江苏省南通市海门中学2017届高三第二次教学质量调研数学试题Word版含答案

合集下载

高三第二次调研考试数学试卷

高三第二次调研考试数学试卷

ICME -7 图甲 O A 1A 2 A 3A 4A 5A 6A 7A 8图乙江苏省南通市届高三第二次调研考试 数学试卷·答案·评分标准·讲评建议A .必做题部分一、填空题:本大题共14小题,每小题5分,共70分. 1. 设集合102M x x ⎧⎫=-<⎨⎬⎩⎭,{}210N x x =+>,则MN = ▲ .2. 已知复数z 满足z 2+1=0,则(z 6+i )(z 6-i )= ▲ .3. 在总体中抽取了一个样本,为了便于统计,将样本中的每个数据乘以100后进行分析,得出新样本平均数为3,则估计总体的平均数为 ▲ .说明:本题关注一下:222,().i i i i x ax b x ax b S a S '''=+⇒=+=4. 幂函数()y f x =的图象经过点1(2,)8--,则满足()f x =27的x 的值是 ▲ .5. 下列四个命题:①2n n n ∀∈R ,≥; ②2n n n ∀∈<R ,;③2n m m n ∀∈∃∈<R R ,,;④n m m n m ∃∈∀∈⋅=R R ,,. 其中真命题的序号是 ▲ .说明:请注意有关常用逻辑用语中的一些特殊符号.如果题中的集合R 改成Z ,真命题的序号是①④,如果R 改成复数集C 呢?6. 如图甲是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中11223781OA A A A A A A =====,如果把图乙中的直角三角形继续作下去,记12,,,,n OA OA OA 的长度构成数列{}n a ,则此数列的通项公式为n a = ▲ .说明:本题是课本中的习题改编,重在建立观察、归纳意识. 7. 以下伪代码:Read xIf x ≤ 0 Then ()f x ← 4x Else()f x ←2x End IfPrint ()f x根据以上算法,可求得(3)(2)f f -+的值为 ▲ .说明:算法在复习中不应搞得太难,建议阅读《数学通报》2008.1中的一篇关于“四省”07年的高考中的算法的文章.8. 在半径为1的圆周上按顺序均匀分布着A 1,A 2,A 3,A 4,A 5,A 6六个点.则122323343445455656616112A A A A A A A A A A A A A A A A A A A A A A A A ⋅+⋅+⋅+⋅+⋅+⋅= ▲ .说明:此学生容易把两向量的夹角弄错.如改成12个点,边长1||i i A A +的求法就不一样了,难度会加大.9. 若()sin() 1 (0,||<π)f x A x ωϕωϕ=++>对任意实数t ,都有()()ππ33f t f t +=-+.记()cos()1g x A x ωϕ=+-,则π()3g = ▲ .说明:注意对称性.10.已知函数f (x )=log a | x |在(0,+∞)上单调递增,则f (-2) ▲ f (a +1).(填写“<”,“=”,“>”之一)说明:注意函数y =f (| x |)是偶函数.比较f (-2)与f (a +1)的大小只要比较-2、 a +1与y 轴的距离的大小. 11.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于A 、B 两点,交准线于点C .若2CB BF =,则直线AB 的斜率为 ▲ .说明:涉及抛物线的焦点弦的时候,常用应用抛物线的定义.注意本题有两解.12.有一根长为6cm ,底面半径为0.5cm 的圆柱型铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的长度最少为 ▲ cm . 说明:本题是由课本例题改编的.关键是要把空间问题转化为平面问题. 13.若不等式组0,22,0,x y x y y x y a-⎧⎪+⎪⎨⎪⎪+⎩≥≤≥≤ 表示的平面区域是一个三角形及其内部,则a 的取值范围是▲ .说明:线性规划要注意数形结合,要综合运用多方面的知识.特别要注意区域的边界. 14.已知△ABC 三边a ,b ,c 的长都是整数,且a b c ≤≤,如果b =m (m ∈N*),则这样的三角形共有 ▲ 个(用m 表示).说明:本题是推理和证明这一章的习题,考查合情推理能力.讲评时可改为c =m 再探究.本题也可以用线性规划知识求解.填空题答案:1.{}1122x x -<< 2.2 3.0.03 4.13 5.④ 6 7.-8 8.3 9.-110.< 11. 12 13.4(0,1][,)3+∞ 14.(1)2m m +二、解答题:本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A cB b+=. (Ⅰ)求角A ;(Ⅱ)若m (0,1)=-,n ()2cos ,2cos 2C B =,试求|m +n |的最小值.解:(Ⅰ)tan 2sin cos 2sin 11tan sin cos sin A c A B CB b B A B+=⇒+=,……………………………………………3分 即sin cos sin cos 2sin sin cos sin B A A B CB A B+=, ∴sin()2sin sin cos sin A B CB A B+=,∴1cos 2A =. ………………………………………………5分 ∵0πA <<,∴π3A =.………………………………………………………………7分 (Ⅱ)m +n 2(cos ,2cos 1)(cos ,cos )2CB BC =-=, ∴|m+n |222222π1πcos cos cos cos ()1sin(2)326B C B B B =+=+-=--.…………10分 ∵π3A =,∴2π3B C +=,∴2π(0,)3B ∈. 从而ππ7π2666B -<-<.……………………………………………………………12分 ∴当πsin(2)6B -=1,即π3B =时,|m +n |2取得最小值12.……………………13分 所以,|m +n |A B CD DC 1 B 1A 1 min2=.………………………………………………………………14分 评讲建议:本题主要考查解三角形和向量的运算等相关知识,要求学生涉及三角形中三角恒等变换时,要从化角或化边的角度入手,合理运用正弦定理或余弦定理进行化简变形;在第二小题中,要强调多元问题的消元意识,进而转化为函数的最值问题,注意定义域的确定对结论的影响,并指明取最值时变量的取值.16.(本小题满分14分) 直棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形, ∠BAD =∠ADC =90°,222AB AD CD ===. (Ⅰ)求证:AC ∠平面BB 1C 1C ;(Ⅱ)在A 1B 1上是否存一点P ,使得DP 与平面BCB 1与 平面ACB 1都平行?证明你的结论.证明:(Ⅰ) 直棱柱1111ABCD A B C D -中,BB 1∠平面ABCD ,∴BB 1∠AC . (2)分又∠BAD =∠ADC =90°,222AB AD CD ===,∴2AC ∠CAB =45°,∴2BC =∴ BC ∠AC . (5)分又1BB BC B =,1,BB BC ⊂平面BB 1C 1C ,∴ AC ∠平面BB 1C 1C . ………………7分(Ⅱ)存在点P ,P 为A 1B 1的中点. ……………………………………………………………8分证明:由P 为A 1B 1的中点,有PB 1‖AB ,且PB 1=12AB .……………………………………9分又∵DC‖AB ,DC =12AB ,∴DC ∥PB 1,且DC = PB 1, ∴DC PB 1为平行四边形,从而CB 1∥DP .……………………………………………11分又CB 1⊂面ACB 1,DP ⊄面ACB 1,∴DP‖面ACB 1. (13)分同理,DP‖面BCB 1. (14)分评讲建议:本题主要考查线面平行、垂直的的判定和证明等相关知识,第一小题要引导学生挖掘直角梯形ABCD 中BC ∠AC ,第二小题,要求学生熟练掌握一个常用结论:若一直线与两相交平面相交,则这条直线一定与这两平面的交线平行;同时注意问题的逻辑要求和答题的规范性,这里只需要指出结论并验证其充分性即可,当然亦可以先探求结论,再证明之,这事实上证明了结论是充分且必要的.变题:求证:(1)A1B⊥B1D;(2)试在棱AB上确定一点E,使A1E∥平面ACD1,并说明理由.17.(本小题满分15分)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试说明理由.解:(I)设“甲胜且两数字之和为6”为事件A,事件A包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),共5个. (2)分又甲、乙二人取出的数字共有5×5=25(个)等可能的结果,……………………4分所以51()255P A==.………………………………………………………………………6分答:编号的和为6的概率为15.…………………………………………………………………7分(Ⅱ)这种游戏规则不公平.……………………………………………………………………9分设“甲胜”为事件B,“乙胜”为事件C, (10)分则甲胜即两数字之和为偶数所包含的基本事件数为13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲胜的概率P(B)=1325,从而乙胜的概率P(C)=1-1325=1225. (14)分由于P(B)≠P(C),所以这种游戏规则不公平. (15)分评讲建议:本题主要考查古典概率的计算及其相关知识,要求学生列举全面,书写规范.尤其注意此类问题的答题格式:设事件、说明概型、计算各基本事件种数、求值、作答.引申:连续玩此游戏三次,若以D表示甲至少赢一次的事件,E表示乙至少赢两次的事件,试问D与E是否为互斥事件?为什么?(D与E不是互斥事件.因为事件D与E可以同时发生,如甲赢一次,乙赢两次的事件即符合题意;亦可分别求P(D)、P(E),由P(D)+P(E)>1可得两者一互斥.)18.(本小题满分15分)已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作∠P ,其中圆心P 的坐标为(m ,n ). (Ⅰ)当m +n >0时,求椭圆离心率的范围;(Ⅱ)直线AB 与∠P 能否相切?证明你的结论. 解:(Ⅰ)设F 、B 、C 的坐标分别为(-c ,0),(0,b ),(1,0),则FC 、BC 的中垂线分别为12c x -=,11()22b y x b -=-.………………………………………………………………2分 联立方程组,解出21,2.2cx b c y b -⎧=⎪⎪⎨-⎪=⎪⎩……………………………………………………………4分 21022c b cm n b--+=+>,即20b bc b c -+->,即(1+b )(b -c )>0, ∴b >c . ……………………………………………………………………………………6分从而22b c >即有222a c >,∴212e <.……………………………………………………7分 又0e >,∴0e <<. …………………………………………………………………8分 (Ⅱ)直线AB 与∠P 不能相切.…………………………………………………………………9分由AB k b=,22102PBb c b b k c --=--=2(1)b cb c +-. ………………………………………………10分如果直线AB 与∠P 相切,则b ·2(1)b c b c +-=-1. ………………………………………12分解出c =0或2,与0<c <1矛盾,………………………………………………………14分所以直线AB 与∠P 不能相切. …………………………………………………………15分评讲建议:此题主要考查直线与直线、直线与圆以及椭圆的相关知识,要求学生理解三角形外接圆圆心是三边中垂线的交点,从而大胆求出交点坐标,构造关于椭圆中a ,b ,c 的齐次等式得离心率的范围.