基于定向天线移动自组网的TDMA QoS组播路由(IJWMT-V1-N3-8)
D-MIMO技术及应用策略研究

D-MIMO技术及应用策略研究姚键;陈勇辉;李国顺【摘要】分布式MIMO(D-MIMO)是一种解决未来超密集组网高干扰问题的技术方案,通过将干扰源转变为有用信号源,降低重叠覆盖区域干扰,提高用户体验,有利构建无边界用户体验的网络.本文对D-MIMO进行了基本原理及关键技术分析,对该技术的性能增益进行了仿真与外场测试研究.同时,结合技术优势与劣势、投资、现网需求分析,提出了该技术的规划应用思路与建议.【期刊名称】《电信工程技术与标准化》【年(卷),期】2018(031)006【总页数】4页(P47-50)【关键词】长期演进;多输入多输出;4.5G技术;分布式MIMO【作者】姚键;陈勇辉;李国顺【作者单位】中国移动通信集团设计院有限公司广东分公司,广州 510630;中国移动通信集团设计院有限公司广东分公司,广州 510630;中国移动通信集团设计院有限公司广东分公司,广州 510630【正文语种】中文【中图分类】TN929.51 D-MIMO基本原理D-MIMO是分布式MIMO(Distributed MIMO)的简称。
传统MIMO应用一般要求发射天线不应相距过远[1],比如在进行室内分布系统双流建设时天线距离一般不可超过1.5倍波长,主要原因是天线间距过大将造成UE接收到的多天线口功率不对称,损失MIMO系统容量。
D-MIMO与传统MIMO不同之处,在于其将发射端在分布在较大的空间范围中。
对于超密集组网的场景,多个发射端在空间离散分布,但存在较大重叠覆盖区,从而带来较高的干扰。
针对这种场景,D-MIMO将原本互相干扰的多个发射点(宏站或微站)成簇,通过采用正交的发送向量对用户数据进行加权,正交的用户数据联合并行发送,互不干扰,邻小区的干扰信号成为有用信号 [2,3]。
为了实现空间分布的发射点成簇,D-MIMO需要处理以下两个问题。
(1)对于不同服务小区的UE,如何完成配对判定,预编码,权值预正交等过程,从而实现多流传输,增大容量。
铁路通用摄像机技术要求

铁路通用摄像机技术要求1 范围本标准规定了铁路一体化球形摄像机、一体化半球摄像机、固定枪型摄像机、激光云台摄像机的基本要求、特殊要求、运行环境要求及网络安全要求。
本标准适用于铁路视频监控系统摄像机的设备选型及检验。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 4208 外壳防护等级(IP码)GB/T 24338.5-2009 轨道交通电磁兼容第4部分:信号和通信设备的发射与抗扰GB/T 28181-2016 安全防范视频监控联网系统信息传输、交换、控制技术要求GA/T 1127-2013 安全防范视频监控摄像机通用技术要求IEEE 802.3af 信息技术IEEE标准:系统间的通信和信息交换-局域网和城域网-特殊要求-第3部分: CSMA/CD的接入方法及物理层规范修正3:经由媒体独立接口(MDI)的数据终端设备(DTE)功率以太网供电标准IEEE 802.3at 信息技术IEEE标准:系统间的通信和信息交换-局域网和城域网-特殊要求-第3部分:CSMA/CD的接入方法及物理层规范修正3:经由媒体独立接口(MDI)的数据终端设备(DTE)功率以太网供电标准增强型ITU-T G.711 音频信号的脉冲编码调制(PCM)ITU-T G.723.1 低速音频编码协议ITU-T G.729 采用共轭结构代数码激励线性预测的8kbit/s语音编码ITU-T REC.H.264 H系列:音视频和多媒体系统,音视频服务基础活动视频编码:通用音视频服务的先进视频编码ITU-T REC.H.265 H系列:高效率的视频编码(HEVC)3 术语、定义和缩略语3.1 术语和定义下列术语和定义适用于本文件。
3.1.1最低可用照度 minimum illuminance available保持环境色温不变的情况下,降低环境光亮度,摄像机的分辨率降低至标称分辨力70%时,被摄景物的照度值3.1.2水平分辨力 horizontal resolution在图像高度相等的水平尺寸内可分辨的垂直黑白条数(TV线)。
系统集成需求分析

铁道大学网络工程设计与系统集成信1103-2班组长:常永生组员:段向阳兴有永亮郭颂郭茂亮齐备第二实验楼网络需求分析说明书目录1:需求分析概述错误!未定义书签。
1.1系统所在地的地理布局错误!未定义书签。
1.2网络区域环境分析错误!未定义书签。
1.3网络系统功能概述错误!未定义书签。
2:网络系统整体构造图错误!未定义书签。
3综合布线设计错误!未定义书签。
3.1建筑群子系统错误!未定义书签。
3.2垂直子系统错误!未定义书签。
3.3水平子系统:错误!未定义书签。
3.4设备间子系统错误!未定义书签。
4 网络系统分层构建错误!未定义书签。
4.1 :各分层构建错误!未定义书签。
4.2:设备选型错误!未定义书签。
1、中心三层交换机错误!未定义书签。
2、每楼层二层交换机错误!未定义书签。
5:综合布线系统保护错误!未定义书签。
1,过压与过流的保护错误!未定义书签。
2,干扰和辐射的保护错误!未定义书签。
3,综合布线系统接地错误!未定义书签。
4 ,防火墙需求错误!未定义书签。
6 系统测试与检测错误!未定义书签。
6.1 双绞线测试容错误!未定义书签。
6.2 光缆系统的测试错误!未定义书签。
6.3系统的平安性测试错误!未定义书签。
7 工程本钱预算错误!未定义书签。
第二局部:错误!未定义书签。
效劳器配置与网络链路通信错误!未定义书签。
A:效劳器配置错误!未定义书签。
B:网络链路的配置错误!未定义书签。
第一局部:工程需求详解1:需求分析概述1.1系统所在地的地理布局第二实验楼为信息学院综合办公场所,有会议室,自习室,教师办公室,研究生培养室,实验室,值班室,设备间等房间,集会议,学习,教学于一体,入驻人员多,网络需求各异。
1.2网络区域环境分析根据办公用途和网络需求的不同,可以将第二实验楼网络区域划分为一下几个区域:教师办公区域,实验室区域,教室区域,会议室区域。
1.3网络系统功能概述第二实验楼各区域网络需求各异,网络集成设计的目的是对计算机系统进展统一设计布线,实现部系统环境的集中管理;营造稳定,高效,平安的学习和办公环境,为师生提供开放灵活的信息通道;创立部交互和外部访问功能,实现各网络域间访问和对internet的访问;终端桌面应具有一定的带宽,能流畅下载各类资源;网络系统应具有防火墙等设置,能在一定程度上抵御外部的恶意攻击;系统在一定时期后,应能根据新的设备需求或用户需求对网络进展升级换代。
基于终端自主侦听的NR_Sidelink_非授权接入机制

doi:10.3969/j.issn.1003-3114.2023.02.012引用格式:朱振杰,崔琪楣,张雪菲,等.基于终端自主侦听的NR Sidelink 非授权接入机制[J].无线电通信技术,2023,49(2):292-299.[ZHU Zhenjie,CUI Qimei,ZHANG Xuefei,et al.Terminal Autonomous Sensing Based Access Mechanism for NR Sidelink onUnlicensed Spectrum [J].Radio Communications Technology,2023,49(2):292-299.]基于终端自主侦听的NR Sidelink 非授权接入机制朱振杰,崔琪楣∗,张雪菲,陶小峰(北京邮电大学信息与通信工程学院,北京100876)摘㊀要:5G 新空口(New Radio,NR)定义了侧行链路(Sidelink,SL)模式2资源分配机制,使用户能自主选择预留资源进行数据传输,以满足基站覆盖范围外终端间直接通信的需求;随着移动通信技术的快速发展,智能终端间直接通信对于速率的要求越来越高,有限的授权频谱成为限制速率的瓶颈,使用非授权频段可以缓解授权频谱资源短缺的问题,进一步提升网络的传输速率;非授权频谱中的NR (NR in the Unlicensed Spectrum,NR-U)采用先听后说(Listen Before Talk,LBT)接入非授权信道,LBT 不确定性会引起NR SL 用户接入预留资源失败,带来额外的传输时延㊂针对上述问题,提出一种基于终端自主侦听的非授权接入方法,通过配置候选预留子信道资源,提升了模式2资源分配机制下NR SL 用户采用LBT 机制接入非授权信道的成功率㊂仿真结果表明,所提机制能有效提升NR SL 系统在非授权频段的性能㊂关键词:新空口侧行链路;非授权频谱;资源分配机制;先听后说中图分类号:TN929.5㊀㊀㊀文献标志码:A㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:1003-3114(2023)02-0292-08Terminal Autonomous Sensing Based Access Mechanism forNR Sidelink on Unlicensed SpectrumZHU Zhenjie,CUI Qimei ∗,ZHANG Xuefei,TAO Xiaofeng(School of Information and Telecommunication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)Abstract :5G NR defines Sidelink (SL)mode 2resource allocation mechanism,enabling users to autonomously select reserved resources for data transmission to meet the needs of direct communication between terminals outside the coverage of the base station.With the rapid development of mobile communication technology,direct communication between intelligent terminals requires higher and higher data rate,and the limited licensed spectrum becomes the bottleneck of data ing unlicensed spectrum can alleviate the shortage of licensed spectrum resources and further improve the transmission rate of the network.NR-U uses Listen Before Talk (LBT)to access unlicensed spectrum.The uncertainty of LBT will cause NR SL failing to access reserved resources,resulting in additional transmission delay.To solve above problems,an access method based on terminal autonomous sensing is proposed in this paper.By con-figuring candidate reserved sub-channel resources,the channel access rate for NR SL users on unlicensed spectrum under the Mode 2resource allocation mechanism is improved.Simulation results show that the proposed mechanism can effectively improve the perform-ance of NR SL system in the unlicensed frequency band.Keywords :NR SL;unlicensed spectrum;resource allocation mechanism;listen before talk (LBT)收稿日期:2022-12-12基金项目:国家重点研发计划(2020YFB1806804)Foundation Item :National Key Research and Development Program ofChina(2020YFB1806804)0 引言第三代合作伙伴项目(The Third Generation Partnership Project,3GPP)在Rel-12开始了终端设备到终端设备(Device-to-Device,D2D)通信技术的标准化工作,主要用于公共安全(Public Safety)的场景[1]㊂D2D 