A reactive behavior framework for dynamic virtual worlds

合集下载

dyna 状态方程开发

dyna 状态方程开发

dyna 状态方程开发dyna 状态方程是一种广泛应用于工程领域的数学模型,用于描述系统在某一时刻的状态及其随时间的变化。

开发 dyna 状态方程需要深入理解系统的物理特性、数学原理和编程技术。

本文将详细介绍dyna 状态方程的开发过程、关键技术、注意事项以及实际应用案例,以确保读者能够掌握开发 dyna 状态方程的方法和技巧。

1. 确定系统模型:根据工程问题,建立相应的系统模型,包括物理模型、数学模型等。

2. 建立数学模型:根据系统模型,建立 dyna 状态方程,包括状态变量、输入变量、参数等。

3. 编写代码:使用编程语言(如 Python)编写 dyna 状态方程的代码,实现动态模拟和计算。

4. 调试和优化:对代码进行调试和优化,确保计算结果的准确性和稳定性。

5. 测试和验证:对模拟结果进行测试和验证,确保与实际工程问题相符。

二、关键技术1. 状态变量选择:选择合适的状态变量,能够准确描述系统在某一时刻的状态及其随时间的变化。

2. 参数估计:根据实际工程问题,估计 dyna 状态方程中的参数,以确保计算结果的准确性。

3. 时间积分方法:选择合适的时间积分方法,能够准确模拟系统的动态变化。

4. 边界条件和初值:设置正确的边界条件和初值,能够确保模拟结果的正确性和稳定性。

三、注意事项1. 准确性:确保计算结果的准确性,需要选择合适的数学模型、参数估计方法和时间积分方法。

2. 稳定性:确保模拟结果的稳定性,需要合理设置边界条件和初值,并进行必要的调试和优化。

3. 可扩展性:对于大规模的工程问题,需要开发高效的算法和编程技术,以提高模拟计算的效率。

4. 工程应用:在开发 dyna 状态方程时,需要充分考虑工程应用的实际情况,确保模拟结果能够为工程决策提供可靠的依据。

四、实际应用案例以某工程机械为例,开发其动力系统的 dyna 状态方程。

根据该机械的动力系统模型,建立相应的 dyna 状态方程,包括发动机转速、燃油喷射量、扭矩等状态变量,以及发动机效率、空气流量、进气温度等参数。

excel 平均动力学温度

excel 平均动力学温度

excel 平均动力学温度
【原创实用版】
目录
1.介绍过时代码的概念和原因
2.探讨过时代码的危害
3.提出应对过时代码的解决方案
4.总结
正文
在编程领域,过时代码是指那些使用了已经不再推荐或被官方宣布不再维护的编程语言、函数库或 API 的代码。

这些代码可能在过去是有效的,但由于技术的发展和环境的变化,现在已经不适应现代编程需求,甚至可能带来安全隐患。

过时代码的危害主要体现在以下几个方面:
首先,过时代码可能导致程序运行效率低下。

随着硬件和软件的不断升级,现代编程语言和函数库通常具有更高的性能和更好的优化。

而过时
代码往往无法充分利用这些优势,甚至可能因为底层实现的差异导致程序运行速度变慢。

其次,过时代码可能存在安全隐患。

一些过时的编程语言和函数库可能存在已知或未知的安全漏洞,这可能导致恶意攻击者利用这些漏洞对程序进行攻击,从而危及系统的安全性。

针对过时代码的问题,程序员可以采取以下措施进行应对:
1.及时更新编程语言和函数库:了解最新的编程语言和函数库,并及时更新过时的代码,以保持代码的现代化和适应性。