第二小题亦可以用平几的知识:圆的切割线定理,假设直线AB 与∠P 相切,则有AB 2=AF ×AC ,易由椭圆中a ,b ,c 的关系推出矛盾. 19.(本小题满分16分)已知函数21()2,()log 2a f x x x g x x ==-(a >0,且a ≠1),其中为常数.如果()()()h x f x g x =+ 是增函数,且()h x '存在零点(()h x '为()h x 的导函数). (Ⅰ)求a 的值;(Ⅱ)设A (x 1,y 1)、B (x 2,y 2)(x 1<x 2)是函数y =g (x )的图象上两点,21021()y y g x x x -'=-(()g'x 为()g x 的导函数),证明:102x x x <<. 解:(Ⅰ)因为21()2log 2a h x x x x =-+(0)x >, 所以21ln 2ln 1()2ln ln x a x a h x x x a x a-+'=-+=. …………………………………………3分因为h (x )在区间(0,)+∞上是增函数,所以2ln 2ln 10ln x a x a x a-+≥在区间(0,)+∞上恒成立.若0<a <1,则ln a <0,于是2ln 2ln 10x a x a -+≤恒成立.又()h x '存在正零点,故△=(-2ln a )2-4ln a =0,ln a =0,或ln a =1与ln a <0矛盾.所以a >1.由2ln 2ln 10x a x a -+≥恒成立,又()h x '存在正零点,故△=(-2ln a )2-4ln a=0,所以ln a =1,即a =e . ……………………………………………………………………7分(Ⅱ)由(Ⅰ),001()g x x '=,于是210211y y x x x -=-,21021ln ln x x x x x -=-.…………………………9分以下证明21121ln ln x x x x x -<-. (※)(※)等价于121121ln ln 0x x x x x x --+<. ……………………………………………11分令r (x )=x ln x 2-x ln x -x 2+x ,…………………………………………………………13分r ′(x )=ln x 2-ln x ,在(0,x 2]上,r ′(x )>0,所以r (x )在(0,x 2]上为增函数.当x 1<x 2时,r (x 1)< r (x 2)=0,即121121ln ln 0x x x x x x --+<, 从而01x x >得到证明.……………………………………………………………………15分对于21221ln ln x x x x x ->-同理可证……………………………………………………………16分所以102x x x <<.评讲建议:此题主要考查函数、导数、对数函数、二次函数等知识.评讲时注意着重导数在研究函数中的应用.本题的第一小题是常规题比较容易,第二小题是以数学分析中的中值定理为背景,作辅助函数,利用导数来研究函数的性质,是近几年高考的热点.第二小题还可以这样证明:要证明21121ln ln x x x x x -<-,只要证明21211ln x x x x ->1,令21x t x =,作函数h (x )=t -1-ln t ,下略.20.(本小题满分16分)已知数列{}n a 中,0122,3,6a a a ===,且对3n ≥时,有123(4)4(48)n n n n a n a na n a ---=+-+-.(Ⅰ)设数列{}n b 满足1,n n n b a na n *-=-∈N ,证明数列1{2}n n b b +-为等比数列,并求数列{}n b 的通项公式;(Ⅱ)记(1)21!n n n ⨯-⨯⨯⨯=,求数列{}n na 的前n 项和S n .(Ⅰ) 证明:由条件,得112234[(1)]4[(2)]n n n n n n a na a n a a n a ------=-----,则1112(1)4[]4[(1)]n n n n n n a n a a na a n a +----+=----.……………………………………2分即111244.1,0n n n b b b b b +-=-==又,所以1122(2)n n n n b b b b +--=-,21220b b -=-≠. 所以1{2}n n b b +-是首项为-2,公比为2的等比数列. …………………………………4分2122b b -=-,所以112122(2)2n n n n b b b b -+-=-=-.两边同除以12n +,可得111222n n n n b b ++-=-.…………………………………………………6分 于是2n nb ⎧⎫⎨⎬⎩⎭为以12首项,-12为公差的等差数列. 所以11(1),2(1)2222n n n nb b n n b =--=-得.………………………………………………8分 (Ⅱ)111122(2)n n n n n n a na n n a -----=-=-,令2n n nc a =-,则1n n c nc -=.而111 (1)21(1)21n c c n n c n n =∴=-⋅⋅⋅⋅=-⋅⋅⋅,.∴(1)212n n a n n =-⋅⋅⋅+. ……………………………………………………………12分(1)212(1)!!2n n n na n n n n n n n =⋅⋅-⋅⋅⋅+=+-+⋅,∴2(2!1!)(3!2!)(1)!!(12222)n n S n n n =-+-+++-+⨯+⨯++⨯.………………14分 令T n =212222n n ⨯+⨯++⨯,① 则2T n =2311222(1)22n n n n +⨯+⨯++-⨯+⨯.②①-②,得-T n =212222n n n ++++-⨯,T n =1(1)22n n +-+.∴1(1)!(1)21n n S n n +=++-+.……………………………………………………………16分评讲建议:此题主要考查数列的概念、等差数列、等比数列、数列的递推公式、数列的通项求法、数列前n 项和的求法,作新数列法,错项相消法,裂项法等知识与方法,同时考查学生A EBCD O·A EBCDO·yA B的分析问题与解决问题的能力,逻辑推理能力及运算能力.讲评时着重在正确审题,怎样将复杂的问题化成简单的问题,本题主要将一个综合的问题分解成几个常见的简单问题.事实上本题包含了好几个常见的数列题.本题还有一些另外的解法,如第一问的证明还可以直接代.B.附加题部分一、选做题:本大题共4小题,请从这4题中选做2小题,如果多做,则按所做的前两题记分.每小题10分,共20分.解答时应写出文字说明、证明过程或演算步骤.1.选修4-1:几何证明选讲如图,四边形ABCD内接于O,AB AD=,过A点的切线交CB的延长线于E点.求证:2AB BE CD=⋅.证明:连结AC.…………………………………………………1分因为EA切O于A,所以∠EAB=∠ACB.…………3分因为AB AD=,所以∠ACD=∠ACB,AB=AD.于是∠EAB=∠ACD.…………………………………5分又四边形ABCD内接于O,所以∠ABE=∠D.所以ABE∆∠CDA∆.于是AB BECD DA=,即AB DA BE CD⋅=⋅.………………9分所以2AB BE CD=⋅.…………………………………10分2.选修4-2:矩阵与变换如图所示,四边形ABCD和四边形AB C D''分别是矩形和平行四边形,其中点的坐标分别为A (-1,2),B (3,2),C (3,-2), D (-1,-2),B '(3,7),C '(3,3).求将四边形ABCD 变成 四边形AB C D ''的变换矩阵M .解:该变换为切变变换,设矩阵M 为1 0 1k ⎡⎤⎢⎥⎣⎦,…………………3分 则1 033 123k ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦.………………………………………………6分 ∴323k -=,解得53k =.…………………………………………………………………9分所以,M为1 05 13⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.………………………………………………………………………10分 说明:掌握几种常见的平面变换.3. 选修4-4:坐标系与参数方程过点P (-3,0)且倾斜角为30°的直线和曲线1,()1x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数相交于A 、B 两点.求线段AB 的长.解:直线的参数方程为3,()12x s y s ⎧=-⎪⎪⎨⎪=⎪⎩为参数,………………………………………………3分 曲线1,()1x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数可以化为224x y -=.……………………………………………5分将直线的参数方程代入上式,得2100s -+=.设A 、B 对应的参数分别为12s s ,,∴121210s s s s +==.…………………………8分AB12s s =-==.…………………………………………………10分说明:掌握直线,圆,圆锥曲线的参数方程及简单的应用.4. 选修4-5:不等式选讲已知x ,y ,z 均为正数.求证:111.x y z yz zx xy x y z ++++≥证明:因为x ,y ,z 无为正数.所以12()x y x y yz zx z y x z+=+≥,………………………………4分同理可得22y z z x zx xy x xy yz y++≥,≥,………………………………………………………7分 当且仅当x =y =z 时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得111x y z yz zx xy x y z++++≥.…………10分二、必做题:本大题共2小题,每小题10分,共20分.解答时应写出文字说明、证明过程或演算步骤.5.已知(nx 的展开式中前三项的系数成等差数列.(∠)求n 的值;(∠)求展开式中系数最大的项.解:(Ⅰ)由题设,得 02111C C 2C 42n n n+⨯=⨯⨯, ………………………………………………3分即2980n n -+=,解得n =8,n =1(舍去).……………………………………………4分(Ⅱ)设第r +1的系数最大,则1881188111C C 2211C C .22r r r r r r r r ++--⎧⎪⎪⎨⎪⎪⎩≥,≥……………………………………………6分 即1182(1)11.291r r r ⎧⎪-+⎪⎨⎪⎪-⎩≥,≥ 解得r =2或r =3. ………………………………………………8分所以系数最大的项为537T x =,9247T x =.………………………………………………10分说明:掌握二项式定理,展开式的通项及其常见的应用.6. 动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且点P 到点F (0,1)和直线l 的距离之和为4.(∠)求点P 的轨迹C 的方程; (∠)过点Q (0,-1)作曲线C 的切线,求所作的切线与曲线C 所围成的区域的面积.解:(Ⅰ)设P (x ,y ),根据题意,34y -=.……………………………3分化简,得21(3)4y x y =≤.…………………………………………………………………4分 (Ⅱ)设过Q 的直线方程为1y kx =-,代入抛物线方程,整理,得2440x kx -+=. ∴△=216160k -=.解得1k =±.………………………………………………………6分所求切线方程为1y x =±-(也可以用导数求得切线方程), 此时切点的坐标为(2,1),(-2,1),且切点在曲线C 上. (8)分由对称性知所求的区域的面积为2223021142(1)()041223x S x x dx x x =-+=-+=⎰.…………………………………………10分说明:抛物线在附加题中的要求提高了,定积分要求不高.附加题部分说明:本次附加题考查内容尽量回避一模所考内容,没有考查概率分布和空间向量解立体几何问题.这两部分内容很重要,希望在后期的复习中不可忽视.。