技术是基于侧行链路(Sidelink,SL)进行数据传输,实现终端到终端直接通信㊂与传统的蜂窝通信系统相比,终端在SL 上通信的数据不需要通过基站与核心网的转发,因此具有更高的频谱效率㊁更低的传输时延㊂Rel-14工作组将D2D 技术应用到基于长期演进(Long Term Evolution,LTE)技术的车联网(Vehicle to Everything,V2X),即LTE V2X,实现辅助驾驶功能㊂随着人们对自动驾驶需求的提高,LTE V2X不能满足自动驾驶的高通信性能的需求,Rel-16正式开展了基于新空口(New Ra-dio,NR)技术的车联网,即NR V2X项目的标准化工作[2]㊂NR V2X增加了许多LTE V2X不支持的特性,如物理侧行反馈信道(Phythical Sdielink Feed-back Channel,PSFCH)㊁单播和组播通信等,通信时延达到3~5ms,数据传输的可靠性达到99.999%,以满足自动驾驶的需求[3]㊂NR SL最初是为了支持NR V2X开发,主要应用于公共安全场景,标准规定了两种NR SL资源分配模式:一种是由网络侧集中为终端分配传输资源,称为模式1,仅适用于用户设备(User Equipment, UE)位于基站覆盖范围内的场景;另一种是UE自主选取传输资源,称为模式2,适用于基站覆盖范围内/外的场景[4]㊂现有NR SL受限于资源有限的授权频段,传输速率难以进一步提升㊂但随着移动通信技术的快速发展,智能终端间直接通信对传输速率的要求越来越高㊂为了进一步提升NR SL传输速率,用以满足商业化用例的需求,Rel-18相关工作组开始研究将NR SL部署在非授权频谱的多制式接入问题[5]㊂为了解决多制式无线接入技术(Radio Access Technology,RAT)之间公平友好共存问题,现有文献主要基于先听后说(Listen Before Talk,LBT)和占空比(Duty Cycle Mechanism,DCM)两种共存机制进行研究[6-9]㊂文献[10]分析了D2D和WiFi系统在LBT和DCM两种共存机制下的网络性能;文献[11]提出了一种基于体验质量(Quality of Experi-ence,QoE)感知的功率分配算法和基于速率的公平占空比算法(Fair Duty Cycle Algorithm,F-DCA),从而优化非授权频谱D2D通信(D2D Communication in Unlicensed Spectrum,D2D-U)和WiFi共存系统的整体吞吐量;文献[12]提出了一种非授权频段上的侧行链路通信(Sidelink Communication on the Unli-censed Bands,SCUBA)协议,提供灵活的SL传输和电池寿命权衡机制,以支持物联网(Internet of Things,IoT)网络中不同类型设备在非授权频谱上的接入;文献[13]提出了一种基于用户-子信道互换的迭代算法的D2D-U机制,以支持5G D2D用户在非授权频段上的通信㊂以上研究大多面向用户位于基站覆盖范围内的场景,即网络为用户统一分配侧行链路资源,用户需要在基站的控制和协助下接入非授权信道㊂对于某些情况下,如用户位于地下停车场㊁隧道等建筑物内部或处于基站覆盖范围外时,用户无法与基站建立有效通信,网络无法为用户统一分配侧行链路资源,上述机制难以解决LBT不确定性对NR SL接入信道的影响,无法实现与其他RATs在非授权信道中的公平竞争㊂针对上述问题,文中提出了一种基于终端自主侦听的NR SL非授权接入方法㊂主要思想是基于模式2资源选择和LBT共存机制,引入 候选预留子信道资源 为用户在非授权频段上提供更多潜在接入时机,能有效减小LBT不确定性对NR SL用户的影响,提升NR SL在非授权频段上的接入成功率㊂同时提出一种候选预留子信道的动态更新算法,通过动态更新候选预留与子信道的数目和配置方式,提高NR SL系统在非授权频段的频谱利用率㊂1 问题分析对处于基站覆盖范围外终端通过NR SL进行通信的场景,3GPP定义了NR SL模式2资源分配机制,其过程如图1所示㊂终端首先从网络或预配置信息中确定资源池(Resource Pool,RP)信息,RP 是在频域上连续的一个资源块,由多个时隙组成,包含多个子信道㊂在模式2资源分配机制下,用户不需要基站统一调度分配信道资源,而是基于侦听自主地在RP选择要接入的子信道[5]㊂假设用户#0的数据包在时隙n到达,触发资源选择㊂如果终端在侦听窗口[n-T0,n-T proc,0]内侦听到物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),则测量该PSCCH的参考信号接收功率(Reference Signal Received Power,RSRP)或该PSCCH调度的物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的RSRP,如果对应的RSRP大于预设的SL-RSRP阈值,并且根据该PSCCH上传输的侧行控制信息(Sidelink Control Information,SCI)中的资源预留信息确定其预留的资源位于资源选择窗口内,则将对应的资源从候选资源集中排除㊂直至n-T proc,0时刻,UE确定最终的候选资源集,并且从中随机选择自己的子信道用于接下来的传输[14]㊂图1㊀NR sidelink 模式2资源分配机制Fig.1㊀NR sidelink mode 2resource allocation mechanism㊀㊀在非授权频段上,WiFi 系统接入非授权信道采用基于感知和竞争的协议,即带有冲突避免的载波感知和多路访问(Carrier Sense Multiple Access withCollision Avoid,CSMA /CA)[15]㊂在数据传输之前,WiFi 用户首先侦听特定的信道,如果侦听结果显示信道空闲,则WiFi 用户将开启随机回退过程以避免冲突,回退结束后才能接入信道传输数据;如果侦听结果显示信道繁忙,WiFi 用户将保持侦听,直到判断该信道空闲㊂为了与RATs 公平竞争非授权信道,实现在非授权频谱上友好共存,授权辅助接入(Licensed Assisted Access,LAA)和非授权频谱中的NR(NR inthe Unlicensed Spectrum,NR-U)采用了LBT 的信道接入方案,其基本原理和CSMA /CA 类似,在使用信道之前,首先经过空闲信道评估(Clear ChannelAssessment,CCA)检测信道是否空闲,CCA 成功后使用退避机制避免碰撞[16]㊂㊀㊀由于模式2的资源选择具有 预留 特性,即从终端确定预留的子信道资源,到真正开始传输之前,至少有(T proc,0+T 1)的时延㊂因此在时隙n -T proc,0~n +T 1,由于NR SL 用户的数据传输尚未开始,如果WiFi 用户有数据要进行传输,WiFi 用户可能通过CSMA /CA 机制竞争信道成功,从而提前接入NR SL用户预留的信道资源,导致NR SL 用户LBT 失败而无法接入信道传输,只能等到下一个RP 周期重新尝试传输,如图2所示㊂当网络中WiFi 用户数量较多时,这一问题将更加严重,WiFi 系统的传输将严重干扰NR SL 在非授权频段上的传输㊂因此针对NR SL 用户无法与基站建立有效通信,如用户位于地下停车场㊁隧道等建筑物内部或处于基站覆盖范围外时,如何在非授权频段上与WiFi 网络公平㊁和谐地共存问题,必须考虑如何兼容NR SL 模式2资源选择机制和LBT 机制㊂图2㊀NR sidelink 模式2非授权接入存在的问题Fig.2㊀Problems of NR sidelink channel access on unlicensed spectrum under mode 2resource allocation mechanism2㊀系统模型建模2.1㊀系统模型如图3所示,考虑NR SL 和WiFi 通信在非授权频谱共存的场景,并且它们共享相同的一组信道㊂假设网络中存在M 个WiFi 接入点(Access Point,AP),用 ={1,2, ,M }表示,存在N 条NR SL 链路,每个传输对用(S t n ,S r n )(n ɪᶃ={1, ,N })表示,其中S t m 和S r m 分别代表第m 个传输对的发送端和接收端㊂对于WiFi 系统,假设在接入点AP m (m ɪ )覆盖范围内,存在F m 个WiFi 用户,每个WiFi 用户表示为WU m f (f=1,2, ,F m )㊂除此以外,假设共有L 个非授权信道支持不同的AP,例如,根据IEEE 802.11n,5GHz 频带中共有23个非授权信道㊂由于在NR 系统中,非授权信道的带宽比授权子信道大得多,每个NR SL 用户只需要非授权信道的一部分㊂因此,为了更有效地利用非授权信道,将每个非授权信道划分成K u 个带宽为B u 的非授权子信道,标记为 u={K +1,K +2, ,K +K },S t m和S r m每次传输占用一个或多个子信道,WU m f 每次传输占用一个信道[17]㊂因此NR SL 传输允许多个S t m 和S r m在一个非授权信道上并发传输,而WiFi 传输一次只允许一个用户使用该信道㊂图3㊀系统模型Fig.3㊀System model假设共存网络中所有用户使用固定的功率进行传输,NR SL 用户在任意非授权子信道的传输功率固定为P S,AP 和WiFi 用户在整个非授权信道的传输功率固定为P W ㊂采用带有瑞利衰落的自由空间传播路径损耗模型对网络中任意两个用户之间的信道增益进行建模,即对于用户i ~j 的链路,接收功率可以表示为:p r i ,j =p t i ㊃|h i ,j |2ξi ,j =p t i ㊃G ㊃d -αi ,j ㊃|h 0|2ξi ,j ,(1)式中,p t i 为用户i 的发射功率,G 为放大器和天线引入的恒定功率增益因子,d i ,j 为用户i ~j 的距离,α为路径损耗衰减因子,h 0~CN (0,1)为复高斯变量,表示瑞利衰落,ξi ,j 服从对数正态分布,表示阴影衰落㊂假设每个用户处的热噪声服从独立高斯分布,且均值为0,方差σ2相同㊂2.2㊀系统吞吐量建模当NR SL 通信采用LBT 机制竞争非授权信道时,由于LBT 机制基本原理与WiFi 系统采用的CSMA /CA 机制类似,在上述NR SL 与WiFi 共存的混合网络中,网络的系统饱和吞吐量与WiFi 用户以及NR SL 用户的数量有关㊂设一个时隙内至少有一个信号传输的概率为P tr ,对应一个信道内无碰撞的概率为P i ,它们分别表示为:P tr =1-(1-μ)n (1-β)l ,(2)P i =nμ(1-μ)n -1(1-β)l +lβ(1-β)l -1(1-μ)nP tr,(3)式中,μ为网络中每个WiFi 用户的传输概率,β为每个NR SL 用户的传输概率,n 为竞争该信道的WiFi用户的的数量,l 为竞争该信道的NR SL 用户的数量㊂根据文献[18],整个WiFi 系统㊁NR SL 系统以及混合网络的系统饱和吞吐量R (n )㊁R (l )㊁R (n +l )分别可以表示为:R (n )=P tr P s E [S ]wP s T s P tr +(1-P s )T c P tr +T σ(1-P tr ),(4)R (l )=P tr P s E [P ]S P s T s P tr +(1-P s )T c P tr +T σ(1-P tr ),(5)R (n +l )=R (n )+R (l )㊂(6)式中,T s 为一次成功的传输导致信道被用户检测为繁忙的平均时间,T σ为每个时隙的持续时间,T c 为在每次冲突期间,信道被用户检测为繁忙的平均时间,E [P ]w 和E [P ]S 分别为WiFi 和NR SL 系统的数据包平均大小㊂此外,为了衡量在非授权频段上由于LBT 竞争的不确定性对NR SL 传输的影响,引入信道接入成功率η,表示为:η=min {n s ,n n }nˑ100%,(7)式中,n n 为NR SL 发送端某次数据传输所需的子信道数,n s 为该次传输实际LBT 竞争成功的子信道数㊂3㊀基于终端自主侦听的NR SL 非授权接入3.1㊀NR SL 非授权资源自主选择机制针对某些情况下,NR SL 用户无法与基站建立有效通信,如用户位于地下停车场㊁隧道等建筑物内部或处于基站覆盖范围外时,NR SL 与WiFi 系统在非授权频段上共存的问题,提出了基于终端自主侦听的NR SL 非授权接入机制㊂如图4所示,该机制在现有模式2资源分配机制的基础上,引入候选预留子信道 ,作为对实际需要预留的子信道资源的补充,从而为NR SL 用户在非授权频段上提供更多的潜在接入机会,缓解如前所述的在传统NR-U机制下WiFi 用户可能提前抢占NR SL 用户预留的子信道资源导致NR SL 用户接入非授权信道失败的问题㊂同时通过对候选预留子信道的动态激活与释放操作,允许用户将未使用的候选预留子信道资源提前释放,提高频谱利用率㊂图4㊀所提机制下NR SL 用户的非授权接入Fig.4㊀NR SL UE s channel access