2.重构代码:对过时的代码进行重构,以提高代码的可读性、可维护性和性能。

这可能涉及对代码结构、算法和数据结构等方面的优化。

3.编写文档:在编写现代代码的同时,为代码编写详细的文档,以便在未来进行维护和升级时能够快速了解代码的功能和实现方式。

总之,过时代码是编程领域中一个普遍存在的问题。

安全强化学习综述

安全强化学习综述

安全强化学习综述王雪松 1王荣荣 1程玉虎1摘 要 强化学习(Reinforcement learning, RL)在围棋、视频游戏、导航、推荐系统等领域均取得了巨大成功. 然而, 许多强化学习算法仍然无法直接移植到真实物理环境中. 这是因为在模拟场景下智能体能以不断试错的方式与环境进行交互, 从而学习最优策略. 但考虑到安全因素, 很多现实世界的应用则要求限制智能体的随机探索行为. 因此, 安全问题成为强化学习从模拟到现实的一个重要挑战. 近年来, 许多研究致力于开发安全强化学习(Safe reinforcement learning, SRL)算法, 在确保系统性能的同时满足安全约束. 本文对现有的安全强化学习算法进行全面综述, 将其归为三类: 修改学习过程、修改学习目标、离线强化学习, 并介绍了5大基准测试平台: Safety Gym 、safe-control-gym 、SafeRL-Kit 、D4RL 、NeoRL.最后总结了安全强化学习在自动驾驶、机器人控制、工业过程控制、电力系统优化和医疗健康领域中的应用, 并给出结论与展望.关键词 安全强化学习, 约束马尔科夫决策过程, 学习过程, 学习目标, 离线强化学习引用格式 王雪松, 王荣荣, 程玉虎. 安全强化学习综述. 自动化学报, 2023, 49(9): 1813−1835DOI 10.16383/j.aas.c220631Safe Reinforcement Learning: A SurveyWANG Xue-Song 1 WANG Rong-Rong 1 CHENG Yu-Hu 1Abstract Reinforcement learning (RL) has proved a prominent success in the game of Go, video games, naviga-tion, recommendation systems and other fields. However, a large number of reinforcement learning algorithms can-not be directly transplanted to real physical environment. This is because in the simulation scenario, the agent is able to interact with the environment in a trial-and-error manner to learn the optimal policy. Considering the safety of systems, many real-world applications require the limitation of random exploration behavior of agents. Hence,safety has become an essential factor for reinforcement learning from simulation to reality. In recent years, many re-searches have been devoted to develope safe reinforcement learning (SRL) algorithms that satisfy safety constraints while ensuring system performance. This paper presents a comprehensive survey of existing SRL algorithms, which are divided into three categories: Modification of learning process, modification of learning objective, and offline re-inforcement learning. Furthermore, five experimental platforms are introduced, including Safety Gym, safe-control-gym, SafeRL-Kit, D4RL, and NeoRL. Lastly, the applications of SRL in the fields of autonomous driving, robot control, industrial process control, power system optimization, and healthcare are summarized, and the conclusion and perspective are briefly drawn.Key words Safe reinforcement learning (SRL), constrained Markov decision process (CMDP), learning process,learning objective, offline reinforcement learningCitation Wang Xue-Song, Wang Rong-Rong, Cheng Yu-Hu. Safe reinforcement learning: A survey. Acta Automat-ica Sinica , 2023, 49(9): 1813−1835作为一种重要的机器学习方法, 强化学习 (Re-inforcement learning, RL) 采用了人类和动物学习中 “试错法” 与 “奖惩回报” 的行为心理学机制, 强调智能体在与环境的交互中学习, 利用评价性的反馈信号实现决策的优化[1]. 早期的强化学习主要依赖于人工提取特征, 难以处理复杂高维状态和动作空间下的问题. 近年来, 随着计算机硬件设备性能的提升和神经网络学习算法的发展, 深度学习由于其强大的表征能力和泛化性能受到了众多研究人员的关注[2−3]. 于是, 将深度学习与强化学习相结合就成为了解决复杂环境下感知决策问题的一个可行方案. 2016年, Google 公司的研究团队DeepMind 创新性地将具有感知能力的深度学习与具有决策能收稿日期 2022-08-08 录用日期 2023-01-11Manuscript received August 8, 2022; accepted January 11,2023国家自然科学基金(62176259, 61976215), 江苏省重点研发计划项目(BE2022095)资助Supported by National Natural Science Foundation of China (62176259, 61976215) and Key Research and Development Pro-gram of Jiangsu Province (BE2022095)本文责任编委 黎铭Recommended by Associate Editor LI Ming1. 中国矿业大学信息与控制工程学院 徐州 2211161. School of Information and Control Engineering, China Uni-versity of Mining and Technology, Xuzhou 221116第 49 卷 第 9 期自 动 化 学 报Vol. 49, No. 92023 年 9 月ACTA AUTOMATICA SINICASeptember, 2023力的强化学习相结合, 开发的人工智能机器人Al-phaGo 成功击败了世界围棋冠军李世石[4], 一举掀起了深度强化学习的研究热潮. 目前, 深度强化学习在视频游戏[5]、自动驾驶[6]、机器人控制[7]、电力系统优化[8]、医疗健康[9]等领域均得到了广泛的应用.近年来, 学术界与工业界开始逐步注重深度强化学习如何从理论研究迈向实际应用. 然而, 要实现这一阶段性的跨越还有很多工作需要完成, 其中尤为重要的一项任务就是保证决策的安全性. 安全对于许多应用至关重要, 一旦学习策略失败则可能会引发巨大灾难. 例如, 在医疗健康领域, 微创手术机器人辅助医生完成关于大脑或心脏等关键器官手术时, 必须做到精准无误, 一旦偏离原计划位置, 则将对病人造成致命危害. 再如, 自动驾驶领域, 如果智能驾驶车辆无法规避危险路障信息, 严重的话将造成车毁人亡. 因此, 不仅要关注期望回报最大化,同时也应注重学习的安全性.García 和Fernández [10]于2015年给出了安全强化学习 (Safe reinforcement learning, SRL) 的定义: 考虑安全或风险等概念的强化学习. 具体而言,所谓安全强化学习是指在学习或部署过程中, 在保证合理性能的同时满足一定安全约束的最大化长期回报的强化学习过程. 自2015年起, 基于此研究,学者们提出了大量安全强化学习算法. 为此, 本文对近年来的安全强化学习进行全面综述, 围绕智能体的安全性问题, 从修改学习过程、修改学习目标以及离线强化学习三方面进行总结, 并给出了用于安全强化学习的5大基准测试平台: Safety Gym 、safe-control-gym 、SafeRL-Kit 、D4RL 、NeoRL, 以及安全强化学习在自动驾驶、机器人控制、工业过程控制、电力系统优化以及医疗健康领域的应用.安全强化学习中所涉及的方法、基准测试平台以及应用领域之间的关系如图1所示.本文结构如下: 第1节对安全强化学习问题进行形式化描述; 第2节对近年来的安全强化学习方法进行分类与综述; 第3节介绍5种基准测试平台;第4节总结安全强化学习的实际应用场景; 第5节对未来研究方向进行探讨; 第6节对文章进行总结.1 问题描述M ∪C M =⟨S ,A ,T ,γ,r ⟩C ={c,d }S A T (s ′|s,a )γr :S ×A →R c :S ×A →R d π∗安全强化学习问题通常被定义为一个约束马尔科夫决策过程 (Constrained Markov decision pro-cess, CMDP) [11], 即在标准马尔科夫决策过程 的基础上添加了关于成本函数的约束项 . 