高三第二次调研测试数学Word版含答案

高三第二次调研测试数学Word版含答案

i < 4i ←i + 1结 束N Y(第4题)S ←S ×5输出S 开始 S ←1i ←1南通市届高三第二次调研测试数学Ⅰ参考公式:柱体的体积公式V Sh =柱体,其中S 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1. 已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则UA = ▲ .2. 已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为 ▲ . 3. 某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示,则成绩不低于60分的人数为 ▲ .4. 如图是一个算法流程图,则输出的S 的值为 ▲ .注 意事 项 考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(共14题)、解答题(共6题),满分为160分,考试时间为120分钟。

考试结束后,请将答题卡交回。

2. 答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写在答题卡上。

3. 作答试题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚。

/分0.0050.010 0.0150.0250.030 (第3题)5. 在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积大于32 cm 2的概率为 ▲ .6. 在ABC △中,已知145AB AC B ===︒,,则BC 的长为 ▲ .7. 在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为 ▲ .8. 在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点(12)A ,,(51)B ,,则tan()αβ-的值为 ▲ .9. 设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为 ▲ . 10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为 ▲ .11.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪+⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为 ▲ .12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是 ▲ .13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅的值为 ▲ . 14.已知a为常数,函数()f x 的最小值为23-,则a 的所有值为 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b ,()3122=-,c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为42. (1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿虚线AA 1B 1C 1B C FE(第16题)(第17题)B 1B 2PQOxyl 1l 2 AB C(第18题)l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形(各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大?19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域;(3)数列1234c c c c ,,,能否为等比数列?并说明理由.20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.① 若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <.南通市2018届高三第二次调研测试数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=.B .[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换1T ,2T 对应的矩阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.C .[选修4-4:坐标系与参数方程](本小题满分10分)注 意事 项 考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共2页,均为非选择题(第21~23题)。

2017届高三第二次教学质量检测数学理试题(12页有答案)

2017届高三第二次教学质量检测数学理试题(12页有答案)