on unlicensed spectrum under proposed mechanism㊀㊀具体而言,所提NR SL 非授权资源自主选择算法如算法1所示,当NR SL 用户有消息需要在非授权信道上传输时,首先进入模式2资源选择的侦听阶段,通过解码其他NR SL 用户发送的侧行控制信息(Sidelink Control Information,SCI),获知并排除它们预留的资源,由此确定候选资源集合㊂然后该NR SL 用户从候选资源集合中随机选取N 个子信道,作为预留的子信道资源,包含q 个实际预留的子信道和x 个候选预留子信道㊂对于实际预留的每个子信道i (i ɪ ={0,1, ,q }),NR SL 终端动态为其配备x i 个候选预留子信道(x i ɪ ={0,1, ,x },ðqi =1x i =x ),候选预留子信道位于实际预留子信道之后的Δt 个时隙内(Δt >0),且只有当实际预留的子信道LBT 竞争失败时,NR SL 才会尝试接入对应的候选预留子信道资源㊂确定预留的子信道资源后,NR SL 用户基于信道能量检测(Energy Detection,ED)对所预留的资源进行LBT 竞争㊂对于实际预留的子信道,如果竞争成功,则立即接入信道进行传输,并发送SCI 信息对该实际预留的子信道对应的候选预留子信道资源进行动态释放,其他NR SL 用户解码SCI 后,重新将该部分资源纳入其候选资源集合中;否则,NR SL 将继续对候选预留子信道资源进行LBT 竞争,直到接入信道成功或完成对所有候选预留子信道资源的竞争㊂值得注意的是,当一个实际预留的子信道对应多个候选预留的子信道时,候选预留子信道LBT 成功后,NR SL 也会通过SCI 发送剩余候选预留子信道资源的释放信息㊂算法1㊀NR SL 非授权资源自主选择算法初始化:NR SL 用户获取预配置信息;begin㊀for t =(n -T 0):(n -T proc,0)do侦听PSCCH,并测量该PSCCH 的RSRP 或该PSCCH 调度的PSSCH 的RSRP;if RSRPȡSL_RSRP then解码PSCCH 中的SCI,获取其预留的子信道资源pre_subs;if pre_subs 位于资源池RP 中then㊀将sun_pre 从候选资源集合中排除,更新候选资源集合;end if else继续侦听其他PSCCH;end if end for确定传输实际需要的q 个子信道和x 个候选预留子信道;对q 个实际预留的子信道进行LBT 竞争;while i =1:q doif 实际预留的子信道i LBT 成功then 接入子信道i ;if 实际预留的子信道i 配备了候选预留子信道then㊀通过SCI 将对应的候选预留子信道资源进行释放;end ifelse if 实际预留的子信道i 配备了x i 个候选预留子信道thenwhile j =1:x i do㊀对候选预留子信道j 进行LBT 竞争;㊀if LBT 成功then㊀㊀接入候选预留子信道j ,并通过SCI 对剩余(x i -j )个候选预留子信道资源进行释放;㊀㊀break ;㊀end if end while end ifend3.2㊀候选预留子信道动态更新算法为了实现在满足当前传输需求的条件下,尽可能配置最少的候选预留子信道资源,从而提高频谱利用率,本节提出一种候选预留子信道动态更新算法,如算法2所示㊂其关键思想是利用上一传输周期的传输状况,动态更新候选预留预子信道的数目和配置方式㊂动态更新存在两种方式:周期性更新和触发式更新㊂触发式更新发生某个传输周期内,LBT成功的子信道数小于需要的子信道数,即有数据由于LBT失败需要缓存至下一传输周期传输时,且连续失败次数达到阈值N thr(N thr=1,2, , N thr_max),其中N thr_max取值由UE根据业务优先级以及自身能力决定,这时判断为网络较为拥挤,NR SL 在下一传输周期时,根据算法增加候选预留子信道的数目,以提供更多的接入机会;此外,一段时间内每个传输周期LBT成功的子信道资源都能满足传输需求时,认为此时信道状态较好,NR SL会周期地适当减少候选预留子信道资源的数目,将多余的资源提前释放,用于其他NR SL用户的资源选择㊂设某次传输的上一次传输预留的子信道总数为N n-1,实际预留的子信道数为n n-1,每个实际预留的子信道对应的候选预留子信道数为alt i(alt iɪ= {alt1,alt2, ,alt n n-1}),LBT成功的子信道数为n s㊂候选预留子信道更新的周期为T u,候选预留子信道上次更新时刻为t n-1,当前时刻为t,候选资源集合中子信道总数为C,每个子信道对应的候选预留子信道数最大取值为x max,单次允许的最大候选预留资源数为N max,本次传输所需的子信道数为n n,每个子信道记为n i(n iɪᶃn={n1,n2, ,n n n}),每个实际预留的子信道对应的候选预留子信道数为altᶄi(altᶄiɪᶄ={altᶄ1,altᶄ2, ,altᶄn n}),动态更新阈值为N thr㊂算法2㊀候选预留子信道动态更新算法输入:N n-1,n n-1,n s,x max,n n,T u,N thr,N max,集合和ᶄ;输出:本次传输的预留子信道总数N n,候选预留子信道配置集合ᶄ;Begin初始化接入失败次数fail_cnt=0;if ns<n n-1thenif㊀fail_cnt=N thr then㊀N n=min{n n+x max,⌊n n(N n-1nn-1+n n-1-n s nn-1)」};㊀fail_cnt=0;else㊀fail_cnt=fail_cnt+1; end if ㊀else if(t-t n-1)mod T u==0thenN n=min{n n+x max,⌊n n(N n-1n n-1+n n-1-n s n n-1)」};t n-1=t;elseN n=⌊n n㊃N n-1n n-1」;end if候选预留子信道数x n=N n-n n;for i=1:nndowhile子信道ni上传递的数据是上个传输周期LBT 失败而重新传输的数据&&alt i<x max do㊀子信道n i对应的候选预留子信道数altᶄi=alt i+1;㊀剩余候选预留子信道数x n=x n-1;end while从剩余尚未配置候选预留子信道的子信道中随机选出x n个子信道,为其配备一个候选预留子信道;生成候选预留子信道配置集合ᶄ;end forend4㊀仿真及结果分析为了验证本文所提的基于终端自主侦听的接入方法对NR SL在非授权频段通信的增益效果,本节设计如下仿真评估实验,并将所提机制的性能与传统NR-U非授权接入方法对比㊂仿真考虑一个AP 下2个WiFi用户与3对NR SL通信链路共存的场景,每个子信道在同一时刻只能被一个用户占用,在传输数据之前,所有用户基于能量检测判断信道是否空闲,判断空闲后经过随机回退接入信道㊂仿真参数如表1所示㊂表1㊀仿真参数设置Tab.1㊀Simulation parameter参数值终端发射功率P tr/dBm10载波频率fc/GHz 1.9噪声系数/dB5路径损耗衰减因子α 2.2恒定功率增益因子G/dB-33.58阴影衰落标准差/dB4数据包大小/bit8224信道带宽/MHz20NR SL子信道数4WiFi子信道数2WiFi最小回退窗口长度16㊀㊀假设在每个时隙WiFi 和NR SL 用户的数据到达服从泊松分布㊂当数据到达时,WiFi 用户在所有子信道进行CSMA /CA 检测竞争信道,NR SL 用户首先利用3.2节中的算法确定预留子信道集合,然后依据3.1节中的算法过程,对所预留的资源进行LBT 竞争㊂首先,评估引入候选预留子信道对WiFi 和NR SL 系统吞吐量的影响,从图5可知,相比传统的接入方法(x =0),在NR SL 的非授权接入机制中引入候选预留子信道,可以有效提升NR SL 的吞吐量与系统总吞吐量,且随着x 的增大,NR SL 的吞吐量逐渐增大,WiFi 的吞吐量略有减小,系统总吞吐量逐渐增大㊂因此,在NR SL 与WiFi 共存的系统中,引入候选预留子信道能进一步提升NR SL 吞吐量与系统总吞吐量,但是对x 取值的设置要考虑对WiFi 系统的影响㊂图5㊀候选预留子信道数对系统吞吐量的影响Fig.5㊀Effect of number of candidate reservedsub-channels on system throughput其次评估所提候选预留子信道动态更新算法对NR SL 系统在非授权频段上通信性能的影响㊂图6与图7所示的x 动态更新算法中,候选预留子信道数的最大值N max =3,候选预留子信道数的平均值x =2.46㊂从图6可知,在所提x 动态更新算法下,NR SL 系统的传输速率与x 取值固定为3时相当,由此可见,该算法能在传输增益一定的前提下,有效减少所需的候选预留子信道数㊂由图7可知,相比传统NR-U 机制,所提机制能有效提高NR SL 在非授权频段的接入成功率㊂图6㊀不同x 取值时NR SL 的传输数据量Fig.6㊀Transmission rate under different values ofx图7㊀传统接入机制与所提接入机制的接入成功率对比Fig.7㊀Access rate of traditional and proposed mechanism5 结束语本文提出了一种基于终端自主侦听的NR SL 非授权接入机制,可以有效减小非授权频段上LBT 不确定性对NR SL 用户的影响㊂该机制在现有模式2资源分配机制的基础上,引入 候选预留子信道 ,为NR SL 用户在非授权频段上提供更多潜在接入时机,从而提高接入成功率;同时提供了一种候选预留子信道的动态更新算法,通过利用上一传输周期的传输状况,更新候选预留预子信道的数目和配置方式,从而提高频谱利用率㊂下一步可以在该机制的基础上,考虑在NR SL 用户引入机器学习模块,学习信道的碰撞情况,预测候选资源集合中各个子信道的冲突概率,并给出当前时刻最优的候选预留子信道数x ᶄ,指导用户对子信道资源的选择,以进一步提升NR SL 通信在非授权频段的性能㊂参考文献[1]㊀3GPP.4G;Proximity-based Services (ProSe):TS 23.303(v12.8.0)[S].Valbonne:3GPP,2016.[2]㊀3GPP.New WID on 5G V2X with NR Sidelink;RP-190766(LG Electronics,Huawei)[R].Valbonne:3GPP TSG RAN Meeting #83e,2019.[3]㊀GARCIA M H C,MOLINA-GALAN A,BOBANM,et al.A Tutorial on 5G NR V2X Communications [J].IEEECommunications Surveys &Tutorials,2021,23(3):1972-2026.[4]㊀ALI Z,LAGÉN S,GIUPPONI L,et al.3GPP NR V2XMode 2:Overview,Models and System-level Evaluation[J].IEEE Access,2021,9:89554-89579.[5]㊀3GPP.New WID on NR Sidelink Evolution;RP-213678(OPPO,LG Electronics)[R].Valbonne:3GPP TSGRAN Meeting#94e,2021.[6]㊀ZOU Z,YIN R,CHEN X,et al.Deep ReinforcementLearning for D2D Transmission in Unlicensed Bands[C]ʊ2019IEEE/CIC International Conference on Communica-tions Workshops in China(ICCC Workshops).Aalborg:IEEE,2019:42-47.[7]㊀WU F,ZHANG H,DI B,et al.Device-to-Device Commu-nications Underlaying Cellular Networks:To Use Unli-censed Spectrum or Not?[J].IEEE Transactions onCommunications,2019,67(9):6598-6611. [8]㊀ZHANG H,LIAO Y,SONG L.Device-to-Device Commu-nications Underlaying Cellular Networks in UnlicensedBands[C]ʊ2017IEEE International Conference on Com-munications(ICC).Paris:IEEE,2017:1-6. [9]㊀王宁.非授权频段V2V通信和WiFi的友好共存与资源管理[D].北京:北京交通大学,2018. [10]WANG G,WU C,YOSHINAGA T,et al.CoexistenceAnalysis of D2D-unlicensed and WiFi Communications[J].Wireless Communications and Mobile Computing,2021:1-11.