表示状态空间集, 表示动作空间集, 表示用于描述动力学模型的状态转移函数, 表示折扣因子, 表示奖励函数; 表示成本函数, 表示安全阈值. 这种情况下, 安全强化学习问题可以表述为在满足安全约束的情况下, 求解使期望回报最大化的最优可行策略J (π)=E τ∼π(∞t =0γtr (s t ,a t ))τ=(s 0,a 0,s 1,a 1,···)τ∼πτπΠc 其中, , 表示一条轨迹, 表示轨迹 根据策略 采样得到, 表示满足安全约束的安全策略集. 值得注意的是, 本文公式所描述的都是单成本约束的形式, 但不失一般性, 这些公式都可以拓展为多成本约束的形式. 对于不同类型的决策任务,安全策略集可以有不同的表达形式.Πc 对于安全性要求严格的决策任务, 例如自动驾驶[12−13]任务, 通常采用硬约束方式, 即在所有的时刻都需要强制满足单步约束. 这种情况下 表示为环境知识人类知识无先验知识拉格朗日法信赖域法策略约束值约束预训练模型图 1 安全强化学习方法、基准测试平台与应用Fig. 1 Methods, benchmarking platforms, and applications of safe reinforcement learning1814自 动 化 学 报49 卷Π其中, 表示可行策略集. 但由于这种约束方式要求过于严格, 因此通常需要借助模型信息加以实现.Πc 在无模型情况下, 软约束方式有着更广泛的应用, 即对折扣累积成本的期望进行约束, 这种情况下 表示为c :S ×A →{0,1}c (s t ,a t )=0c (s t ,a t )=1E τ∼π(∑∞t =0γtc (s t ,a t ))π这种约束方式可以很好地适用于机器人行走[14]、油泵安全控制[15]和电力系统优化[16]等任务, 但对于需要明确定义状态或动作是否安全的任务却难以处理. 为了使软约束方式更好地适用于不同类型的决策任务, 可以将成本函数修改为 ,利用成本函数对当前状态动作对进行安全性判断,若安全, 则 , 否则, , 并且在智能体与环境交互期间遇到不安全的状态动作对时终止当前回合. 这时, 约束项 可以表示 产生不安全状态动作对的概率, 因此经过这样修改后的软约束也被称为机会型约束. 机会型约束由于其良好的任务适应性, 已被成功应用于无模型的自动驾驶[17]和机械臂控制[18]等任务.M =⟨S ,A ,T ,γ,r ⟩π∗=arg max π∈ΠJ (π)B ={(s,a,r,s ′)}π∗另一方面, 离线强化学习[19−20]从一个静态的数据集中学习最优策略, 它避免了与环境的交互过程,可以保障训练过程中的安全性. 因此, 可以将离线强化学习作为安全强化学习的一种特殊形式. 离线强化学习考虑一个标准马尔科夫决策过程 , 它的目标是求解使期望回报最大化的最优可行策略 , 与在线方式不同的是, 智能体在训练过程中不再被允许与环境进行交互, 而是只能从一个静态数据集 中进行学习. 尽管这种方式可以保障训练过程中的安全性, 但分布偏移问题 (目标策略与行为策略分布不同)[19−20]也给求解 的过程带来了困难.因此, 现如今的离线强化学习方法大多关注于如何解决分布偏移问题. 离线强化学习在有先验离线数据集支持的情况下, 借助于其训练过程安全的优势,已被应用于微创手术机器人控制[21]和火力发电机组控制[22]等任务.2 方法分类求解安全强化学习问题的方法有很多, 受Gar-cía 和Fernández [10]启发, 本文从以下三方面进行综述:1) 修改学习过程. 通过约束智能体的探索范围, 采用在线交互反馈机制, 在强化学习的学习或探索过程中阻止其产生危险动作, 从而确保了训练时策略的安全性. 根据是否利用先验知识, 将此类方法划分为三类: 环境知识、人类知识、无先验知识.2) 修改学习目标. 同样采用在线交互反馈机制, 在强化学习的奖励函数或目标函数中引入风险相关因素, 将约束优化问题转化为无约束优化问题,如拉格朗日法、信赖域法.3) 离线强化学习. 仅在静态的离线数据集上训练而不与环境产生交互, 从而完全避免了探索, 但对部署时安全没有任何约束保证, 并未考虑风险相关因素. 因此大多数离线强化学习能实现训练时安全, 但无法做到部署时安全.三类安全强化学习方法的适用条件、优缺点以及应用领域对比如表1所示. 下面对安全强化学习的现有研究成果进行详细综述与总结.2.1 修改学习过程在强化学习领域, 智能体需要通过不断探索来减小外界环境不确定性对自身学习带来的影响. 因此, 鼓励智能体探索一直是强化学习领域非常重要的一个研究方向. 然而, 不加限制的自由探索很有可能使智能体陷入非常危险的境地, 甚至酿成重大安全事故. 为避免强化学习智能体出现意外和不可逆的后果, 有必要在训练或部署的过程中对其进行安全性评估并将其限制在 “安全” 的区域内进行探索, 将此类方法归结为修改学习过程. 根据智能体利用先验知识的类型将此类方法进一步细分为环境知识、人类知识以及无先验知识. 其中环境知识利用系统动力学先验知识实现安全探索; 人类知识借鉴人类经验来引导智能体进行安全探索; 无先验知识没有用到环境知识和人类知识, 而是利用安全约束结构将不安全的行为转换到安全状态空间中.2.1.1 环境知识基于模型的方法因其采样效率高而得以广泛研究. 该类方法利用了环境知识, 需要学习系统动力学模型, 并利用模型生成的轨迹来增强策略学习,其核心思想就是通过协调模型使用和约束策略搜索来提高安全探索的采样效率. 可以使用高斯过程对模型进行不确定性估计, 利用Shielding 修改策略动作从而生成满足约束的安全过滤器, 使用李雅普诺夫函数法或控制障碍函数法来限制智能体的动作选择, 亦或使用已学到的动力学模型预测失败并生成安全策略. 具体方法总结如下.高斯过程. 一种主流的修改学习过程方式是使用高斯过程对具有确定性转移函数和值函数的动力9 期王雪松等: 安全强化学习综述1815学建模, 以便能够估计约束和保证安全学习. Sui等[38]将 “安全” 定义为: 在智能体学习过程中, 选择的动作所收到的期望回报高于一个事先定义的阈值. 由于智能体只能观测到当前状态的安全函数值, 而无法获取相邻状态的信息, 因此需要对安全函数进行假设. 为此, 在假设回报函数满足正则性、Lipschitz 连续以及范数有界等条件的前提下, Sui等[38]利用高斯过程对带参数的回报函数进行建模, 提出一种基于高斯过程的安全探索方法SafeOpt. 在学习过程中, 结合概率生成模型, 通过贝叶斯推理即可求得高斯过程的后验分布, 即回报函数空间的后验.进一步, 利用回报函数置信区间来评估决策的安全性, 得到一个安全的参数区间并约束智能体只在这个安全区间内进行探索. 然而, SafeOpt仅适用于类似多臂老虎机这类的单步、低维决策问题, 很难推广至复杂决策问题. 为此, Turchetta等[39]利用马尔科夫决策过程的可达性, 在SafeOpt的基础上提出SafeMDP安全探索方法, 使其能够解决确定性有限马尔科夫决策过程问题. 在SafeOpt和SafeM-DP中, 回报函数均被视为是先验已知和时不变的,但在很多实际问题中, 回报函数通常是先验未知和时变的. 因此, 该方法并未在考虑安全的同时优化回报函数. 针对上述问题, Wachi等[40]把时间和空间信息融入核函数, 利用时−空高斯过程对带参数的回报函数进行建模, 提出一种新颖的安全探索方法: 时−空SafeMDP (Spatio-temporal SafeMDP, ST-SafeMDP), 能够依概率确保安全性并同时优化回报目标. 尽管上述方法是近似安全的, 但正则性、Lipschitz连续以及范数有界这些较为严格的假设条件限制了SafeOpt、SafeMDP和ST-SafeM-DP在实际中的应用, 而且, 此类方法存在理论保证与计算成本不一致的问题, 在高维空间中很难达到理论上保证的性能.Shielding. Alshiekh等[41]首次提出Shield-ing的概念来确保智能体在学习期间和学习后保持安全. 根据Shielding在强化学习环节中部署的位置, 将其分为两种类型: 前置Shielding和后置Shielding. 前置Shielding是指在训练过程中的每个时间步, Shielding仅向智能体提供安全的动作以供选择. 后置Shielding方式较为常用, 它主要影响智能体与环境的交互过程, 如果当前策略不安全则触发Shielding, 使用一个备用策略来覆盖当前策略以保证安全性. 可以看出, 后置Shielding方法的使用主要涉及两个方面的工作: 1) Shielding触发条件的设计. Zhang等[42]通过一个闭环动力学模型来估计当前策略下智能体未来的状态是否为可恢复状态, 如果不可恢复, 则需要采用备用策略将智能体还原到初始状态后再重新训练. 但如果智能体的状态不能还原, 则此方法就会失效. Jansen等[43]一方面采用形式化验证的方法来计算马尔科夫决策过程安全片段中关键决策的概率, 另一方面根据下一步状态的安全程度来估计决策的置信度. 当关键决策的概率及其置信度均较低时, 则启用备用策略. 但是, 在复杂的强化学习任务中, 从未知的环境中提取出安全片段并不是一件容易的事情. 2) 备用 (安全)策略的设计. Li和Bastani[44]提出了一种基于tube 的鲁棒非线性模型预测控制器并将其作为备用控制器, 其中tube为某策略下智能体多次运行轨迹组成的集合. Bastani[45]进一步将备用策略划分为不变策略和恢复策略, 其中不变策略使智能体在安全平衡点附近运动, 恢复策略使智能体运行到安全平衡点. Shielding根据智能体与安全平衡点的距离来表 1 安全强化学习方法对比Table 1 Comparison of safe reinforcement learning methods方法类别训练时安全部署时安全与环境实时交互优点缺点应用领域修改学习过程环境知识√√√采样效率高需获取环境的动力学模型、实现复杂自动驾驶[12−13, 23]、工业过程控制[24−25]、电力系统优化[26]、医疗健康[21]人类知识√√√加快学习过程人工监督成本高机器人控制[14, 27]、电力系统优化[28]、医疗健康[29]无先验知识√√√无需获取先验知识、可扩展性强收敛性差、训练不稳定自动驾驶[30]、机器人控制[31]、工业过程控制[32]、电力系统优化[33]、医疗健康[34]修改学习目标拉格朗日法×√√思路简单、易于实现拉格朗日乘子选取困难工业过程控制[15]、电力系统优化[16]信赖域法√√√收敛性好、训练稳定近似误差不可忽略、采样效率低机器人控制[35]离线强化学习策略约束√××收敛性好方差大、采样效率低医疗健康[36]值约束√××值函数估计方差小收敛性差工业过程控制[22]预训练模型√××加快学习过程、泛化性强实现复杂工业过程控制[37]1816自 动 化 学 报49 卷决定选用何种类型的备用策略, 从而进一步增强了智能体的安全性. 