高三年级第二次教学质量检测试题理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有 一项是符合题目要求的.1.已知集合{-2-1012}{|22}A B x x A B ==-<≤= ,,,,,,则A .{-1012},,,B .{-101},, C .{-2-101},,, D .{-2-1012},,,,2.复数ii+1-2对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知向量(2,1),(3,)a b x =-=,若3a b ⋅= ,则x =A .3B .4C .5D .64.已知双曲线12222=-b y a x 的一条渐近线方程为x y 43=,则此双曲线的离心率为A .43B .54 C .53 D5.已知条件p :46x -≤;条件q :1x m ≤+,若p 是q 的充分不必要条件,则m 的取值范围是A . (]1,-∞-B .(]9,∞-C . []9,1D .[)∞+,9 6.运行如图所示的程序框图,输出的结果S =A .14B .30C .62D .1267.1()nx x-的展开式中只有第5项的二项式系数最大,则展开式中含2x 项的系数是A .56B .35C .-56D .-358.已知,αβ是两个不同的平面,,,l m n 是不同的直线,下列命题不正确...的是A .若,,,,l m l n m n αα⊥⊥⊂⊂则l α⊥B .若//,,,l m l m αα⊂⊂/则//l αC .若,,,,l m m l αβαβα⊥=⊂⊥ 则m β⊥D .若,,,m n αβαβ⊥⊥⊥,则m n ⊥9.已知)(cos 3sin )(R x x x x f ∈+=,函数)(ϕ+=x f y 的图象关于直线0=x 对称,则ϕ的 值可以是A .2π B .6π C .3π D .4π10.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是A .2人B .3人C .2人或3人D .4人11.已知抛物线24y x =,过焦点F 作直线与抛物线交于点A ,B (点A 在x 轴下方),点1A 与 点A 关于x 轴对称,若直线AB 斜率为1,则直线1A B 的斜率为A .3 B C .2D 12.下列结论中,正确的有①不存在实数k ,使得方程21ln 02x x x k -+=有两个不等实根; ②已知△ABC 中,,,a b c 分别为角,,A B C 的对边,且2222a b c +=, 则角C 的最大值为6π; ③函数y=ln与ln tan2xy =是同一函数; ④在椭圆22221(0)x y a b a b+=>>,左右顶点分别为A ,B ,若P 为椭圆上任意一点(不同于,A B ),则直线PA 与直线PB 斜率之积为定值.A .①④B .①③C .①②D .②④第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答. 二.填空题:本大题共4小题;每小题5分,共20分. 13.已知等比数列{}n a 的前n 项和为n S ,且132455,24a a a a +=+=,则6S = __________. 14.已知实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则y x z 42+=的最大值为______ .15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为__________ .16.下列命题正确是 . (写出所有正确命题的序号) ①若奇函数()f x 的周期为4,则函数()f x 的图象关于(2,0)对称; ②若(0,1)a ∈,则111aaa a++<;③函数1()ln1xf x x+=-是奇函数; ④存在唯一的实数a 使()()12lg 2++=x ax x f 为奇函数.三.解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且3a =,4b =,2B A π=+.(1)求cos B 的值; (2)求sin 2sin A C +的值. 18.(本小题满分12分)如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90=∠BAC ,且AB AA =1,F E ,分别是BC CC ,1的中点.(1)求证:平面1AB F ⊥平面AEF ; (2)求二面角F AE B --1的余弦值.19.(本小题满分12分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[]1000,,样本数据分组为第一组[)200,,第二组[)4020,,第 三组[)6040,,第四组[)8060,,第五组[]10080,. (1)求直方图中x 的值;(2)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200家,试估计 有多少企业可以申请政策优惠;(3)从所抽取的企业中任选4家,这4家企业年上缴税收少于20万元的家数记为X ,求X 的 分布列和数学期望.(以直方图中的频率作为概率)20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a by a x 经过点P ,离心率2e = ,直线l 的方程为4=x .(1)求椭圆C 的方程;(2)经过椭圆右焦点F 的任一直线(不经过点P )与椭圆交于两点A ,B ,设直线AB 与 l 相交于点M ,记PM PB PA ,,的斜率分别为321,,k k k ,问:是否存在常数λ,使得 321k k k λ=+?若存在,求出λ的值,若不存在,说明理由.21.(本小题满分12分)已知函数x ax x f ln )(+=,其中a 为常数,设e 为自然对数的底数. (1)当1a =-时,求()f x 的最大值;(2)若()f x 在区间(0,]e 上的最大值为3-,求a 的值;(3)设),()(x xf x g =若0,a >对于任意的两个正实数1212,()x x x x ≠, 证明:12122()()()2x x g g x g x +<+. 请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 54253 (t 为参数),以原点O 为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为θρsin a =. (1)若2=a ,求圆C 的直角坐标方程与直线l 的普通方程; (2)设直线l 截圆C 的弦长等于圆C 的半径长的3倍,求a 的值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数5212)(++-=x x x f ,且m x f ≥)(恒成立. (1)求m 的取值范围;(2)当m 取最大值时,解关于x 的不等式:8223-≤--m x x .高三第二次质量检测理科数学答案一.ADABD CCABC CA二.13.631614.20 15.61 16.①③ 17.解: (1)∵2B A π=+, ∴2π-=B A ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅1分又3,4a b ==,所以由正弦定理得34sin sin A B=, 所以34cos sin B B=-,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3分所以3sin 4cos B B -=,两边平方得229sin 16cos B B =,又22sin cos 1B B +=,所以3cos 5B =±,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5分而2B π>,所以3cos 5B =-.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6分(2)∵3cos 5B =-,∴4sin 5B =,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅7分∵2B A π=+,∴22A B π=-, ∴sin 2sin(2)sin 2A B B π=-=-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅8分432sin cos 2()55B B =-=-⨯⨯-=分又A B C π++=,∴322C B π=-, ∴27sin cos 21cos 25C B B =-=-=.∴24731sin 2sin 252525A C +=+=. (12)分18.解答: (1)证明:∵F 是等腰直角三角形ABC ∆斜边BC 的中点, ∴AF BC ⊥.又∵侧棱ABC AA 平面⊥1,∴面ABC ⊥面11BB C C ...........2分 ∴AF ⊥面11BB C C ,1AF B F ⊥.…3分 设11AB AA ==,则,EF=,.∴22211B F EF B E +=,∴1B F EF ⊥............4分 又AF EF F ⋂=,∴1B F ⊥平面AEF .…而1B F ⊂面1AB F ,故:平面1AB F ⊥平面AEF .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5分(2)解:以F 为坐标原点,FA ,FB 分别为x ,y 轴建立空间直角坐标系如图, 设11AB AA ==,则(0,0,0)F ,(2A ,1(0,2B -,1(0,)22E -,1()2AE = ,1(AB = .…⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6分由(1)知,1B F ⊥平面AEF ,取平面AEF 的法向量:1(0,,1)2m FB == .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅7分设平面1B AE 的法向量为(,,)n x y z =,由,取3x =,得(3,1,n =- (10)分设二面角1B AE F --的大小为θ,则cos θ=|cos <>|=||=.由图可知θ为锐角,∴所求二面角1B AE F --的余弦值为.…⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅12分19.解答: 解:(I )由直方图可得:20(x 0.0250.00650.0032)1⨯+++⨯=解得0.0125x =. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2分 (II )企业缴税收不少于60万元的频率0.0032200.12=⨯⨯=, ∴12000.12144⨯=.∴1200个企业中有144个企业可以申请政策优惠. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4分 (III )X 的可能取值为0,1,2,3,4.由(I )可得:某个企业缴税少于20万元的概率10.0125200.254=⨯== .............5分25681)43()41()0(4004===C X P 6427)43()41()1(3114===C X P6427)43()41()2(2224===C X P 643)43()41()3(1334===C X P2561)43()41()4(0444===C X P .......................................10分..............11分∴12561464336427264271256810)(=⨯+⨯+⨯+⨯+⨯=X E . ....12分 20.解:(1)由点P 在椭圆上得,22421a b +=①22c e a ==又所以② 由 ①②得2224,8,4c a b ===,故椭圆C 的方程为22184x y +=……………………..4分 (2)假设存在常数λ,使得123k k k λ+=.由题意可设,AB k AB 的斜率为则直线的方程为(2)y k x =-③代入椭圆方程22184x y +=并整理得2222(12)8880k x k x k +-+-= 设1122(,),(,)A x y B x y ,则有22121222888,1212k k x x x x k k -+==++④ ……………6分在方程③中,令4x =得,(4,2)M k,从而2121k k ==32422k k k ==--.又因为B F A 、、共线,则有BF AF k k k ==,即有121222y yk x x ==--……………8分 所以=+21kk 121222y y x x +=--121212112()2222y y x x x x ++----=2k 12121242()4x x x x x x +--++⑤ ……………10分将④代入⑤得=+21kk 2k22222284122888241212k k k k k k k -+=--+++32k k =-, 所以=+21k k 32k . 故存在常数2=λ符合题意…………12分 21.【解答】解:(1)易知()f x 定义域为(0,)+∞,当1a =-时,()ln f x x x =-+,'11()1x f x x x-=-+=, 令'()0f x =,得1x =.当01x <<时,'()0f x >;当1x >时,'()0f x <. ................2分∴()f x 在(0,1)上是增函数,在(1,)+∞上是减函数.max ()(1)1f x f ==-.∴函数()f x 在(0,)+∞上的最大值为1-.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4分 (2)∵'111(),(0,],[,)f x a x e x x e=+∈∈+∞. ①若1a e≥-,则'()0f x ≥,从而()f x 在(0,]e 上是增函数, ∴max ()()10f x f e ae ==+≥,不合题意.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5分②若1a e <-,则由'1()00f x a x>⇒+>,即10x a <<-由'1()00f x a x <⇒+<,即1x e a-<≤.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6分从而()f x 在1(0,)a -上增函数,在1(,)e a-为减函数 ∴max 11()()1ln()f x f a a=-=-+- 令11ln()3a -+-=-,则1ln()2a -=- ∴21e a --=,即2a e =-.∵21e e -<-,∴2a e =-为所求⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅8分 (3)法一:即证221212*********()2()ln()ln ln 222x x x x x x a ax ax x x x x ++++≤+++ 22222212121212()2()[]22x x x x a ax ax a x x ++--=⋅-- 212()02x x a -=-<⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅9分 另一方面,不妨设12x x <,构造函数11111()()ln()ln ln ()2x x k x x x x x x x x x +=+--> 则1()0k x =,而'1()ln ln 2x x k x x +=-=分 由10x x <<易知1012x x x+<< , 即'()0k x <,()k x 在1(,)x +∞上为单调递减且连续, 故()0k x <,即1111()ln()ln ln 2x x x x x x x x ++<+ 相加即得证 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅12分法二:'''1()21ln ,()20g x ax x g x a x =++=+> ..........9分 故'()g x 为增函数,不妨令21x x >令111()()()2()()2x x h x g x g x g x x +=+-> ''1()'()()2x x h x g x g +=-..........10分 易知12x x x +>,故''1()'()()02x x h x g x g +=-> .........11分而1()0h x =,知1x x >时,()0h x >故2()0h x >,即12122()()()2x x g g x g x +<+ .........12分22.解 (1)2a =时,圆C 的直角坐标方程为22(y 1)1x +-=;直线l 的普通方程为4380x y +-=.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4分(2)圆C :42222a a y x =⎪⎭⎫ ⎝⎛-+,直线:4380l x y +-=,∵直线l 截圆C 的弦长等于圆C⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅7分 ∴圆心C 到直线的距离3812522aad -==⨯,得32a =或3211a =.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅10分 23.解 (1)544,251(x)6,22144,2x x f x x x ⎧--<-⎪⎪⎪=-≤≤⎨⎪⎪+>⎪⎩⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2分 当5122x -≤≤时,函数有最小值6,所以6m ≤.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5分 另解:∵2125(2x 1)(2x 5)66x x -++≥--+=-=.∴6m ≤.(2)当m 取最大值6时,原不等式等价于324x x --≤, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6分 等价于3324x x x ≥⎧⎨--≤⎩,或3324x x x <⎧⎨--≤⎩,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅8分 可得3x ≥或133x -≤<. 所以,原不等式的解集为13x x ⎧⎫≥-⎨⎬⎩⎭. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅10分。