[11]JIN Y,XU S.QoE-aware Resource Allocation for D2DCommunications in Unlicensed Spectrum[C]ʊ2018IEEEInternational Conference on Communications Workshops(ICC Workshops).Aalborg:IEEE,2018:1-6. [12]RAJENDRAN V,PRASAD G,LAMPE L,et al.SCUBA:An In-device Multiplexed Protocol for Sidelink Scommuni-cation on Unlicensed Bands[J].IEEE Internet of ThingsJournal,2021,8(22):16637-16652.[13]李小帅.V2X通信无线资源管理关键技术研究[D].哈尔滨:哈尔滨工业大学,2020.[14]沈嘉,杜忠达,张治,等.5G技术核心与增强:从R15到R16[M].北京:清华大学出版社,2021. [15]BIANCHI G,FRATTA L,OLIVERI M.Performance Eval-uation and Enhancement of the CSMA/CA MAC Protocolfor802.11Wireless LANs[C]ʊProceedings ofPIMRC 96-7th International Symposium on Personal,In-door,and Mobile Communications.Taipei:IEEE,1996,2:392-396.[16]MUSHUNURI V,PANIGRAHI B,RATH H K,et al.Fairand Efficient Listen Before Talk(LBT)Technique forLTE Licensed Assisted Access(LAA)Networks[C]ʊ2017IEEE31st International Conference on AdvancedInformation Networking and Applications(AINA).Tai-pei:IEEE,2017:39-45.[17]FU J,ZHANG X,CHENG L,et al.Utility-based FlexibleResource Allocation for Integrated LTE-U and LTE Wire-less Systems[C]ʊ2015IEEE81st Vehicular TechnologyConference(VTC Spring).Glasgow:IEEE,2015:1-5.[18]GAO Y,CHU X,ZHANG J.Performance Analysis of LAAand WiFi Coexistence in Unlicensed Spectrum Based onMarkov Chain[C]ʊ2016IEEE Global CommunicationsConference(GLOBECOM).Kuala Lumpur:IEEE,2016:1-6.作者简介:㊀㊀朱振杰㊀北京邮电大学硕士研究生㊂主要研究方向:面向新一代(5G及5G-A)宽带移动通信网络的新理论及技术㊁5G FR3频段规划与设计等㊂㊀㊀(∗通信作者)崔琪楣㊀北京邮电大学教授,博士生导师㊂主要研究方向:5G/6G移动通信网络与智能计算㊁移动通信内生安全等㊂㊀㊀张雪菲㊀北京邮电大学副教授㊂主要研究方向:移动边缘计算㊁数据分析㊁智能交通系统㊁区块链和动态规划等㊂㊀㊀陶小峰㊀北京邮电大学教授,博士生导师㊂主要研究方向:5G网络技术与移动网络技术等㊂。
TDSCDMA复习试题含答案

TDSCDM原理与设备复习题一、填空题:1. TD-SCDM突发的数据部分由信道码和(扰码)共同扩频。
信道码是一个(OVSF)码,扩频因子可以取(1、2、4、8、16)。
2. 国际电信联盟(ITU )将3G系统正式命名为国际移动通信2000 (IMT-2000 ),其中“ 2000”的含义是:(系统工作在2000MHz频段),(最高业务速率可达2000kb/s),(预期在2000 年左右得到商用)。
3. TD-SCDM信道编码的方式包括(卷积)编码和(turbo )编码,码率有(1/2 )和(1/3 );4. IUCS接口的控制面应用协议是(RANAP),IUB接口的控制面应用协议是(NBAP ),IUR接口的控制面应用协议是(RNSAP )。
5. Uu 口的第2层即数据链路层包括(MAC)、(RLC)、(BMC )、(PDCP)等4个子层。
6. TDD模式共占用核心频段(55M ),补充频段(100M ),单载波带宽( 1.6M ),可供使用的频点有(93 )个。
因此,TD-SCDM系统的频率资源丰富。
7. 时隙结构即突发结构,TD-SCDM系统共定义了4种时隙类型,分别是:( DwPTS )、(UpPTS )、(GP )和(TS0〜TS6常规时隙)8. TD-SCDM系统中的同步技术主要由两部分组成,一(基站间的同步);另一是(基站与移动台间上行同步)。
9. RNC(V3.0)系统的机框分为(资源框)、(控制框)、(交换框)。
10. 由于无线移动信道的时变性和多径效应影响,使得数据之间存在两种干扰:(符号间干扰(ISI))和(码间干扰(MAI))11. 动态信道分配技术一般包括两个方面:一是(慢速DCA ),把资源分配到(小区);二是(快速DCA ),把资源分配给(承载业务)。
12. 接力切换是TD-SCDM移动通信系统的核心技术之一,适用于(同步CDMA )移动通信系统。
13. 经过编码后的数据流在QPS碉整和扩频前称为(比特),进行QPSK调制后称为(符号),将符号扩频后输出,称为(码)。
变频WiFi,降频WiFi,低频WiFi,自组网实现

变频WiFi,降频WiFi,低频WiFi,自组网实现
1-5网口· pcie网卡2.4GHz WiFi · 支持北斗/GPS
变频wifi,低频wifi,降频wifi,在高通wifi上实现无线网卡实现高性能专用无线网络,具备很强的非视距传输能力,超远距离实现无线通信,mesh自组网,点对点网桥,并改底层wifi驱动实现TDMA技术,并
支持手机,电脑等终端设备通过2.4GHz WiFi 接入网络。
同时可支持北斗/GPS 双星定位,非常适合于便携应用。
声明:使用本设备需要遵守当地法律法规,如需用于特种用途,请咨询所在地无线电管理委员会,本公司对于非法使用的情况概不负责。
主要特征
λ 基于独有小尺寸贴片式网络处理模块
λ 基于独有小尺寸高性能变频无线网卡
λ 支持335-1448MHz 专网频段
λ 板载200mW 2.4GHz WiFi
λ 支持北斗/GPS 定位
λ 具备双以太网口
典型应用
λ 军工/公安/消防单兵设备
λ 森林/山区/煤矿无线覆盖
λ Mesh 自组网设备
λ 点对点/点对多点无线回传
λ 专用无线网络
λ 系统集成商产品开发
专注于无线通信设备|多链路聚合|多网聚合|LTE-M,wifi模块|变频WiFi,降频WiFi,低频WiFi,自组网。
移动自组网中MAC层协议研究

第15期2023年8月无线互联科技Wireless Internet TechnologyNo.15August,2023基金项目:西安职业技术学院2022年度科研项目;项目名称:基于TDMA +CSMA 的无线自组网中MAC 层协议的研究;项目编号:2022YB05㊂作者简介:张富琴(1981 ),陕西延长人,高级工程师,硕士;研究方向:移动自组网㊂移动自组网中MAC 层协议研究张富琴(西安职业技术学院,陕西西安710077)摘要:移动自组网是由一组相互协作的通信节点组成的无中心控制节点㊁不依赖于任何固定网络设备的特殊网络㊂在该网络中,媒体接入控制(MAC )协议是网络实现最关键的技术之一,主要解决的是多个用户如何高效㊁合理地共享有限的信道资源问题㊂文章主要研究常用的几种MAC 接入协议㊂关键词:MAC ;CSMA ;TDMA中图分类号:TN91㊀㊀文献标志码:A0㊀引言㊀㊀目前,移动通信技术发展迅猛,但是大多数移动通信都需要有线的基础设施(如基站)的支持才能实现㊂为了实现在某些特殊应用场所不需要固定的设施支持就可以进行通信,一种有别于传统的网络技术 移动自组织网络技术应运而生㊂移动自组织网络(Mobile Ad Hoc Networks)是指一种不需要基础设施的移动网络,也常被称为多跳无线网(Multi -hop Wireless Networks)㊂该网络是一个临时构建的多跳无中心网络,网络中的成员是一组具有无线通信功能的移动节点㊂这些移动节点可以在任何地方任意时刻快速地构建起一个移动通信网络,并且不需要基础设施(如基站)的支撑㊂网络中的每个节点都可以自由移动,且相互之间地位平等㊂移动自组网的出现加快了人们实现随时随地进行自由通信的进程,同时移动自组网也为临时通信㊁军事通信和灾难救助等应用提供了有效可行的解决方案㊂移动自组织网络是一种网络拓扑动态可能随时发生变化的无线网络㊂该网络体系㊁同步机制和实际应用等问题都比较复杂[1]㊂传统的固定网络和常见的蜂窝移动通信网中使用的协议和技术很难直接应用到移动自组织网络中,因此需要为移动自组织网络设计专门的协议和技术㊂目前,移动自组织网络研究中面临的主要难点和重点问题为MAC 协议㊁同步机制㊁路由协议㊁功率控制㊁Qos㊁网络资源管理㊁网络互联和安全问题等㊂本文将重点讨论几种常见的MAC 协议㊂1㊀MAC 协议基本概念㊀㊀MAC 协议是数据在无线信道上发送和接收的主要控制者,是移动自组织网络协议的重要组成部分㊂MAC 协议对网络的时延㊁吞吐量㊁数据包传输成功率等性能指标都有着重要的影响㊂传统网络中多点共享的广播信道,蜂窝移动通信系统中由基站管理控制的无线信道以及点对点无线信道都是一跳共享信道,而移动自组织网络的信道则是一个由多个节点共享的多跳信道㊂当一个无线通信节点发送数据时,只有在它通信覆盖范围内的节点才能收到,这种共享的多跳信道会导致移动自组织网络存在隐藏终端㊁暴露终端等问题[2-3]㊂如图1所示,当通信节点1向节点3发送数据时,节点2并不在节点1的通信覆盖范围内,它无法检测节点1正在发送分组,如果此时节点2也向节点3发送数据,就会引起数据碰撞,节点2便称作隐藏终端㊂这种因某些节点不能侦听到其他节点发送数据而引起的数据碰撞就是隐藏终端问题㊂另外,还存在一种情况,如图2所示,当节点3向节点1发送数据时,节点2就会检测到节点3正在发送分组,节点2为了避免引起数据碰撞会推迟向节点4发送数据㊂但实际上这种推迟是不必要的,因为节点2向节点4发送数据并不影响节点3向节点1发送数据,这种情况下节点2就是节点3的暴露终端㊂这种因某些节点在其他正在通信节点的传输范围内而进行不必要的发送推迟便是暴露终端问题㊂为了保证数据传输的及时性以及正确性,移动自组织网络的MAC 协议需要解决隐藏终端及暴露终端问题㊂2㊀移动自组网中常见的MAC 协议的分析㊀㊀目前,在移动自组网实际的应用中,MAC 层主要图1㊀隐藏终端问题示例图2㊀暴露终端问题示例采用的协议有CSMA 协议㊁TDMA 协议以及二者的结合㊂2.1㊀CSMA 协议㊀㊀CSMA 是Carrier Sense Multiple Access 的缩写,是一种允许多个节点在同一个信道发送数据的协议㊂当一个节点发送数据时,需要侦听信道上是否有其他节点在发送数据㊂如果信道此时有其他节点在发送数据,则发送节点需要等待一个时间段后再次侦听,只有侦听到信道空闲后才会发送数据㊂信道中的其他节点接收到来自信道的数据,需要判断该数据是不是发送给自己㊂如果是,则进行下一步处理;如果不是,则将数据抛弃㊂如果在某一信道空闲时刻,两个在彼此通信覆盖范围内的节点同时要给对方发送数据时,且它们都侦听到信道处于空闲状态,这时它们会将自己的数据发送出去,从而引起了数据的碰撞㊂这是因为节点可以侦听信道上是否有数据传输,但是节点无法预判下一时刻信道上是否有数据要传输㊂为了避免出现这种问题,在实际应用中,往往会让节点在发送数据前,先侦听信道上是否有数据正在传输㊂如果此时信道上有数据正在传输,则等待一段时间后继续侦听;如果侦听到信道是空闲的,则需要让节点随机退避一段时间P 后再继续侦听;如果信道仍然空闲,则发送数据;如果这时信道上有数据在传输,则退回到最初的侦听信道状态,具体流程如图3所示㊂在上述的过程中,加入随机退避因子是为了避免两个在彼此通信范围内的节点同时发送数据时引起数据碰撞㊂图3㊀CSMA 处理流程CAMA 协议的主要优点:(1)算法简单㊁易于实现㊂(2)信道空闲情况下会快速发送数据,数据时延小㊂CAMA 协议的主要缺点:(1)在通信中易于引入隐藏终端和暴露终端的问题㊂(2)当系统中节点数量较多时,数据碰撞不可控,且数据时延不可控㊂2.2㊀TDMA 协议㊀㊀TDMA 即Time division multiple