但是, 在复杂的学习问题中, 很难定义安全平衡点, 往往也无法直观地观测状态到平衡点的距离. 综上所述, 如果环境中不存在可恢复状态, Shielding即便判断出了危险, 也没有适合的备用策略可供使用. 此外, 在复杂的强化学习任务中, 很难提供充足的先验知识来搭建一个全面的Shielding以规避所有的危险.李雅普诺夫法. 李雅普诺夫稳定性理论对于控制理论学科的发展产生了深刻的影响, 是现代控制理论中一个非常重要的组成部分. 该方法已被广泛应用于控制工程中以设计出达到定性目标的控制器, 例如稳定系统或将系统状态维持在所需的工作范围内. 李雅普诺夫函数可以用来解决约束马尔科夫决策过程问题并保证学习过程中的安全性. Per-kins和Barto[46]率先提出了在强化学习中使用李雅普诺夫函数的思路, 通过定性控制技术设计一些基准控制器并使智能体在这些给定的基准控制器间切换, 用于保证智能体的闭环稳定性. 为了规避风险,要求强化学习方法具有从探索动作中安全恢复的能力, 也就是说, 希望智能体能够恢复到安全状态. 众所周知, 这种状态恢复的能力就是控制理论中的渐近稳定性. Berkenkamp等[47]使用李雅普诺夫函数对探索空间进行限制, 让智能体大概率地探索到稳定的策略, 从而能够确保基于模型的强化学习智能体可以在探索过程中被带回到 “吸引区域”. 所谓吸引区域是指: 状态空间的子集, 从该集合中任一状态出发的状态轨迹始终保持在其中并最终收敛到目标状态. 然而, 该方法只有在满足Lipschitz连续性假设条件下才能逐步探索安全状态区域, 这需要事先对具体系统有足够了解, 一般的神经网络可能并不具备Lipschitz连续. 上述方法是基于值函数的,因此将其应用于连续动作问题上仍然具有挑战性.相比之下, Chow等[48]更专注于策略梯度类方法,从原始CMDP安全约束中生成一组状态相关的李雅普诺夫约束, 提出一种基于李雅普诺夫函数的CMDP安全策略优化方法. 主要思路为: 使用深度确定性策略梯度和近端策略优化算法训练神经网络策略, 同时通过将策略参数或动作映射到由线性化李雅普诺夫约束诱导的可行解集上来确保每次策略更新时的约束满意度. 所提方法可扩展性强, 能够与任何同策略或异策略的方法相结合, 可以处理具有连续动作空间的问题, 并在训练和收敛过程中返回安全策略. 通过使用李雅普诺夫函数和Trans-former模型, Jeddi等[49]提出一种新的不确定性感知的安全强化学习算法. 该算法主要思路为: 利用具有理论安全保证的李雅普诺夫函数将基于轨迹的安全约束转换为一组基于状态的局部线性约束; 将安全强化学习模型与基于Transformer的编码器模型相结合, 通过自注意机制为智能体提供处理长时域范围内信息的记忆; 引入一个规避风险的动作选择方案, 通过估计违反约束的概率来识别风险规避的动作, 从而确保动作的安全性. 总而言之, 李雅普诺夫方法的主要特征是将基于轨迹的约束分解为一系列单步状态相关的约束. 因此, 当状态空间无穷大时, 可行性集就具有无穷维约束的特征, 此时直接将这些李雅普诺夫约束(相对于原始的基于轨迹的约束)强加到策略更新优化中实现成本高, 无法应用于真实场景, 而且, 此类方法仅适用于基于模型的强化学习且李雅普诺夫函数通常难以构造.障碍函数法. 障碍函数法是另一种保证控制系统安全的方法. 其基本思想为: 系统状态总是从内点出发, 并始终保持在可行安全域内搜索. 在原先的目标函数中加入障碍函数惩罚项, 相当于在可行安全域边界构筑起一道 “墙”. 当系统状态达到安全边界时, 所构造的障碍函数值就会趋于无穷, 从而避免状态处于安全边界, 而是被 “挡” 在安全域内.为保证强化学习算法在模型信息不确定的情况下的安全性, Cheng等[50]提出了一种将现有的无模型强化学习算法与控制障碍函数 (Control barrier func-tions, CBF) 相结合的框架RL-CBF. 该框架利用高斯过程来模拟系统动力学及其不确定性, 通过使用预先指定的障碍函数来指导策略探索, 提高了学习效率, 实现了非线性控制系统的端到端安全强化学习. 然而, 使用的离散时间CBF公式具有限制性, 因为它只能通过仿射CBF的二次规划进行实时控制综合. 例如, 在避免碰撞的情况下, 仿射CBF 只能编码多面体障碍物. 为了在学习过程中保持安全性, 系统状态必须始终保持在安全集内, 该框架前提假设已得到一个有效安全集, 但实际上学习安全集并非易事, 学习不好则可能出现不安全状态. Yang 等[51]采用障碍函数对系统进行变换, 将原问题转化为无约束优化问题的同时施加状态约束. 为减轻通信负担, 设计了静态和动态两类间歇性策略. 最后,基于actor-critic架构, 提出一种安全的强化学习算法, 采用经验回放技术, 利用历史数据和当前数据来共同学习约束问题的解, 在保证最优性、稳定性和安全性的同时以在线的方式寻求最优安全控制器. Marvi和Kiumarsi[52]提出了一种安全异策略强化学习方法, 以数据驱动的方式学习最优安全策略.该方法将CBF合并进安全最优控制成本目标中形成一个增广值函数, 通过对该增广值函数进行迭代近似并调节权衡因子, 从而实现安全性与最优性的平衡. 但在实际应用中, 权衡因子的选取需要事先9 期王雪松等: 安全强化学习综述1817人工设定, 选择不恰当则可能找不到最优解. 先前的工作集中在一类有限的障碍函数上, 并利用一个辅助神经网来考虑安全层的影响, 这本身就造成了一种近似. 为此, Emam等[53]将一个可微的鲁棒控制障碍函数 (Robust CBF, RCBF) 层合并进基于模型的强化学习框架中. 其中, RCBF可用于非仿射实时控制综合, 而且可以对动力学上的各种扰动进行编码. 同时, 使用高斯过程来学习扰动, 在安全层利用扰动生成模型轨迹. 实验表明, 所提方法能有效指导训练期间的安全探索, 提高样本效率和稳态性能. 障碍函数法能够确保系统安全, 但并未考虑系统的渐进稳定性, 与李雅普诺夫法类似, 在实际应用中障碍函数和权衡参数都需要精心设计与选择.引入惩罚项. 此类方法在原先目标函数的基础上添加惩罚项, 以此修正不安全状态. 由于传统的乐观探索方法可能会使智能体选择不安全的策略,导致违反安全约束, 为此, Bura等[54]提出一种基于模型的乐观−悲观安全强化学习算法 (Optimistic-pessimistic SRL, OPSRL). 该算法在不确定性乐观目标函数的基础上添加悲观约束成本函数惩罚项,对回报目标持乐观态度以便促进探索, 同时对成本函数持悲观态度以确保安全性. 在Media Control 环境下的仿真结果表明, OPSRL在没有违反安全约束的前提下能获得最优性能. 基于模型的方法有可能在安全违规行为发生之前就得以预测, 基于这一动机, Thomas等[55]提出了基于模型的安全策略优化算法 (Safe model-based policy optimization, SMBPO). 该算法通过预测未来几步的轨迹并修改奖励函数来训练安全策略, 对不安全的轨迹进行严厉惩罚, 从而避免不安全状态. 在MuJoCo机器人控制模拟环境下的仿真结果表明, SMBPO能够有效减少连续控制任务的安全违规次数. 但是, 需要有足够大的惩罚和精确的动力学模型才能避免违反安全. Ma等[56]提出了一种基于模型的安全强化学习方法, 称为保守与自适应惩罚 (Conservative and adaptive penalty, CAP). 该方法使用不确定性估计作为保守惩罚函数来避免到达不安全区域, 确保所有的中间策略都是安全的, 并在训练过程中使用环境的真实成本反馈适应性地调整这个惩罚项, 确保零安全违规. 相比于先前的安全强化学习算法, CAP具有高效的采样效率, 同时产生了较少的违规行为.2.1.2 人类知识为了获得更多的经验样本以充分训练深度网络, 有些深度强化学习方法甚至在学习过程中特意加入带有随机性质的探索性学习以增强智能体的探索能力. 一般来说, 这种自主探索仅适用于本质安全的系统或模拟器. 如果在现实世界的一些任务(例如智能交通、自动驾驶) 中直接应用常规的深度强化学习方法, 让智能体进行不受任何安全约束的“试错式” 探索学习, 所做出的决策就有可能使智能体陷入非常危险的境地, 甚至酿成重大安全事故.相较于通过随机探索得到的经验, 人类专家经验具备更强的安全性. 因此, 借鉴人类经验来引导智能体进行探索是一个可行的增强智能体安全性的措施. 常用的方法有中断机制、结构化语言约束、专家指导.中断机制. 此类方法借鉴了人类经验, 当智能体做出危险动作时能及时进行中断. 在将强化学习方法应用于实际问题时, 最理想的状况是智能体任何时候都不会做出危险动作. 由于限制条件太强,只能采取 “人在环中” 的人工介入方式, 即人工盯着智能体, 当出现危险动作时, 出手中断并改为安全的动作. 但是, 让人来持续不断地监督智能体进行训练是不现实的, 因此有必要将人工监督自动化.基于这个出发点, Saunders等[57]利用模仿学习技术来学习人类的干预行为, 提出一种人工干预安全强化学习 (SRL via human intervention, HIRL) 方法. 主要思路为: 首先, 在人工监督阶段, 收集每一个状态−动作对以及与之对应的 “是否实施人工中断” 的二值标签; 然后, 基于人工监督阶段收集的数据, 采用监督学习方式训练一个 “Blocker” 以模仿人类的中断操作. 需要指出的是, 直到 “Blocker”在剩余的训练数据集上表现良好, 人工监督阶段的操作方可停止. 采用4个Atari游戏来测试HIRL 的性能, 结果发现: HIRL的应用场景非常受限, 仅能处理一些较为简单的智能体安全事故且难以保证智能体完全不会做出危险动作; 当环境较为复杂的时候, 甚至需要一年以上的时间来实施人工监督,时间成本高昂. 为降低时间成本, Prakash等[58]将基于模型的方法与HIRL相结合, 提出一种混合安全强化学习框架, 主要包括三个模块: 基于模型的模块、自举模块、无模型模块. 首先, 基于模型的模块由一个动力学模型组成, 用以驱动模型预测控制器来防止危险动作发生; 然后, 自举模块采用由模型预测控制器生成的高质量示例来初始化无模型强化学习方法的策略; 最后, 无模型模块使用基于自举策略梯度的强化学习智能体在 “Blocker” 的监督下继续学习任务. 但是, 作者仅在小规模的4×4格子世界和Island Navigation仿真环境中验证了方法的有效性, 与HIRL一样, 该方法的应用场景仍1818自 动 化 学 报49 卷。