南通市2017届高三第二次调研考试数学试题(Ⅰ卷)

南通市2017届高三第二次调研考试数学试题(Ⅰ卷)

i ←1While i < 6 i ←i +2 S ←2i +3 End While Print S(第3题)南通市2017届高三第二次调研测试数学Ⅰ参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.棱锥的体积公式:13V Sh =棱锥,其中S 为棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{} 03 4 A =,,,{} 102 3 B =-,,,,则A B = ▲ . 2. 已知复数3i1iz -=+,其中i 为虚数单位,则复数z 的模是 ▲ . 3. 根据如图所示的伪代码,可知输出的结果S 是 ▲ .4. 现有1 000根某品种的棉花纤维,从中随机抽取50根,纤维长度(单位:mm )的数据分组及各组的频数见右上表,据此 mm 的根数是 ▲ .5. 100张卡片上分别写有1,2,3,…,100.从中任取1张,则这张卡片上的数是6的倍数的概率是 ▲ .6. 在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为3,则点P 的横 坐标是 ▲ .7. 现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温融化后铸成一个 实心铁球(不计损耗),则该铁球的半径是 ▲ cm . 8. 函数()f x =的定义域是 ▲ .9. 已知{}n a 是公差不为0的等差数列,n S 是其前n 项和.若2345a a a a =,927S =,则1a 的值是 ▲ .(第4题)10.在平面直角坐标系xOy 中,已知圆1C :()()22481x y -+-=,圆2C :()()22669x y -++=.若圆心在x 轴上的圆C 同时平分圆1C 和圆2C 的圆周,则圆C 的方程是 ▲ .11.如图,在平面四边形ABCD 中,O 为BD 的中点,且3OA =,5OC =.若AB →·AD →=-7, 则BC →·DC →的值是 ▲ .12.在△ABC 中,已知2AB =,226AC BC -=,则tan C 的最大值是 ▲ .13.已知函数20()1 0x m x f x x x -+<⎧=⎨-⎩≥,,,,其中0m >.若函数()()1y f f x =-有3个不同的零点,则m 的取值范围是 ▲ .14.已知对任意的x ∈R ,()()3sin cos 2sin 2 3 a x x b x a b ++∈R ≤,恒成立,则当a b +取得最 小值时,a 的值是 ▲ .二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)已知()πsin 4α+,()ππ2α∈,. 求:(1)cos α的值;(2)()πsin 24α-的值.16.(本小题满分14分)如图,在直三棱柱111ABC A BC -中,AC BC ⊥,A 1B 与AB 1交于点D ,A 1C 与AC 1交于点E . 求证:(1)DE ∥平面B 1BCC 1; (2)平面1A BC ⊥平面11A ACC .(第11题)C 1ACA 1B 1 DE17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆2222 1 (0)y x a b a b+=>>的离心率为23,C 为椭圆上位于第一象限内的一点.(1)若点C 的坐标为()523,,求a ,b 的值;(2)设A 为椭圆的左顶点,B 为椭圆上一点,且AB →=12OC →,求直线AB 的斜率.18.(本小题满分16分)一缉私艇巡航至距领海边界线lA 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最 大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin17°≈5.7446) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.(第17题)北19.(本小题满分16分)已知函数1()ex f x =,()ln g x x =,其中e 为自然对数的底数.(1)求函数()()y f x g x =在x =1处的切线方程;(2)若存在12x x ,()12x x ≠,使得[]1221()()()()g x g x f x f x λ-=-成立,其中λ为常数,求证:e λ>;(3)若对任意的(]01x ∈,,不等式()()(1)f x g x a x -≤恒成立,求实数a 的取值范围.20.(本小题满分16分)设数列{}n a 的前n 项和为S n ()*n ∈N ,且满足:①12 a a ≠;②()()()22112n n r n p S n n a n n a +-=++--,其中r p ∈R ,,且0r ≠. (1)求p 的值;(2)数列{}n a 能否是等比数列?请说明理由; (3)求证:当r =2时,数列{}n a 是等差数列.。

