F C R OCl C D C N R三、选择题1、核磁共振的驰豫过程是 DA自旋核加热过程B自旋核由低能态向高能态跃迁的过程C自旋核由高能态返回低能态,多余能量以电磁辐射形式发射出去D高能态自旋核将多余能量以无辐射途径释放而返回低能态2、请按序排列下列化合物中划线部分的氢在NMR中化学位移的大小a HH b (CH3)3COH c CH3COO CH3 d CH3C CCH3(2~3) a<d<b<c3、二氟甲烷质子峰的裂分数和强度比是 AA单峰,强度比1B双峰,强度比1:1C 三重峰,强度比1:2:1D 四重峰,强度比1:3:3:14、核磁共振波谱产生,是将试样在磁场作用下,用适宜频率的电磁辐射照射,使下列哪种粒子吸收能量,产生能级跃迁而引起的BA原子B有磁性的原子核C有磁性的原子核外电子D有所原子核5、磁等同核是指:DA、化学位移相同的核B、化学位移不相同的核C、化学位移相同,对组外其他核偶合作用不同的核D、化学位移相同,对组外其他核偶合作用相同的核6、具有自旋角动量,能产生核磁共振的原子核是:A P115A、13C核B、12C核C、32S核D、16O核7、在苯乙酮分子的氢谱中,处于最低场的质子信号为:AA、邻位质子B、间位质子C、对位质子D、甲基质子8、下述化合物中的两氢原子间的4J值为:BHHA、0-1HzB、1-3HzC、6-10HzD、12-18Hz9、NOE效应是指:CA、屏蔽效应B、各向异性效应C、核的Overhauser效应D、电场效应10、没有自旋角动量,不能产生核磁共振的原子核是:DA、13C核B、2D核C、15N核D、16O核11、在下述化合物的1HNMR谱中应该有多少种不同的1H核:AA、1 种B、2种C、3种D、4种12、下列各组化合物按1H化学位移值从大到小排列的顺序为:CCH2=CH2CH CH CHOHa b.. c. d.A、a>b>c>d B 、d>c>b>a C 、c>d>a>b D 、b>c>a>d13、当采用60MHz频率照射时,发现某被测氢核共振峰与TMS氢核间的频率差(ϖM)为420Hz,试问该峰化学位移(∆)是多少ppm:BA、10B、7C、6D、4.214、下述化合物氢谱中的甲基质子化学位移范围为:BC CH3OA、0-1ppmB、2-3ppmC、4-6ppmD、6-8ppm15、下述化合物中的两氢原子间的3J值为:CHHA、0-1HzB、1-3HzC、6-10HzD、12-18Hz16、没有自旋的核为 CA、1HB、2HC、12CD、13 C17、当采用60MHz频率照射时,某被测氢核的共振峰与TMS间的频率差(△ν)为430Hz,问该峰化学位移(δ)是多少ppm? CA、4.3B、43C、7.17D、6.018、化合物的1H NMR谱中应该有多少种化学环境不同的1H核? DA、8B、 4C、2D、119、化合物O的1H NMR谱中,化学位移处在最低场的氢核为BA、甲基B、邻位氢C、间位氢D、对位氢20、判断CH3CH2CH2CO2H分子中1H核化学位移大小顺序 Ba b c dA、a>b>c>d B 、d>c>b>a C、c>b>a>d D、d>a>b>c21、当采用60MHz频率照射时,对羟苯乙羟酸分子中苯环上的四个氢呈现两组峰,分别为6.84和7.88ppm,偶合常数为8 Hz,试问该两组氢核组成何种系统?DA、A2 B2B、A2 X2C、AA` BB`D、AA` XX`22、在刚性六元环中,相邻两个氢核的偶合常数J aa值范围为 AA、8---10HzB、0----2HzC、2--3HzD、12--18Hz23、在低级偶合的AX系统中共有 C 条谱线。

A、 2B、3C、4D、524、在化合物CH3—CH==CH—CHO中,--CHO的质子化学位移信号出现区域为 DA、1--2 ppmB、3--4 ppmC、6--8 ppmD、8--10 ppm25、在化合物CHbCHcHaCOOCH3的1H NMR谱中,化学位移处在最高场的氢核为B变CA、HaB、Hb C 、Hc D、CH326、化合物OCH3HoHmHp的1H NMR谱中,1H核化学位移大小顺序为 CA、CH3>Ho>Hm>HpB、Ho > Hp > Hm> CH3C 、Hm > Hp > Ho > CH3 D、Hm > Ho > Hp > CH327、在化合物H3CCH3CH3a1a2a3中,三个甲基的化学位移值分别为a11.63,a2为1.29,a3为0.85。

其中,a2和a3的δ值不同,后者明显向高场移动是因为该甲基CA、受双键吸电子影响B、受双键供电子影响C、位于双键各向异性效应的屏蔽区D、位于双键各向异性效应的去屏蔽区第四章质谱一、名词解释1、均裂。

2、亚稳离子。

3、分子离子。

4、基峰。

5、分辨率。

6、α-裂解。

二、选择题1、发生麦氏重排的一个必备条件是(C )A) 分子中有电负性基团B) 分子中有不饱和基团C) 不饱和双键基团γ-位上要有H原子D) 分子中要有一个六元环2、质谱(MS)主要用于测定化合物中的(C )A) 官能团B) 共轭系统C) 分子量D) 质子数3、分子离子峰,其质量数与化合物的分子量(A )A) 相等B) 小于分子量C) 大于分子量D) 与分子量无关4、氮律指出:一般有机化合物分子量与其含N原子数的关系是(B )A)含奇数个N原子时,分子量是偶数;B) 含奇数个N原子时,分子量是奇数;C) 含偶数个N原子时,分子量是奇数;D) 无关系5、异裂,其化学键在断裂过程中发生(A )A) 两个电子向一个方向转移B) 一个电子转移C) 两个电子分别向两个方向转移D) 无电子转移6、某化合物的质谱中,其分子离子峰M 与其M+2峰强度比为约1:1, 说明分子中可能含有( B )A) 一个Cl B) 一个Br C) 一个N D) 一个S7、对于断裂一根键裂解过程,下列哪个说法是对的?( D )A) 在所有的化合物中,直链烷烃的分子离子峰最强。

B) 具有侧链的环烷烃优先在侧链部位断裂,生成环状游离基。

C) 含双键、芳环的化合物分子离子不稳定,分子离子峰较强。

D) 在双键、芳环的β键上容易发生β断裂,生成的正离子与双键、芳环共轭稳定。

8、下列化合物中, 哪个能发生麦氏重排? ( D )H 3CO O ClA B C D9、采用“氮律”判断分子离子峰是质谱解析的手段之一,“氮律”说:( C )A) 分子量为偶数的有机化合物含奇数个氮原子,分子量为奇数的有机化合物含偶数个氮原子B) 分子量为奇数的有机化合物不含氮原子。

相关文档
最新文档