reactive native 原理

reactive native 原理

Reactive Native(现在通常称为React Native)是一种用于构建原生移动应用的框架,它允许开发者使用JavaScript和React来编写跨平台的移动应用。

React Native的核心原理基于React,但它针对移动设备进行了优化,使得开发者能够使用相同的代码库来为iOS和Android平台开发应用。

React Native的原理主要可以分为以下几个方面:1. 组件化架构React Native使用组件(Component)作为构建应用的基本单位。

组件是具有特定功能的独立模块,可以接受输入(props)并渲染输出(UI)。

这种组件化架构使得代码更加模块化,易于维护和复用。

2. UI渲染React Native通过JavaScript代码来直接操作原生UI组件。

它提供了丰富的UI组件库,如`View`、`Text`、`Image`等,这些都是对应原生平台(iOS和Android)的UI组件的封装。

开发者通过组合这些组件来构建应用的UI界面。

3. 原生集成React Native通过桥接(Bridge)技术实现了JavaScript与原生代码的通信。

React Native提供了一个JavaScript运行时环境,以及一个原生代码的接口(RCT bridge),这样JavaScript代码就可以调用原生API,实现如相机、地图、推送通知等功能。

4. 响应式渲染React Native的核心理念之一是“声明式UI”,即开发者描述应用的状态,而React Native框架会负责计算出最新的UI。

这种机制使得UI的更新更加高效,只有在数据变化时才会重新渲染相关组件。

5. 跨平台能力React Native允许开发者使用相同的代码库来构建iOS和Android应用。

它通过平台特定的适配层(如iOS的UIKit和Android的View系统)来确保React Native代码能够正确地映射到原生平台上。

reactive定义 -回复

reactive定义 -回复

reactive定义-回复Reactive programming is an innovative approach to software development that is gaining increasing popularity in recent years. In this article, we will delve into the concept of reactive programming, its main principles, and its advantages and applications in various industries.So, what exactly is reactive programming? In simple terms, it is a programming paradigm that focuses on the flow of data and events in a system, allowing for responsive and efficient applications. Reactive programming is based on the concept of reactive systems, which are capable of reacting and adapting promptly to changes in their environment.One fundamental principle of reactive programming is responsiveness. Reactive systems are designed to respond to events and changes in the environment in a timely manner. This means that they can quickly react to user input, network conditions, or system failures, ensuring that the application remains functional and responsive.To achieve this responsiveness, reactive programming relies onasynchronous and non-blocking processing. Traditional programming models often involve blocking operations, which means that the program execution is suspended until the completion of a certain task. In reactive programming, on the other hand, tasks are executed non-blocking, allowing the application to continue processing other tasks while waiting for a response.Reactive systems also emphasize a message-driven architecture. The communication between different components or services is based on the exchange of messages, allowing for loose coupling and enhanced scalability. By decoupling components through messages, reactive systems can handle fluctuations in load efficiently, ensuring that the system remains stable and responsive even under high demand.Another core principle of reactive programming is resilience. Reactive systems are designed to be fault-tolerant and resilient to failures. They achieve this through techniques such as error handling, fault recovery, and isolation. When a failure occurs, a reactive system is capable of handling the error gracefully, recovering from the failure, and continuing its operation without compromising the overall system stability.Now that we understand the main principles of reactive programming, it is important to explore its advantages and applications. Reactive programming has several benefits that make it attractive to developers and organizations. Firstly, it allows for the development of highly responsive and interactive applications, which enhances the user experience. Whether it is a web application, a mobile app, or a real-time analytics system, reactive programming enables developers to build applications that are fast and can react to user input in real-time.Furthermore, reactive programming facilitates scalability. With the increase in big data and distributed systems, scalability is becoming essential. Reactive systems, by nature, can handle large amounts of data and high loads while remaining stable and responsive. This scalability is achieved through the use of message-driven communication and asynchronous processing, which allow for efficient distribution and processing of data across different components or services.Reactive programming also promotes modularity and reusability. By following the principles of loose coupling and message-basedcommunication, reactive systems can be easily composed and integrated with other components or services. This modularity not only simplifies the development process but also encourages code reusability and maintainability.In terms of applications, reactive programming has found its place in various industries. It is particularly useful in domains that require real-time data processing and event-driven systems. For example, in finance, reactive programming is used to build high-frequency trading systems that can make split-second decisions based on market events. In the IoT (Internet of Things) domain, reactive programming enables the development of smart and responsive systems that can handle a vast amount of sensor data and react accordingly.In conclusion, reactive programming is a powerful paradigm that offers numerous benefits in terms of responsiveness, scalability, modularity, and resilience. By focusing on data flow andevent-driven architecture, reactive programming enables the development of highly interactive and efficient applications. Its applications span various industries, from finance to IoT, and itcontinues to gain popularity among developers and organizations looking to build responsive and adaptive systems. With its principles and advantages, reactive programming is undoubtedly shaping the future of software development.。

dyna流固耦合方案

dyna流固耦合方案

dyna流固耦合方案
Dyna流固耦合方案是一种数值模拟方法,用于同时考虑流体和固体之间的相互作用。

这种方法可以模拟复杂的流体动力学和结构响应,适用于各种工程领域,如航空航天、船舶、汽车、能源等。

在Dyna流固耦合方案中,流体和固体被视为相互渗透的连续介质,通过求解流体动力学和结构动力学方程来模拟流体的运动和结构的变化。

这些方程通常包括流体动力学方程、结构动力学方程、热传导方程等。

为了实现流固耦合,需要将流体和固体之间的相互作用力传递到各自的边界上,并使用适当的算法将它们耦合在一起。

这通常需要开发特定的程序或软件来实现。

在实现Dyna流固耦合方案时,需要考虑以下关键因素:
1. 流体和固体之间的相互作用力,包括压力、剪切力和温度等。

2. 流体的流动特性和结构的变化,需要考虑流体的非牛顿行为和湍流模型以及结构的弹性和塑性行为等。

3. 流体和固体之间的界面条件,包括界面上的压力、剪切力和温度等。

4. 数值方法的稳定性和精度,需要选择合适的数值方法来求解流固耦合方程,并保证结果的准确性和可靠性。

总之,Dyna流固耦合方案是一种非常有用的数值模拟方法,可以用于模拟
复杂的流体动力学和结构响应,为工程设计提供重要的参考依据。

reactive原理

reactive原理

reactive原理Reactive 原理是一种编程范式,它强调对异步数据流的连续处理。

这种原理在许多现代编程语言和框架中都有应用,例如 Java 的 Project Reactor、Scala 的 Akka Streams 和 JavaScript 的 RxJS。