(江苏)高三数学-江苏省南通市如东高中2017届高三上学期第二次调研数学试卷 Word版含解析

(江苏)高三数学-江苏省南通市如东高中2017届高三上学期第二次调研数学试卷 Word版含解析

2016-2017学年江苏省南通市如东高中高三(上)第二次调研数学试卷一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.若集合A={﹣1,0,1},B={x|0<x<2},则A∩B=.2.若命题“∃x∈R,使得x2+(1﹣a)x+1<0”是假命题,则实数a的取值范围是.3.函数的单调增区间为.4.函数的定义域为.5.若幂函数f(x)=x a的图象经过点A(4,2),则它在A点处的切线方程为.6.设函数f(x)=,则f(﹣2)+f(log212)=.7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,将y=f(x)的图象向右平移个单位后,得到函数g(x)的图象,则函数g(x)=.8.已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递减,并且f(﹣m2﹣)>f(﹣m2+2m﹣2),则m的取值范围是.9.若双曲线的离心率为3,其渐近线与圆x2+y2﹣6y+m=0相切,则m=.10.已知椭圆C:=1的左焦点为F,点M是椭圆C上一点,点N是MF的中点,O是椭圆的中点,ON=4,则点M到椭圆C的左准线的距离为.11.设α为锐角,若sin(α+)=,则cos(2α﹣)=.12.已知函数f(x)=,当x∈(﹣∞,m]时,f(x)的取值范围为[﹣16,+∞),则实数m的取值范围是.13.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若•=,则AB的长为.14.设函数f(x)=(a∈R,e为自然对数的底数).若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则实数a的取值范围是.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写成文字说明、证明过程或演算步骤.15.在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,.(1)求sin∠BAD;(2)求AD及DC的长.16.在△ABC中,角A,B,C的对边分别为a,b,c,.(1)若,求△ABC的面积;(2)设向量,,且,求角B的值.17.如图,有一块半径为R的半圆形空地,开发商计划征地建一个矩形游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O为圆心,A,B 在圆的直径上,C,D,E在圆周上.(1)设∠BOC=θ,征地面积记为f(θ),求f(θ)的表达式;(2)当θ为何值时,征地面积最大?18.如图所示,已知圆A的圆心在直线y=﹣2x上,且该圆存在两点关于直线x+y ﹣1=0对称,又圆A与直线l1:x+2y+7=0相切,过点B(﹣2,0)的动直线l 与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当时,求直线l的方程;(3)(+)•是否为定值?如果是,求出其定值;如果不是,请说明理由.19.已知椭圆C: +=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.20.已知函数f(x)=﹣x2+ax﹣4lnx﹣a+1(a∈R).(1)若,求a的值;(2)若存在,使函数f (x )的图象在点(x 0,f (x 0))和点处的切线互相垂直,求a 的取值范围;(3)若函数f (x )在区间(1,+∞)上有两个极值点,则是否存在实数m ,使f (x )<m 对任意的x ∈[1,+∞)恒成立?若存在,求出m 的取值范围,若不存在,说明理由.数学加试试卷(物理方向考生作答)解答题(共4小题,每小题0分共40分,解答时应写出文字说明,证明过程或演算步骤)21.已知点P 是直线2x ﹣y +3=0上的一个动点,定点M (﹣1,2),Q ,是线段PM 延长线上的一点,且PM=MQ ,求点Q 的轨迹方程.22.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E ,求点E 的轨迹方程.23.已知函数f (x )=ln (1+x ),x ∈[0,+∞),f'(x )是f (x )的导函数.设g (x )=f (x )﹣axf'(x )(a 为常数),求函数g (x )在[0,+∞)上的最小值. 24.在平面直角坐标系xoy 中,已知点A (﹣1,1),P 是动点,且△POA 的三边所在直线的斜率满足k OP +k OA =k PA (1)求点P 的轨迹C 的方程(2)若Q 是轨迹C 上异于点P 的一个点,且=λ,直线OP 与QA 交于点M .问:是否存在点P ,使得△PQA 和△PAM 的面积满足S △PQA =2S △PAM ?若存在,求出点P 的坐标;若不存在,说明理由.2016-2017学年江苏省南通市如东高中高三(上)第二次调研数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.若集合A={﹣1,0,1},B={x|0<x<2},则A∩B={1} .【考点】交集及其运算.【分析】根据题意,分析可得,集合B为(0,2)之间所有的实数,而A中的元素在(0,2)之间只有1,由交集的意义可得答案.【解答】解:根据题意,分析可得,集合B为(0,2)之间所有的实数,而A中的元素在(0,2)之间只有1,故A∩B={1}.2.若命题“∃x∈R,使得x2+(1﹣a)x+1<0”是假命题,则实数a的取值范围是[﹣1,3] .【考点】特称命题.【分析】因为不等式对应的是二次函数,其开口向上,若“∃x∈R,使得x2+(1﹣a)x+1<0”,则相应二次方程有重根或没有实根.【解答】解:∵“∃x∈R,使得x2+(1﹣a)x+1<0是假命题,∴x2+(1﹣a)x+1=0没有实数根或有重根,∴△=(1﹣a)2﹣4≤0∴﹣1≤a≤3故答案为:[﹣1,3].3.函数的单调增区间为.【考点】复合函数的单调性.【分析】根据正切函数单调性的性质进行求解即可.【解答】解:由kπ﹣<x﹣<kπ+,k∈Z,得kπ﹣<x﹣<kπ+,k∈Z,即函数的单调递增区间为;故答案为:.4.函数的定义域为(﹣∞,2)∪(2,3).【考点】函数的定义域及其求法.【分析】根据对数函数的性质求出函数的定义域即可.【解答】解:由题意得:,解得:x<3且x≠2,故函数的定义域是(﹣∞,2)∪(2,3),故答案为:(﹣∞,2)∪(2,3).5.若幂函数f(x)=x a的图象经过点A(4,2),则它在A点处的切线方程为x ﹣4y+4=0.【考点】利用导数研究曲线上某点切线方程.【分析】先设出幂函数的解析式,然后根据题意求出解析式,根据导数的几何意义求出函数f(x)在x=4处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式即可.【解答】解:∵f(x)是幂函数,设f(x)=xα∴图象经过点(4,2),∴2=4α∴α=∴f(x)=f'(x)=它在A点处的切线方程的斜率为f'(4)=,又过点A(4,2)所以在A点处的切线方程为x﹣4y+4=0故答案为:x﹣4y+4=06.设函数f(x)=,则f(﹣2)+f(log212)=9.【考点】函数的值.【分析】由条件利用指数函数、对数函数的运算性质,求得f(﹣2)+f(log212)的值.【解答】解:由函数f(x)=,可得f(﹣2)+f(log212)=(1+log24 )+=(1+2)+=3+6=9,故答案为:9.7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,将y=f(x)的图象向右平移个单位后,得到函数g(x)的图象,则函数g(x)=sin(2x﹣).【考点】正弦函数的图象.【分析】根据三角函数的图象求出函数f(x)的解析式即可得到结论.【解答】解:由图象知A=1,,即函数的周期T=π,∵T=,∴ω=2,即f(x)=sin(2x+φ),∵f()=sin(2×+φ)=1,∴+φ=+2kπ,即φ=+2kπ,∵|φ|<,∴当k=0时,φ=,即f(x)=sin(2x+),将y=f(x)的图象向右平移个单位后,得到函数g(x)的图象,则g(x)=sin[2(x﹣)+]=sin(2x﹣),故答案为:sin(2x﹣)8.