access,其协议的核心思想是将时间分为若干个时间片段,称之为时隙,每个发送数据的节点占据一个或多个时隙进行数据发送㊂如图4所示,节点A㊁B㊁C㊁D 分别占用时隙1㊁2㊁3㊁4发送数据,这时由于每个节点在不同的时间段发送数据,所以不会引起数据的碰撞㊂时隙的分配目前有静态预制与动态分配两种㊂图4㊀时隙分配时隙示例TDMA 协议的主要优点:(1)发送数据的节点在不同时隙进行数据发送,不会发生数据碰撞㊂(2)数据传送的时延可控㊂TDMA 协议的主要缺点:(1)对同步要求高,需要精准的时间同步㊂(2)固定分配时隙的TDMA 会引起不必要的数据传输时延,动态分配时隙的TDMA 算法较为复杂,且会引入预约时隙等开销,降低系统的吞吐量㊂2.3㊀TDMA +CSMA 协议㊀㊀TDMA +CSMA 协议就是将整个时间片分为若干个时隙,一部分时隙固定分配给节点发送公共广播㊁同步及路由公告等消息,一部分时隙用来进行CSMA 载波侦听使用,剩余部分时隙留作节点作为固定分配时隙㊂基于这一MAC 接入思想的时隙分配示例如图5所示㊂其中,SS 时隙是各个节点轮流发送同步和拓扑消息,用于网内节点同步与路由的更新与迟入节点的引导;BS 时隙是广播时隙,用于各节点发送广播话音;RS 是动态时隙,用于各节点利用CSMA 机制临时占用发送数据,该时隙用于发送用户短报文等小型业务;DS 时隙是TDMA 时隙,可根据开机前用户根据实际用户数进行配置,也可由节点根据业务需求动态预约占用㊂此时隙适合传输文件㊁视频等大业务量数据㊂图5㊀时隙分配示例㊀㊀如果配置用户数为网内最大节点数64个,则设定71个时隙为一个时帧㊁每64个时帧为1个超帧㊂当然,以上时隙配置只是在某一种应用场合的一种配置示例,在实际应用中可根据实际需要进行配置㊂3 结语㊀㊀研究表明,在众多移动自组网的关键技术中,MAC 协议运行在网络层之下㊁物理层之上,对数据的发送和接收起着直接控制和管理的作用,其性能的好坏会直接影响整个网络的性能和效率㊂因此,对于每一种具体的应用场景来说,选取合适的MAC 协议至关重要㊂参考文献[1]邵玮璐.移动自组网中混合接入协议的研究[D ].上海:上海师范大学,2020.[2]王常虎.基于协同通信的移动自组网关键技术研究[D ].成都:电子科技大学,2022.[3]刘庆刚,李大双,朱家成.多跳TDMA 组网同步的分布式控制方法[J ].通信技术,2012(5):26-28,32.(编辑㊀王永超)Research on MAC protocol of Ad Hoc NetworkZhang FuqinXi an Vocational and Technical College Xi an 710077 ChinaAbstract Mobile Ad Hoc Network is a special network and made up of some communication nodes.There is no central control node and fixed infrastructure in the network.The MAC protocol is the one of the most critical technologies.It mainly solves how the communication nodes in the network share the wireless channel efficiently and reasonably.This article mainly studies the MAC protocol which are frequently -used.Key words MAC CSMA TDMA。
组播原理及配置介绍

14
组播原理-组播IP与组播MAC的映射
IANA将MAC地址范围01:00:5E:00:00:00~01:00:5E:7F:FF:FF分配给组播使用, 这就要求将28位的IP组播地址空间映射到23位的组播MAC地址空间中,具体 的映射方法是将组播地址中的低23位放入MAC地址的低23位,如图。
由于IP组播地址的后28位中只有23位被映射到组播MAC地址,这样会有32个 IP组播地址映射到同一组播MAC地址上。
Anycast RP
DR
RPT
SPT
RPF
5
角色及术语描述
IGMP域角色和术语 组播VLAN 详细描述 组播VLAN是指组播数据所带的VLAN(也称为MVLAN,Multicast VLAN);通 常是按内容提供商(ISP)进行划分,通过实现基于VLAN实例的转发面、控制面和 管理面,满足在同一个设备上互不干扰的组播业务的发放。除了super VLAN,在 设备配置任何属性或类型的VLAN都可以成为组播VLAN。 组播节目就等同于组播组,其最基本的属性就是组播IP。
17
组播原理-组播的实现模型
ASM SSM
网络中默认采用ASM模型 l ASM模型Any-Source Multicast:即任意源组播模型。在ASM模型中,任一 发送者都可作为组播源向某组播组地址发送组播信息,接收者通过加入由该组播组 地址标识的组播组以获得发往该组播组的组播信息。在ASM模型中,接收者无法预 先知道组播源的位置,但可以在任意时间加入或离开组播组。 l SSM模型Source-Specific Multicast:即指定信源组播模型。在现实生活中, 用户可能只对某些组播源发送的组播信息感兴趣,而不愿接收其它源发送的信息。 SSM模型为用户提供了一种能够在客户端指定组播源的传输服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I.J. Wireless and Microwave Technologies,2011, 3, 46-53Published Online June 2011 in MECS ()DOI: 10.5815/ijwmt.2011.03.08Available online at /ijwmtA QoS Multicast Routing in TDMA-Based MANET UsingDirectional AntennasYuan Li a, Xing Luo ba School of Information Management, Hubei University of Economics, Wuhan, Chinab The Second Office, csic.no.722 research and development institute, Wuhan , ChinaAbstractIn this paper, a quality of service (QoS) multicast routing protocol in mobile ad hoc networks (MANET) using directional antennas has been presented. Many important applications, such as audio/video conferencing, require the quality of service guarantee. Directional antenna technology provides the capability for considerable increase in spatial reuse, which increases the efficiency of communication. This paper studies TDMA-based timeslot allocation and directional antennas, and presents an effective algorithm for calculating bandwidth of a multicast tree. We also propose a novel DSR-based QoS multicasting routing agrotithm. The simulation result shows the performance of this routing protocol in terms of call success rate.Index Terms: Directional antennas;TDMA;QoS; multicast routing© 2011 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science1.IntroductionA mobile ad hoc network (MANET) consists of wireless nodes that communicate with each other in the absence of a fixed wireless network infrastructure. Nodes transmit data using an omnidirectional antenna that radiates its power equally in all directions. Directional antennas allow a node transmit data in a particular direction. At the same time, a receiving node can focus its antenna in a particular direction. Directional antenna technology provides the following advantages: (1) a smaller amount of power can be used; (2) other nodes can use the surrounding area in the other directions to transmit, which increases the spatial reuse; (3) route has shorter hops and smaller end-to-end delay [1]. A MultiBeam Adaptive Array (MBAA) system is used in [2] and is capable of forming multiple beams for simultaneous transmissions or receptions in different directions.Multicasting is a basic one-to-many communication way. A multicast group contains a special node which is responsible for transmitting data packets to the other nodes in the same group. Pushed by real-time applications with quality of service (QoS) requirements, a.g., audio/video conferencing and distance education, QoS multicast routing protocol for multimedia communication has been presented in [3].