在 Reactive 原理中,数据被视为一种流,这种流可以产生事件。

这些事件可以是用户的输入、网络请求、定时器触发等。

通过观察这些事件,我们可以对它们进行反应。

这种反应可以是执行某些操作、更新 UI、发送新的请求等。

Reactive 原理的核心是反应式编程,它允许我们编写异步和并行的代码,而不需要担心线程管理和锁的问题。

通过反应式框架,我们可以使用简单的声明式语法来描述数据流和事件流,而框架会自动处理底层的并发和调度问题。

反应式编程的一个重要概念是冷流和热流。

冷流表示数据流在开始时没有数据,随着时间的推移会生成数据;热流表示数据流在开始时就有数据,然后继续生成新的数据。

反应式框架通常会提供冷流和热流的抽象,让我们能够以统一的方式处理这两种类型的数据流。

除了处理数据流和事件流之外,Reactive 原理还强调了响应性。

这意味着当某个事件发生时,系统应该自动做出反应。

例如,当用户在表单中输入文本时,UI 应该自动更新以反映新的值。

总之,Reactive 原理是一种处理异步数据流的编程范式。

通过反应式编程和响应性,我们可以编写高效、可扩展和响应的代码,以处理大量并发事件和数据流。

这种原理在现代 Web 开发、移动应用开发、实时系统和物联网等领域都有广泛的应用。

reactive flash sintering method

reactive flash sintering method

reactive flash sintering method Reactive Flash Sintering Method: Revolutionizing Material ProcessingIntroduction:In recent decades, there has been significant progress in materials science and engineering that has allowed us to develop new and improved materials for various applications. One such innovation is the reactive flash sintering method, which has emerged as a promising technique for fabricating advanced materials with enhanced properties. This article aims to provide a comprehensive understanding of the reactive flash sintering method by discussing its principle, process, advantages, and potential applications.I. Principle of Reactive Flash Sintering:Reactive flash sintering is a novel technique that combines the principles of conventional flash sintering and reactive sintering. In flash sintering, a high electric field is applied to a material powder, causing rapid and uniform heating due to Joule heating. On the other hand, reactive sintering involves the reaction between two or more materials during the sintering process, resulting in the formation of a new phase and improved properties. In the reactiveflash sintering method, these two processes are integrated, allowing for simultaneous densification and in-situ reaction to occur.II. Process of Reactive Flash Sintering:The reactive flash sintering process consists of several steps, which are as follows:1. Material Preparation:The starting materials, typically in powder form, are carefully selected and mixed to achieve the desired composition and properties. The mixture may contain reactive components that will undergo a chemical reaction during sintering.2. Loading:The prepared powder mixture is loaded into a specially designed graphite die, which acts as both the heating element and the electrical contact.3. Application of Pressure and Electric Field:Pressure is applied to ensure proper contact between the powder particles and enhance densification. Simultaneously, a high electricfield is applied to the die, generating a strong electric current through the powder bed.4. Electrothermal Heating:The electric current passing through the graphite die generates Joule heating within the powder bed, rapidly raising its temperature. The resistance of the graphite die provides uniform heating throughout the sample.5. Reaction and Densification:As the temperature of the powder mixture increases, chemical reactions between the reactive components take place. These reactions can result in the formation of new phases, crystal growth, and enhanced properties. Additionally, the high temperature and applied pressure promote particle rearrangement and densification.6. Cooling and Post-processing:Once the desired reaction and densification are achieved, the electric field and pressure are removed, and the sample is cooled. Further post-processing steps, such as shaping, polishing, or heat treatment, can be performed as needed.III. Advantages of Reactive Flash Sintering:The reactive flash sintering method offers several advantages over conventional sintering techniques:1. Rapid Processing:Reactive flash sintering allows for significantly shorter processing times compared to traditional methods. The application of a high electric field results in rapid heating, enabling faster reaction kinetics and densification.2. Enhanced Homogeneity:The uniform heating provided by the electric current passing through the graphite die ensures enhanced homogeneity within the sintered material. This leads to improved mechanical, electrical, and thermal properties.3. Energy Efficiency:The high heating rates achieved through the Joule heating effect reduce the overall energy consumption during the sintering process. This energy efficiency makes reactive flash sintering an environmentally friendly option.4. Unique Material Combinations:The ability to perform in-situ reactions during sintering opens up new possibilities for fabricating materials that were previously difficult or impossible to produce. Complex material combinations, such as metal-ceramic composites or multi-phase alloys, can be realized using this method.IV. Potential Applications:Reactive flash sintering has the potential to revolutionize material processing and find applications in various industries. Some potential applications include:1. Advanced Ceramics:Reactive flash sintering can be used to fabricate high-performance ceramic materials with improved mechanical strength, thermal stability, and electrical conductivity. These materials can find applications in the aerospace, electronics, and energy industries.2. Metal-Ceramic Composites:The ability to reactively sinter metal and ceramic powders enables the production of metal-ceramic composites with tailoredproperties. Such composites can be utilized in the automotive, aerospace, and defense sectors due to their unique combination of characteristics.3. Sustainable Materials:The energy efficiency and reduced processing times offered by reactive flash sintering make it an ideal technique for the fabrication of sustainable, environmentally friendly materials. This includes materials for renewable energy applications, such as solid oxide fuel cells or photovoltaic devices.Conclusion:The reactive flash sintering method presents a promising avenue for the fabrication of advanced materials with enhanced properties. Its unique combination of rapid heating, in-situ reaction, and uniform densification offers numerous advantages over conventional techniques. With its potential applications spanning across various sectors, reactive flash sintering could lead to significant advancements in material science and engineering, driving innovation and improving the performance of materials indiverse industries.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A Reactive Behavior framework for dynamic virtual worldsFr´e d´e ric Boussinot and Jean-Ferdinand SusiniINRIA EMP-CMA/MIMOSA2004route des Lucioles BP9306902F-Sophia Antipolis FRANCE frederic.boussinot,jean-ferdinand.susini@sophia.inria.frFr´e d´e ric Dang Tran and Laurent HazardFrance Telecom R&D DTL/ASR38-40rue du G´e r´e ral Leclerc92794Issy Moulineaux Cedex9FRANCE frederic.dangtran,laurent.hazard@francetelecom.frAbstractThis paper presents a Java-based reactive programming frameworkwell adapted to the construction of complex behaviors for CG ob-jects within virtual environments.This reactive approach is basedon an instantaneously broadcast event model and a semantically-sound synchronous/reactive formalism.The reactive framework de-gree of expressiveness is illustrated through several examples of be-haviors which range from low-level animation of virtual creaturesto high-level control of autonomous creatures’actions. Keywords:virtual world,behavior,reactive systems,animation 1IntroductionBuilding rich and entertaining3D virtual environments accessibleover the Internet involves not only the definition of a“modellinglanguage”defining how objects look(or sound)and how they areorganized spatially but also how they behave either as the resultof events occuring in their environment(say a collision)or spon-taneously(“bots”).In this regard,the VRML2.0standard,with itsbehavior and scripting capabilities,has gone a long way towardsproviding means to describe dynamic3D worlds.The VRML2.0standard,proper,does not enforce a particular scripting system orprogramming language but just describes an execution model andan access protocol for external scripting languages.So far sim-ple scripting languages(e.g.Javascript)or general-purpose object-oriented programming languages(e.g.Java)have been used to de-fine VRML worlds’behaviors.Programming complex behaviors inVRML2.0in this context beyond simple animation control of3Dobjects is not necessarily easy.The present paper proposes the use of a Java-based reactive ap-proach for associating complex behavior to graphical entities within3D virtual worlds.More precisely a reactive programming and ex-ecution model is proposed that fulfills the following requirements: It is semantically sound:there exists a formal semantics of proposed programming primitives yielding deterministic andreproducible execution.The work presented in this paper has been carried out within the scope of the IST Project IST-1999-11488PING(Platform for Interactive Net-worked Games)[10]It has efficient implementations capable of coping with a large amount of concurrent behaviors and events.It is expressive enough in order to allowfine control over be-haviors and the definition of complex synchronization con-straints,for example:–the ability to preempt the execution of a behavior bypresence of an event(“move toward the target until youreceive an order to abort your mission”)–the ability to react to an arbitrary combination of eventoccurrences or non-occurences(“move forward if thedoor is opened and no abort mission signal is received”) it allows the incremental construction of complex behaviors by the combination(and reuse)of more elementary behaviors.it allows highly dynamic systems in which new behaviors and events can be added at run-time without restrictions.it is not tied to a modelling langage or rendering system and can be used for non-graphical simulations(e.g.for multi-user virtual world systems in which the computation of object be-haviors is performed by non-graphical servers).The structure of the paper is as follows:section2gives an overview of the reactive approach and of Junior,a Java based for-malism for reactive programming.The application of this reactive framework for designing behaviors of objects in virtual worlds is considered in section3.Section4describes the use of broadcast events for coding physical laws.Section5explains how the reac-tive framework has been integrated or can coexist with the VRML model.Related work is considered in section6.Future work is covered in the following section.Finally we conclude.2Reactive ApproachThe reactive approach proposes aflexible paradigm for program-ming reactive systems[4],especially those which are dynamic(that is,the number of components and their connections can change dur-ing execution).Reactive programming provides programmers with concurrency,broadcast events,and several primitives for gaining fine control over reactive programs executions.At the basis of re-active programming is the notion of a reaction:reactive programs are reacting to activations issued from the external world.Program reactions are often called instants.The two main notions are re-active instructions whose semantics refer to instants,and reactive machines whose purpose is to execute reactive instructions in an environment made of instantaneously broadcast events.Junior[6]is a Java-based language for programming reactive behaviors.Basically,programming with Junior means:Writing a reactive instruction,which describes an application program.Declaring a reactive machine,to run the program.Adding the program into the machine.Running the machine;this is usually performed using a non terminating loop,which cyclically makes the machine and the program react.Programming in Junior has a dynamic aspect:machine programs can be augmented by new reactive instructions added during ma-chine execution.New instructions added to a