已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递减,并且f(﹣m2﹣)>f(﹣m2+2m﹣2),则m的取值范围是.【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性的定义先求出a的值,根据函数奇偶性和单调性的性质将不等式进行转化进行求解即可.【解答】解:因为函数f(x)在定义域[2﹣a,3]上是偶函数,所以2﹣a+3=0,所以a=5.所以f(﹣m2﹣)>f(﹣m2+2m﹣2),即f(﹣m2﹣1)>f(﹣m2+2m﹣2),所以偶函数f(x)在[﹣3,0]上单调递增,而﹣m2﹣1<0,﹣m2+2m﹣2=﹣(m ﹣1)2﹣1<0,所以由f(﹣m2﹣1)>f(﹣m2+2m﹣2)得,解得.故答案为.9.若双曲线的离心率为3,其渐近线与圆x2+y2﹣6y+m=0相切,则m=8.【考点】双曲线的简单性质.【分析】由于双曲线的离心率为3,得到双曲线的渐近线y=2x,渐近线与圆x2+y2﹣6y+m=0相切,可得圆心到渐近线的距离d=r,利用点到直线的距离公式即可得出.【解答】解:∵双曲线的离心率为3,∴c=3a,∴b=2a,取双曲线的渐近线y=2x.∵双曲线的渐近线与x2+y2﹣6y+m=0相切,∴圆心(0,3)到渐近线的距离d=r,∴,∴m=8,故答案为:8.10.已知椭圆C:=1的左焦点为F,点M是椭圆C上一点,点N是MF的中点,O是椭圆的中点,ON=4,则点M到椭圆C的左准线的距离为.【考点】椭圆的简单性质.【分析】由题意画出图形,由已知求得M到右焦点的距离,然后结合三种圆锥曲线统一的定义得答案.【解答】解:如图,由椭圆C:=1,知a2=25,b2=9,∴c2=a2﹣b2=16,∴c=4.则e=,∵点N是MF的中点,O是椭圆的中心,ON=4,∴|MF′|=8,则|MF|=2a﹣|MF′|=10﹣8=2,设点M到椭圆C的左准线的距离为d,则,得d=.故答案为:.11.设α为锐角,若sin(α+)=,则cos(2α﹣)=.【考点】三角函数的化简求值.【分析】利用整体构造思想,将cos(2α﹣)=cos[(α+)+(α﹣)]利用诱导公式和同角三角函数关系即可求解.【解答】解:∵0,∴,.sin(α+)=∵sin(α+)=故,∴.∴cos(α+)=;又∵,sin(α+)=cos[﹣(α+)]=cos(α)=,∴sin(α)=﹣.cos(2α﹣)=cos[(α+)+(α﹣)]=cos(α+)cos(α)﹣sin(α+)sin(α)=×+=.故答案为:0.12.已知函数f(x)=,当x∈(﹣∞,m]时,f(x)的取值范围为[﹣16,+∞),则实数m的取值范围是[﹣2,8] .【考点】分段函数的应用.【分析】x<﹣2时,函数单调递减,﹣2<x≤0时,函数单调递增,可得当x=﹣2时,图象在y轴左侧的函数取到极小值﹣16,又当x=8时,y=﹣2x=﹣16,结合条件,即可求出实数m的取值范围.【解答】解:x≤0时,f(x=12x﹣x3,∴f′(x)=﹣3(x+2)(x﹣2),∴x<﹣2时,函数单调递减,﹣2<x≤0时,函数单调递增,∴当x=﹣2时,图象在y轴左侧的函数取到极小值﹣16,∵当x=8时,y=﹣2x=﹣16,∴当x∈(﹣∞,m]时,f(x)的取值范围为[﹣16,+∞),则实数m的取值范围是[﹣2,8].故答案为:[﹣2,8].13.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若•=,则AB的长为.【考点】平面向量数量积的运算.【分析】由条件并结合图形可得到,,这样代入进行数量积的运算即可得出,解该方程即可求出AB的长.【解答】解:根据条件:====;∴;解得.故答案为:.14.设函数f(x)=(a∈R,e为自然对数的底数).若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则实数a的取值范围是[1,e] .【考点】正弦函数的图象.【分析】由题意可得存在y0∈[0,1],使f(y0)=y0成立,即f(x)=x在[0,1]上有解,即e x+x﹣x2=a,x∈[0,1].利用导数可得函数的单调性,根据单调性求函数的值域,可得a的范围.【解答】解:由题意可得y0=sinx0∈[﹣1,1],f(y0)=,∵曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,∴存在y0∈[0,1],使f(y0)=y0成立,即f(x)=x在[0,1]上有解,即e x+x﹣x2=a 在[0,1]上有解.令g(x)=e x+x﹣x2,则a为g(x)在[0,1]上的值域.∵当x∈[0,1]时,g′(x)=e x+1﹣2x>0,故函数g(x)在[0,1]上是增函数,故g(0)≤g(x)≤g(1),即1≤a≤e,故答案为:[1,e].二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写成文字说明、证明过程或演算步骤.15.在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,.(1)求sin∠BAD;(2)求AD及DC的长.【考点】正弦定理;余弦定理.【分析】(1)由已知利用同角三角函数基本关系式可求sinB的值,由∠BAD=∠B+∠ADB,利用特殊角的三角函数值及两角和的正弦函数公式即可计算得解.(2)由正弦定理可求AD,得AC=2AE=3,在△ACD中,由余弦定理即可解得DC的值.【解答】(本题满分为14分)解:(1)在△ABD中,因为,所以,即sinB=,…3分所以sin∠BAD=sin(∠B+∠ADB),因为:∠ADB=,所以:sin∠BAD=×=…7分(2)由正弦定理,得…依题意得AC=2AE=3,在△ACD中,由余弦定理得:AC2=AD2+DC2﹣2AD•CDcos ∠ADC,即,所以DC2﹣2DC﹣5=0,解得:(负值舍去).…16.在△ABC中,角A,B,C的对边分别为a,b,c,.(1)若,求△ABC的面积;(2)设向量,,且,求角B的值.【考点】正弦定理;平面向量共线(平行)的坐标表示.【分析】(1)根据题意,由平面向量的数量积的计算公式,变形化简可得ab=15,借助三角函数基本关系计算可得sinC的值,由三角形面积公式计算可得答案;(2)由向量平行的坐标计算公式可得2sinB(1﹣2sin2)﹣(﹣)cos2B=0,化简可得,进而可得,即可得B的值,分析B、C 的大小关系,可得答案.【解答】解:(1)根据题意,∵,∴,∴ab=15,又∵,C∈(0,π),.所以.(2)根据题意,∵,∴2sinB(1﹣2sin2)﹣(﹣)cos2B=0,即,,即,显然cos2B≠0,所以,所以或,即或,因为,所以,所以(舍去),即.17.如图,有一块半径为R的半圆形空地,开发商计划征地建一个矩形游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O为圆心,A,B 在圆的直径上,C,D,E在圆周上.(1)设∠BOC=θ,征地面积记为f(θ),求f(θ)的表达式;(2)当θ为何值时,征地面积最大?【考点】在实际问题中建立三角函数模型.,可求f(θ)的表达式;【分析】(1)利用f(θ)=2S梯形OBCE(2)求导数,确定函数的单调性,即可求得最值.【解答】解:(1)连接OE,OC,可得OE=R,OB=Rcosθ,BC=Rsinθ,θ∈(0,)=R2(sinθcosθ+cosθ);∴f(θ)=2S梯形OBCE(2)求导数可得f′(θ)=﹣R2(2sinθ﹣1)(sinθ+1)令f′(θ)=0,则sinθ=∵θ∈(0,)∴θ∈(0,)时,f′(θ)>0,θ∈(,)时,f′(θ)<0,∴θ=时,f(θ)取得最大,即θ=时,征地面积最大.18.如图所示,已知圆A的圆心在直线y=﹣2x上,且该圆存在两点关于直线x+y ﹣1=0对称,又圆A与直线l1:x+2y+7=0相切,过点B(﹣2,0)的动直线l 与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当时,求直线l的方程;(3)(+)•是否为定值?如果是,求出其定值;如果不是,请说明理由.【考点】向量在几何中的应用.(1)设出圆A的半径,根据以点A(﹣1,2)为圆心的圆与直线l1:x+2y+7=0【分析】相切.