* Corresponding author.E-mail address: a liyuanlx@;b lx19790206@Quality of service is more difficult to guarantee in wireless networks, especially for real-time multimedia application. There are several parameters of QoS, such as packet loss rate, delay, bandwidth etc. In order to meet the QoS requirements of the applications, multicast protocols are required to construct multicast trees with QoS guaranteed. We focus its discussion on bandwidth, because it is one of the most critical requirements for real time application. This paper presents an effective algorithm for calculating multicast tree bandwidth and QoS multicast routing. When a new flow with QoS bandwidth requirement is initiated, a QoS route request package (QREQ) is flooded for determining a bandwidth-satisfied route. Destination nodes collect path information from source node and send it back to source node. The source node determines the construction of multicast tree according to the path information from the destination nodes.2. Related WorkUnlike in wired networks, calculation of path bandwidth in infrastructure-less TDMA based MANET, additional constraints have to be considered. The mode of operation is half duplex. This is because an antenna cannot send or receive at the same time. Radio interference problem must be addressed. In a frame consisting of fix numbr of time slots, each of which can be used by a node for sending or receiving packets. In order to address radio interference problem, a node can use a particlular time slot only if the neighbouring nodes which are one or two hops awary do not use the same time slot. For a given node, each slot is marked as either “Free” or “Reserved”, where “Free” means the slot is not used by the node and any adjacent nodes, and is available for allocation. “Reserved” means that the slot has been reserved for a QoS path. Consider a path from source to destination in Figure 1. Fig.1 (b) shows slot status for five nodes. Link bandwidth (LB) is defined as the element number in set of slots that are marked as “Free” in end nodes of a link. Fig. 1(c) shows common free slots for links in path. Path bandwidth (PB) is defined as the minimum link bandwidth along the path. In MANET, path bandwidth cannot be found directly from link bandwidth and is an NP-complete problem [7].(a) path (b) shadow means reserved, others means freeLB(AB)=3 (c) common free slots of links Fig 1. A simple path and time slot statusPB=min{2,1,2,2}=1Fig 2. S lots schedule (Underline means allocated)Finding path bandwidth in TDMA-based MANET explained below. In Figure.2, allocate slots {1,2} and {3,5}to link(C,D) and link(D,E) because there are not common slots on continuous links. Then allocate slot {4} to link(B,C) because node C cannot send and receive at the same slot {2} simultaneously. At last, allocate slots {3,5} to link(A,B). The path bandwidth is the minimum link bandwidth allocated along the path. The bandwidth of path(ABCDE) is one slot.There are a limited number of multicasting proposals devised for MANET enviroment. YuhShyan Chen et al. propose a hexagonal-tree QoS multicasting protocol [3]. Ke et al. present a multi-constrained QoS-based multicast routing algorithm using the advantage of wireless notwork [4]. Zhao et al. have proposed a reliable 12345 12345 12345 12345 12345 2,3,5 2,4 1,23,5multicast routing which is a multicast routing algorithm based on link quality based metric (link cost) [5].Furthermore, Han and Guo in [6] have studied the problem of collision-free multicast in multi-channel wirelessnetwork, and present two heuristic-based algorithms with the aim of reducing both the interface redundancy andthe multicast latency. These protocols use the omnidirectional antennas mode.It is assumed that a MultiBeam Adaptive Array (MBAA) antenna is capable of broadcast by adjusting thebeam width [2]. Figure.3 shows a node equipped with an MBAA antenna array with 4 beams. Fig. 3 (a) showsthe transmission mode and Fig.3 (b) shows the reception mode. Suppose two nodes x and y are neighbors. If xwant to transmit data to y, x must orient its transmitting beam in the direction of y and y must orient its receivingbeam in the direction of x.Jawhar and Wu present the slot allocation rules for directional antennas [1]. A data slot t is free and can beallocated to send data from node x to neighbor y if the following conditions are satisfied:1) x don’t receive in t, and y don’t send in t by any antennas.2) Neighbors of x don’t receive in t, from x where neighbors is in the same angular direction as y.3) Neighbors of y don’t send in t, from y where neighbors are in the same direction as x.There are a limited number of routing protocols using directional antennas. Jawhar and Wu research theresource scheduling in wireless networks using directional antennas in [1]. Bazan and Jaseemuddin propose therouting and admission controls for wireless Mesh networks with directional antennas in [8]. YuhShuyan andShin advice a shoelace-based QoS routing protocol for mobile ad hoc networks using directional antenna in [9].(a) Transmission mode (b) Reception modeFig 3. T ransmission pattern of antenna3.Definition and SuppossionThis paper represents a static multi-hop wireless network with an undirected network graph G (V, L) where Vrepresents the set of nodes and L represents the set of links between the nodes. In wireless networks, theinterference range (R I) is twice of transmission range (R T). Suppose there are a source node S and a set ofreceiver nodes R. Our purpose is to find the set T in G which connect the source node S to each receive node r i∈R (1≤i≤m). Given a multicast tree t∈T, l(v i, v j)∈t is an link in multicast tree t, we give the following definitions.Definition 1: The available bandwidth of a multicast tree is defined as the minimum path bandwidth in thetree.bandwidth (T) = Min{path bandwidth i} (1≤i≤m) (1) Definition 2: Delay of a multicast tree is the maximum delay in the tree.delay(T) = Max{∑∈PATHsi l i ldelay)(} (2)Definition 3: The network cost of a multicast tree is defined as the total cost of all the paths in the tree.cost (T ) = ∑=mi iPath t 1)(cos (3) Definition 4: The cost of a multicast tree is the consumed network resource in all paths. The