machine do not have to wait for the termination of the actual program,but are run con-currently with it.Junior concurrent reactive instructions can communicate using broadcast events that are processed by reactive machines.Broad-casting is a powerful and fully modular means for communication and synchronization of concurrent components.Broadcasting in Ju-nior has a special coherency property:during a machine reaction, the same event cannot be tested both present and absent,even by two distinct concurrent instructions.Junior defines primitive constructs allowing for code(reactive instruction)migration over the network.This aspect will not be considered here.Junior is pure Java.It is provided with an API named Jr[7].Us-ing Jr,programmers can define reactive instructions and reactive machines,and have possibility to run them.Junior is a program-ming language,defining constructs for reactive programming.It can also be seen as a Java programming framework.From this last point of view,Junior provides Java programmers with an alterna-tive to the standard threading mechanism.The benefit is that Junior gives solutions to some well-known problems of Java threads(see [8]for a description of these problems,and[2]for a comparison of Java threads with the related SugarCubes formalism).2.1Reactive InstructionsReactive instructions are state-based statements,run(one also says, activated)by reactive machines.Some cyclic instructions are never ending across instants,while others are reaching afinal state after several activations;in this case,one says that they are completely terminated.Because states are embbeded in them,reactive instruc-tions are not reentrant:they must be copied,in order to get new execution instances.Reactive instructions are composed from a small set of basic constructors.For example,the constructor Seq puts two reactive instructions A and B in sequence:A is executed up to complete termination(remember that it may take several machine reactions), and then B is executed.The associated state of Seq encodes termi-nation of thefirst component:the state changes when thefirst com-ponent completely terminates;then,following executions directly go to the second component,without considering thefirst one.Reactive instructions are Java objects implementing the Pro-gram interface.They are built using static methods of class Jr1. For example,to define the sequence of two reactive instruction A, B,one writes:Program p1=Jr.Seq(A,B);Syntax for constructors is very basic;for example,to put three instructions A,B,and C in sequence is not directly possible with one unique call of the Seq constructor,which must be called twice:Program p2=Jr.Seq(A,Jr.Seq(B,C));1To simplify,one also calls“constructors”the static methods of Jr which call constructors of Junior classes.Among the reactive instructions are the ones,called atoms,used to interface with Java.Basically,an atom executes an action which possibly performs some interaction with the Java environment.The action is executed once and the atom immediately terminates after first reaction.Execution of an atom is atomic:once started,exe-cution of an atom always terminates without any interference with other atoms.2.2Reactive MachinesReactive machines implement interface Machine.A reactive in-struction can be given at construction;when it is the case,it be-comes the initial program of the machine.Reactions of reactive machines(often simply called“machine”,for short)are obtained using the react method of interface Machine.One can now gives a minimalist example of Junior code:public class HelloWorld{public static void main(String[]args){Machine machine=Jr.SyncMachine();machine.add(Jr.Atom(new Print("hello,world!")));for(int i=0;i<3;i++){System.out.print("instant"+i+":");machine.react();System.out.println("");}}}The main method defines a reactive machine(instance of class SyncMachine),and adds in it a program to print a message(using action Print);finally,the reactive machine is activated3times(a trace shows the sequence of machine reactions).One obtains out-put:instant0:hello,world!instant1:instant2:The message is printed atfirst instant,that is during thefirst ma-chine reaction.The two next reactions are empty,as the machine program is completely terminated at the end offirst reaction.The Stop instruction is the basic way to delay execution for the next instant.Executing a Stop terminates execution for cur-rent instant;however,execution is not completely terminated at this stage,and the Stop instruction becomes the new starting point for next instant.The state associated to Stop encodes end of the cur-rent instant:it changes at the end of thefirst instant of execution, indicating that instruction is completely terminated.Replacing in HelloWorld the added program by:Jr.Seq(Jr.Atom(new Print("hello,")),Jr.Seq(Jr.Stop(),Jr.Atom(new Print("world!"))))would produce:instant0:hello,instant1:world!instant2:Now,the Stop instruction splits execution in two distinct instants:“hello,”is printed during thefirst one,while“world!”is printed during the second one.2.3EventsEvent are non persistent data with a binary status present or absent, possibly changing at each instant.An event becomes present dur-ing one instant as soon as it is generated by a program component during this instant.A strong coherency property holds:during one instant,the same event cannot be tested as present by one compo-nent and as absent by another component.In other words:events are broadcast.A way to implement the coherency property of Junior machines is as follows:A new unknown event status is introduced;the machine as-signs it to all events at the beginning of each instant.The status of an event is changed to present as soon as it is generated.When the machine detects that no new event can be gener-ated,it changes to absent the status of all unknown events and decides the end of current instant.Note that end of instant and absence of events are decided together, in the same step;this has important consequence,which are not discussed here(see[7]for details).Values can be associated to events,during generations.Values generated during the same instant for one event are collected during the instant and stored in a table associated to the event.All collected values are available at next instant.The Jr API gives several ways to deal with events.In the simplest one,events are identified by strings.For example,to generate an event named e,one writes:Jr.Generate("e")and to wait for it:Jr.Await("e").In this last instruction,control is stopped while event e is not generated,and the instruction is completely terminated when e becomes present.The Await instruction has an associated state which codes for termination,that is,for the awaited event generation.2.4ConcurrencyJunior owns a concurrency constructor,named Par(for paral-lelism)which puts two reactive instructions A and B in parallel: A and B are executed at each instant,and the parallel construct is completely terminated when both A and B are.The state of Par is the union of the state of A and of the state of B.The order in which, at each instant,A and B are executed is left unspecified.Reactive instructions added to a machine are put in parallel with the machine program.However,to simplify programming and rea-soning about reactive programs,an instruction added to a machine during the course of a reaction is not immediately run by the ma-chine;actual adding of the instruction to the machine program is delayed to the beginning of the next instant.Actually,this is quite a general attitude in Junior:to avoid interferences,program changes issued by the external world are systematically delayed to next in-stant.2.5Implicit Java ObjectInterfacing reactive instructions with Java is made easier using im-plicit Java objects set by link instructions.The implicit Java object set by a link instruction can be directly accessed and transformed by atoms executed by the link body.The Jr.Link(object,body)reactive instruction defines object as being the implicit Java object associated to the reac-tive instruction body.Actions executed by atoms(see2.1)must implement the ex-ecute method with signature void execute(Environment env)and the implicit Java object(if defined)is returned by method linkedObject of env.2.6Preemption and ControlJunior defines two operators to getfine control over reactive in-structions;one is the Until preemption operator which forces a reactive instruction to terminate when an event is present;the other one,called Control,allows a reactive instruction to execute ac-cording to presence of an event.Instruction Until has the form:Jr.Until("event",body,handler)where body and handler are two reactive instructions.Ex-ecution of body is abandoned(one says,it is preempted)as soon as event becomes present;in this case,control directly goes to handler which is then executed.The Control instruction gives a way to execute a reactive in-struction only at instants where a given event is present.At others instants,the reactive instruction just stays in the same state,with-out executing anything.Actually,the Control instruction can be seen as“filtering”instants for its body:the body can proceed only when Control let instants reach it.3Reactive Behaviors for VWsObjects in VWs combine a graphical aspects(usually3D)and a be-havior.Behaviors are often composite,combining standard behav-iors(for example,ability to process collisions)with specific ones (for example,a pursuit behavior).In this section,one considers the two basic inertia and collision behaviors,and the way to combine behaviors to get more complex ones.3.1Defining Reactive BehaviorsThere are three levels when defining reactive behaviors for VW ob-jects:Pure data processing;it is implemented by object methods accessing object data.Interface between data processing and reactive behavior;it is implemented by atoms calling object methods.Reactive behavior;it is a reactive instruction executing previ-ous atoms.A Link instruction(see2.5)is used to link the reactive behavior to a particular VW object.Then,the linked reactive behavior can be added to a reactive machine to be run by it.Existence of one or more reactive machine in the system depends on the VW considered (typically there is one reactive machine per process).All reactive behaviors added in a machine share the same instants and are run at each instant;this has important consequences: When modeling physics,it is natural to identify instants with the basic time step appearing in equations.One gets a“fair”execution strategy,in which all object have globally same possibility to execute.Note that this property is not directly given by threading mechanisms,even preemptive ones.3.2InertiaAn object with an inertia behavior tends to maintain its speed.More precisely,inertial objects have data for position at current instant(x and y),and for speed(speedx and speedy).Method inerti-aAction translates the object according to its speed;it is the basic data processing method of inertial objects:public void inertiaAction(){x+=speedx;y+=speedy;}An action is defined for interfacing data processing with reactive behavior:public class InertiaAction implements Action{public void execute(Environment env){((InertialIcobj)env.linkedObject()).inertiaAction();}}Inertial behavior consists in executing action InertiaAction at each instant;thus,to give it to an object O,one just has to add the following reactive instruction to the reactive machine:Jr.Link(O,Jr.Loop(Jr.Seq(Jr.Atom(new InertiaAction()),Jr.Stop())))Then,method inertiaAction of object O is called at each in-stant,which gives O an inertial behavior.3.3CollisionTo process collisions is more complicated than to simply get an inertial behavior,because an object must know what are the oth-ers objects it collides.A solution is to have a global workspace in which objects are