consumed network resource in a path is defined as the reserved path bandwidth times the total hop number in path.cost(Path i )=path bandwidth i ×hop number of Path i (1≤i ≤m ) (4) Based on the previous definition, the problem can be fomulated as follows. Given a graph G (V , L ), our work is to find a tree T , such as the following conditions are satisfied.1) bandwidth(T )≥B (B is the minimum bandwidth requirement of a multicast tree);2) delay(T )≤ D (D is the maximum delay requirement);3) cost(T ) is the minimum.Definition 5: The bandwidth of link l is the sum of the path bandwidth of the current connections that use link l . If the path is interference-free scheduled, then any three consecutive links on a path are not assigned same time slots.Definition 6: For any slot t , any interference-free link scheduling must satisfy the following condition, where l 1, l 2 and l 3 are three consecutive links. T(l i ,t ) denotes whether link l i use slot t to transmit data.T(l 1,t ) + T(l 2,t ) + T(l 3,t ) ≤1 (5)4. Our QoS Multicast Routing Protocol4.1. Data StructuresLet each node x maintains three tables: send table (ST ), receive table (RT ) and hop-count matrix (H ). ST x [i ,j ] and RT x [i ,j ] contain slot status for the 1-hop or 2-hop neighbor i of x for sending and receiving data. If slot j of node i has been reserved for sending or receiving data, ST =1 or RT =1; If slot j has been allocated, ST =0 or RT =0; otherwise, ST =-1 or RT =-1.The hop-count matrix H x [i , j ] contains information about x ’s 1-hop and 2-hop neighborhood. H x [i , j ]=1 if node i has node j as a neighbor; otherwise, H x [i , j ]=0. The above three tables also contain angular groups field. The entry A[a ]i j denotes the set of angular groups to which the a th sending/receiving antenna is pointed. A[a ]i j =null indicates that the a th antenna for node i is not used during slot j .4.2. Our QoS multicast routing ProtocolQoS multicast routing requires finding routes from a source node to a group of destination nodes with QoS requirement. When a source node S wants to send data to a group of destination nodes with a bandwidth requirement of b slots and maximal delay bound D , it broadcasts a QREQ(S , Destination_Set , id , b , x , PATH , NH , TTL ) to all of its neighbors. Where Destination_Set is a set of destination nodes, id is identity of request, x is a node currently relaying the QREQ, PATH is path together with the available slots that has been discovered, and NH is a list of next-hop nodes of node x , together with the format ((h ’1, l ’1), (h ’2, l ’2)… (h ’n , l ’n )). TTL is the delay bound. h ’i has potential to serve as the- next hop of node x , along with a list of slot l ’i .When an intermediate node y receives a QREQ from node x, it will decide whether QREQ has been received according to S and id. If yes, it will drop the QREQ. If y has been in PATH, it will drop the RREQ. If node y is not a node in NH, it drops the RREQ. If value of TTL is 0, it drops the RREQ. Otherwise, it will reduce TTL by 1, adds itself into PATH, and also adds its free time slots into PATH. Node y creates two temporary tables, ST temp and RT temp, as follows copy all entries in ST y into ST temp, and copy all entries in RT y into RT temp. Assign ST temp[h j, t] = ST temp[h j+1, t] =0 for each slot t in the list l i(i=m, m+1). In order to avoid hidden terminal problem, the same slot can’t be allocated to three consecutive links (l m, l m+1, l’temp). Let NH temp=null.For every neighbor z of y do L=select_slot(y, z, b, ST temp, RT temp) if L is not null then NH temp=NH temp|(z, L). The procedure select_slot (y, z, b, ST temp, RT temp) denotes find b free slots from link (y, z) according to the ST temp and RT temp. If L is null then discards the QREQ, because node y cannot find one neighbor to extend next hop such that link bandwidth is smaller than b. It mainly relies on slot allocation rules for directional antennas to do the selection. For every slot t, if the following three conditions hold, t is an available slot that allocated to link (y, z). A y w∧A y z≠Φ denotes t hat y’ neighbor w is in the same direction as z from y.Condition 1: (RT temp[y, t]=-1) ∧(ST temp[z, t]=-1)This condition shows that y does not receive in t, and z does not send in slot t by any antennas.Condition 2. (H y[y, w]=1) ∧(RT temp[w, t]=-1) ∧(A y w∧A y z≠Φ)This condition implies that neighbor w of y don’t receive in slot t, from y where neighbor w is in the same angular direction as z.Condition 3: (H y[z, w]=1) ∧(ST temp[w, t]=-1) ∧(A z w∧A z y≠Φ)This condition expresses that neighbor w of z don’t send in slot t, from z where neighbor w is in the same direction as y.When finishing the above loop, the new QREQ will be rebroadcasted and the status of selected slots will be changed from free to allocate if the NH temp is not null. When the QREQ is forwarded from the source node S, it can be regarded as a special case of intermediate nodes. The above steps are performed by replacing y with S, and PATH and NH are null.When the destination node D i (D i∈ Destination_Set) receives the first QREQ, a path p1 has been formed. The path bandwidth is the minimum number of available slots of links in PATH. In other words, the path bandwidth is the number of slots in l narrow (i.e., b i=| l narrow|). l narrow is the bandwidth of narrowest link. The destination node D i sends a QREP(S, D i, id, b i, PATH). The intermediate nodes along PATH will reserve b i slots.When the source node S receives all QREPs from the destination nodes in Destination_Set, it computes the available bandwidth