registered.The list of registered objects is re-turned by method elements of workspace.Here is method for determining which objects are involved in collisions:public void collideAction(){Enumeration list=workspace.elements();while(list.hasMoreElements()){Icobj other=(Icobj)list.nextElement();if(other==this)continue;if(collisionCondition(other)){collide((InertialIcobj)other);}}}Methods collisionCondition which detects actual colli-sions,and method collide which performs collision are not given here.3.4Combinations of BehaviorsParallelism is the basic operator for combining behaviors.For ex-ample,to get both inertial and collision behaviors,one simply put in parallel the two previous behaviors2:Jr.Par(Jr.Loop(Jr.Seq(Jr.Atom(new InertiaAction()),Jr.Stop()))),Jr.Loop(Jr.Seq(Jr.Atom(new collideAction()),Jr.Stop()))))2Class of collision objects extends class InertialIcobj of inertial objects.More complex behaviors can be obtained using reactive primi-tives presented in section2.For example,consider the following behavior:Jr.Par(inertia(),Jr.Seq(Jr.Until("revenge",runAway(),Jr.Repeat(50,Jr.Stop())),pursuitAndDestroy()))It corresponds to an object with an inertial behavior(returned by method inertia),which runs away until event revenge be-comes present.When it is the case,object ends to run away,and,af-ter50instants,it starts a new pursuit behavior(returned by method pursuitAndDestroy).3.5Robots DemoThis2D demo program makes use of the behaviors described pre-viously to construct a virtual arena in which autonomous robots are pitted against one another.Four robots are placed in a rectangle arena.These4robots have in common an inertia+collision behav-ior;moreover:Robot Zaku can launch bombs that explodes after50instants.Robot Gouf can launch webs that,after50instants,can cap-ture other robots.Two similar robots Gundam have the run away/pursuit behav-ior described in section3.4.Moreover,just before being killed by a bomb,they generate event revenge.Strategy for Zaku consisting to kill one Gundam robot,then the other,is very dangerous;indeed,there is risk for Zaku to be de-stroyed by the remaining Gundam,as it has received event re-venge.A safe strategy for killing both Gundam robots isfirst to capture one of them using Gouf,then to kill the other using Zaku, andfinally to kill the captured robot.The followingfigure shows a situation where one Gundam robot has been captured by Gouf:generation consists in executing an atom,giving it the associated value as argument.Note that,in this way,the atom is executed during an instant as many time as E is generated during this very instant.4.1GravityGravity can be seen as an interaction initiated by a Ground object which applies the same attraction vector to all objects present in the VW.One can thus imagine that,at each instant,Ground generates a gravity event representing the interaction,with an associated value which is the attraction vector.To be attracted,an object runs a behavior with a parallel component which is a loop that listen to gravity and calls an atom to fall on the ground.Use of a broadcast event ensures that gravity can be seen by each object in the system,with same attraction vector,and at same instants.For example,one object will never receive gravity sev-eral time while an other one will not receive it.Therefore,it be-comes unnecessary to introduce any particular time stamping tech-niques or synchronization protocol to ensure that every objects in the system have the same coherent vision of the world.In this approach,each object in the system is responsible of its own state,and modifies it according to its own behavior or in re-sponse to other objects requests sent through broadcast events.For example,one can introduce in the system“phantom”objects which do not obey to gravity law;introduction of these new objects does not imply any change to Ground or to something else in the sys-tem.4.2AttractionNow,in a little bit more complex scenario,a planet Earth is gen-erating an event called attraction(different from gravity of the previous example);attraction is generated at each instant by Earth behavior,and position and mass of the planet are the values associated to it.Let us consider a meteor object with an inertial behavior(de-scribed in section3.2)and suppose that it also responds to at-traction by applying the model of planet attraction(it calculates the attraction vector according to its own position and mass,and to position and mass of the attracting object;then it updates its speed accordingly).The result of the parallel combination of the inertial behavior and of the response to attraction automaticallyfits the physical principle of superposition of physics:the meteor ob-ject is attracted by the earth object,and,with appropriate values,it can be put in orbit around it.This example shows the benefit of using instantaneous broadcast events:The behavior of a simple inertial object can be simply en-hanced to respond to planet attraction law just by putting the corresponding behavior in parallel with the inertial one.A planet doesn’t have to worry about which objects are reallyattracted.So,it can attract meteors,but also other planets, spatial ships,etc.A meteor doesn’t have to take care about the object whichis attracting it;it can be a planet,a star,another meteor,or anything else which generates the attraction event.If an other planet is introduced in the system,the event model automatically ensures that objects listening attraction will see two occurrences of it,at each instant;thus,they will behave accordingly to presence of the two planets,without anything to be changed in them.4.3Jurassic Park DemoThis3D demo illustrates the use broadcast events to coordinate in-teractions between4dinosaurs moving in a scene with100trees. Dinosaurs are under control of the user.Here is a snapshot of the demo:The Reactive Execution Engine is responsible for the execution of the reactive program which is the aggregation of all reactive pro-grams attached to virtual world entities(shown as grey circles).It embeds an instance of a reactive machine as described in section 2.2.This engine is implemented as a Java3D behavior with an appropriate wake-up criterion(typically one activiation per frame or one activation per period of time).The wake-up of the engine entails a machine reaction.The two execution models,the reactive one proposed here and the VRML one,can be considered as complementary.The VRML event model[12]relies on an explicit routing of event between event producers and consumers.One-to-one,one-to-many(fan-out)and many-to-one(fan-in)communication patterns are possible.One logical instant in the VRML execution model corresponds to one cascade of events along these routes.The re-active approach proposed here instead relies on a broadcast event model.This communication model can be compared to radio com-munication.In broadcast communication emiters and listeners do not have to know about each other.The only requirement is that they communicate on the same frequency,using the same protocol.The execution model of VRML is under-specified when it comes to script execution.In particular it allows asynchronous scripts which can create their own activities(threads typically).On the contrary,the proposed architecture allows a tight coupling between the(reactive)execution engine and the behavior programs that it supports.Concurrency and premption are described using high-level primitives providing by the reactive framework.In our platform,the VRML machinery is not connected to the Java3D scheduler but is triggered by individual reactive objects within a reactive program.For example,VRML TimeSensor nodes used to animate elements of the scene graph are activated through calls to the simTick(time)method.Within the same reactive instant, all TimeSensors are activated with the same time value which al-lowsfine grained synchronization between different objects.6Related WorkThe reactive approach described in this paper has been used in sev-eral contexts beyond behavior control of3D objects.One of them is called icobj programming;it proposes a new fully graphical pro-gramming technique,which has been used for designing several reactive applets available on the Web[11].Junior is closely related to SugarCubes[1]and is a descendant of it.Actually,Junior is the kernel of SugarCubes,with a formal semantics expressed using rewriting rules[6].SugarCubes is com-pared to Java threads in[2];comparison remains valid,replacing SugarCubes by Junior.Actually,Junior and SugarCubes belongs to the family of syn-chronous/reactive formalisms.The common point of these for-malisms is the presence of instants and of a synchronous parallel operator(synchronous because all parallel components are run at each instant).Well-known synchronous languages include Esterel, Lustre,and Signal(see[3]for a survey of these languages),and Statecharts[5].These languages put the focus on verification and validation of embedded systems;for that purpose,they forbid all forms of dynamicity.The aim of reactive formalisms is basically to add dynamicity to the synchronous approach.Note that dynamicity is mandatory in the context of VWs,where new objects can appear at any time.7Future workAs part of the European IST PING project[10],we are in the process of integrating the reactive programming framework presented in this paper within an infrastructure for large-scale multi-user VWs.PING will follow and enhance an approach based on a dis-tributed reactive programming model.This is a hybrid syn-chronous/asynchronous model in which synchronous groups of ob-jects(i.e.,sets of reactive objects sharing the same logical instant as envisaged so far in this paper)communicate with one another asyn-chronously.This model is well suited for large-scale distributed environments,where a tight synchronisation between the active ob-jects in the system seems hopeless.This model is also well adapted for the programming of object behaviours in a shared virtual world: synchronous groups of active objects can be set dynamically ac-cording to the grouping and interaction models of the virtual envi-ronment(e.g.,objects whose perception and influence capabilities are quantified by”auras”).A distributed reactive object is made up of several replicas,each being hosted by a simulation process.One of these replicas is dis-tinguished as a“master replica”.In this context,the problem is to maximize coherency of local simulations while minimizing syn-chronizations between masters and their replicas(because network is involved).The reactive behavior of the logical object can be split in arbitrary fashions between the master and its replicas.One possible solution to this problem is called dead-reckoning[13];it consists in predicting objects moves using ex-trapolation.We plan to investigate how dead-reckoning strategies can be implemented at object behavior level,and not,at lower level,by platform.This should lead toflexible systems capa-ble for example of a certain kind of reflexivity for solving the co-herency/synchronization problem.Our approach has some similar-ities with the work carried out within the DIS-Java-VRML working group[14]though we are not tied to the DIS protocol.For example,consider master objects with an inertial+collision behavior,and replicas with only an inertial behavior.This falls into the family of dead-reckoning strategies because replicas can be seen as extrapolating master movements,which is completely safe in absence of collision.A solution to deal with collision would be to force synchronization of replicas each time a master detects a collision.Despite the fact that replicas would not actually pro-cess collisions,they would be forced by masters to behave as if they where doing so.This is an example where replicas can have “lighter”behaviors while preserving coherency.。

相关文档
最新文档