and the delay of a multicast tree. If the following conditions are satisfied, the source node S finds a QoS multicast tree. Delay (l i) expresses the hop-count of the i th route.Min {b i} ≥b (6)Max {∑∈PATHsi l i ldelay)(}≤ D (7)5.SimulationIn this section, a simulation study is performed using ns 2 to evaluate the performance of our protocol. Suppose 25 nodes randomly placed in 1000m ×1000m area. Every connection request is generated with a randomly chosen source-destination pair. The number of date slots in a frame is 32. Suppose that the transmission range of wireless nodes is 250 meters and the interference range is 500 meters.Fig 4 shows call success rate under different network enviroment for our QoS multicast routing protocol with directional antennas and MAODV. Our protocol is labeled as QMRPDA. Assume that the delay bound isset to 3 hops. The number of antennas is four. When the number of destination nodes is very small or bandwidth requirement is very low, MAODV will almost have the same success rate with our QoS multicast routing protocol. However, as the number of destination nodes or bandwidth requirement increase, our QMRPDA will gradually ourperform MAODV. In Fig. 4(a), assume the number of destination nodes is 5. When the bandwidth requirement increases, the call success rate of QMRPDA will range from 98.2% to 78.5%. MAODV will be blocked. In Fig. 4(b), when the number of destination nodes increases, interference between links will increase. QMRPDA alleviates the interference between links by using four directional antennas.(a) (b)Fig 4. C all success rate under different network enviromentFig.5 shows network cost under different network enviroment for our QoS multicast routing protocol with directional antennas and MAODV. When the number of destination nodes is very small or bandwidth requirement is very low, MAODV will almost have the same network cost with our QoS multicast routing protocol with four antennas. In Fig. 5(a), assume the number of destination nodes is 5. When the bandwidth requirement increases, the network cost of MAODV will be blocked. In Fig. 5(b), assume the bandwidth requirement is 2 slots. However, as the number of destination nodes increases, interference between links will increase, and avalible bandwidth on links will drop. Though MAODV selects a multicast tree with small network cost, but these paths may not meet the bandwidth requirement, thus MAODV has the higher network cost than QMRPDA.Fig.6 shows the percentage of successfully received data packages under different antenna enviroment for our QoS multicast routing protocol. The percentage of successfully received data packages ranges from 45.25% to 19.26% in the one antenna case. The highest percentage is obtained in the four antennas case which ranges from 88.56% to 76.36%. It is increasingly easier for the network to acquire data packages as the number of antennas increases.(a) (b)Fig 5. N etwork cost under different network environmentFig 6. P ercentage of successfully received data packages6.ConclusionIn this paper, we propose a QoS multicast routing protocol in mobile ad hoc networks using directional antennas. The source tries to discover a multicast tree that is capable of providing the desired QoS requirement. The slot allocation and reservation procedure use the local topology information. The protocol takes advantage of the significant increase in spatial reuse provided by the directional antenna environment. The simulation results clearly show that compared with MAODV, our approach can obtain better performance in terms of success rate and network cost.AcknowledgmentThis work has been supported by The Young and Middle-aged Elitists’ Scientific and Technological Innovation Team Project of the Institutions of Higher Education in Hubei Province (No. 200902), Key Scientific Research Project of Hubei Education Department (No. B20091904).References[1]I. Jawhar and J. Wu, “Resource Scheduling in Wireless Networks Using Directional Antennas,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, pp. 1240-1253, 2010[2]L. Bao and J.J. Garcia-Luna-Aceves, “Transmission Scheduling in Ad Hoc Networks with Directional Antennas,” Proc. Eighth Ann.Int’l Conf. Mobile Computing and Networking, pp. 48-58, Sept. 2002.[3]YuhShyan Chen, TsungHung Lin and YunWei Lin, “A hexagonal-tree TDMA-based QoS multicasting protocol for wireless mobile ad hoc networks,” Telecommunication Systems, vol. 35, pp.1-20, 2007[4]Ke Z, Li L, Sun Q and Chen N, “A QoS multicast routing algorithm for wireless mesh networks,” Proc. Eighth Int’l Conf.Software Engineering, Artifical Intelligence, Networding, and Parallel/Distributed Computing, vol. 1pp. 835-840, 2007[5]Zhao L, Al Dubai A and Min G, “A QoS aware multicast algorithm for wireless mesh networks,” Proc. Int’l Symposium on Parallel and Distributed Processing, pp. 1-8, 2009[6]Han K and Guo Q, “Reducing multicast redundancy and latency in wireless mesh networks,” Proc. First Int’l Workshop on Education Technology and Computer Science, vol. 1, pp. 1075-1079, 2009[7]W.H.Liao, Y.C. Tseng and K.P. Shih, “A TDMA-Based Bandwidth Reservation Protocol for QoS Routing in a Mobile Ad Hoc Network,” IEEE Int’l Conf. Communications, vol. 5, pp. 3186-3190, 2002[8]Bazan O and Jaseemuddion M, “Routing and Admission Control for Wireless Mesh Networks with Directional Antennas,” Wireless Communicaions and Networking Conference, pp. 1-6, 2009[9]YuhShyan Chen, Shin Jr, MingChin Chuang, “A shoelace-based QoS routing protocol for mobile ad hoc networks using directional antenna ,” TENCON 2007, pp. 1-4, 2007。