点到直线的距离等于半径,我们可以求出圆的半径,进而得到圆的方程;(2)根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,我们可以结合直线l过点B(﹣2,0),求出直线的斜率,进而得到直线l的方程;(3)由直线l过点B(﹣2,0),我们可分直线的斜率存在和不存在两种情况,分别讨论(+)•是否为定值,综合讨论结果,即可得到结论.【解答】解:(1)由圆存在两点关于直线x+y﹣1=0对称知圆心A在直线x+y﹣1=0上,由得A(﹣1,2),设圆A的半径为R,因为圆A与直线l1:x+2y+7=0相切,∴,∴圆A的方程为(x+1)2+(y﹣2)2=20,(2)当直线l与x轴垂直时,易知x=﹣2符合题意,当直线l与x轴不垂直时,设直线l的方程为y=k(x+2),即kx﹣y+2k=0连接AQ,则AQ⊥MN,∵,∴,由,得,∴直线l的方程为3x﹣4y+6=0,∴所求直线l的方程为x=﹣2或3x﹣4y+6=0,(3)∵AQ⊥BP,∴•=0,∴(+)•=2•=2()•=2(+•)=2•,当直线l与x轴垂直时,得,则=(0,),又=(1,2),∴(+)•=2•=2•=0,当直线l的斜率存在时,设直线l的方程为y=k(x+2),由,解得,∴=(,),∴(+)•=2•=2•=2(+)=﹣10综上所述,( +)•是定值,且为﹣1019.已知椭圆C: +=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.【解答】解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率.由⇒(m2+3)y2﹣4my﹣2=0,所以,于是,从而,即,则直线ON的斜率,又由PQ⊥TF知,直线TF的斜率,得t=m.从而,即k OT=k ON,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).20.已知函数f(x)=﹣x2+ax﹣4lnx﹣a+1(a∈R).(1)若,求a的值;(2)若存在,使函数f(x)的图象在点(x0,f(x0))和点处的切线互相垂直,求a的取值范围;(3)若函数f(x)在区间(1,+∞)上有两个极值点,则是否存在实数m,使f(x)<m对任意的x∈[1,+∞)恒成立?若存在,求出m的取值范围,若不存在,说明理由.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【分析】(1)若,代入计算,建立方程,即可求a的值;(2)利用切线互相垂直,整理得,设f(t)=8t2﹣6at+a2+5,则f(t)在t∈(2,3)上有零点,考虑到f(2)=32﹣12a+a2+5=(a﹣6)2+1>0,所以或,即可解得a的取值范围;(3)若函数f(x)在区间(1,+∞)上有两个极值点,g(x)在区间(1,+∞)上有两个不同零点,求出a的取值范围,即可得出结论.【解答】解:(1)由得,,解得…(2)函数f(x)的定义域为(0,+∞),,,由题意得,即,…整理得,设,由,得t∈(2,3),则有8t2﹣6at+a2+5=0,…设f(t)=8t2﹣6at+a2+5,则f(t)在t∈(2,3)上有零点,考虑到f(2)=32﹣12a+a2+5=(a﹣6)2+1>0,所以或,解得或8≤a<11,所以a的取值范围是…(3),令g(x)=﹣2x2+ax﹣4,由题意,g(x)在区间(1,+∞)上有两个不同零点,则有,解得…设函数f(x)的两个极值点为x1和x2,则x1和x2是g(x)在区间(1,+∞)上的两个不同零点,不妨设x1<x2,则①,得且关于a在上递增,因此…又由①可得②,当x∈(1,x1)时,g(x)<0,f'(x)<0,f(x)递减;x∈(x1,x2)时,g(x)>0,f'(x)>0,f(x)递增;当x∈(x2,+∞)时,g(x)<0,f'(x)<0,f(x)递减,结合②可得=…设,则,所以h(x)在上递增,所以,从而,所以,又f(1)=0,所以存在m≥3﹣4ln2,使f(x)<m,综上,存在满足条件的m,m的取值范围为[3﹣4ln2,+∞)…数学加试试卷(物理方向考生作答)解答题(共4小题,每小题0分共40分,解答时应写出文字说明,证明过程或演算步骤)21.已知点P是直线2x﹣y+3=0上的一个动点,定点M(﹣1,2),Q,是线段PM延长线上的一点,且PM=MQ,求点Q的轨迹方程.【考点】轨迹方程.【分析】利用代入法,即可求点Q的轨迹方程.【解答】解:由题意知,M为PQ中点,…设Q(x,y),则P为(﹣2﹣x,4﹣y),代入2x﹣y+3=0,得2x﹣y+5=0…22.设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E,求点E的轨迹方程.【考点】直线与圆的位置关系.【分析】求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程.【解答】解:因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC,所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|,又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4…由题设得A(﹣1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为:…23.已知函数f(x)=ln(1+x),x∈[0,+∞),f'(x)是f(x)的导函数.设g (x)=f(x)﹣axf'(x)(a为常数),求函数g(x)在[0,+∞)上的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】求出函数g(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值.【解答】解:由题意,…令g'(x)>0,即x+1﹣a>0,得x>a﹣1,当a﹣1≤0,即a≤1时,g(x)在[0,+∞)上单调递增,g min(x)=g(0)=ln(1+0)﹣0=0…当a﹣1>0即a>1时,g(x)在[a﹣1,+∞)上单调递增,在[0,a﹣1]上单调递减,所以g(x)min=h(a﹣1)=lna﹣a+1…综上:…24.在平面直角坐标系xoy中,已知点A(﹣1,1),P是动点,且△POA的三边所在直线的斜率满足k OP+k OA=k PA(1)求点P的轨迹C的方程(2)若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA交于点M.问:是否存在点P ,使得△PQA 和△PAM 的面积满足S △PQA =2S △PAM ?若存在,求出点P 的坐标;若不存在,说明理由.【考点】轨迹方程;平行向量与共线向量.【分析】(1)设点P (x ,y ).由于k OP +k OA =k PA ,利用斜率计算公式可得,化简即为点P 的轨迹方程.(2)假设存在点P ,Q .使得△PQA 和△PAM 的面积满足S △PQA =2S △PAM ,分两种情况讨论:一种是点M 为线段AQ 的中点,另一种是点A 是QM 的一个三等分点.利用=λ,可得PQ ∥OA ,得k PQ =k AO =﹣1.再利用分点坐标公式,解出即可判断是否符合条件的点P 存在.【解答】解:(1)设点P (x ,y ).∵k OP +k OA =k PA ,∴,化为y=x 2(x ≠0,﹣1).即为点P 的轨迹方程.(2)假设存在点P,Q .使得△PQA 和△PAM 的面积满足 S △PQA =2S △PAM ,①如图所示,点M 为线段AQ 的中点.∵=λ,∴PQ ∥OA ,得k PQ =k AO =﹣1. ∴,解得.此时P (﹣1,1),Q (0,0)分别与A ,O 重合,因此不符合题意.故假设不成立,此时不存在满足条件的点P .②如图所示,当点M 在QA 的延长线时,由S △PQA =2S △PAM ,可得,∵=λ,∴,PQ∥OA.由PQ∥OA,可得k PQ=k AO=﹣1.设M(m,n).由,,可得:﹣1﹣x2=2(m+1),﹣x1=2m,化为x1﹣x2=3.联立,解得,此时,P(1,1)满足条件.综上可知:P(1,1)满足条件.。

2020届江苏省南通中学2017级高三上学期二调考试数学试卷及解析

2020届江苏省南通中学2017级高三上学期二调考试数学试卷及解析

2020届江苏省南通中学2017级高三上学期二调考试数学试卷★祝考试顺利★(解析版)一、填空题:本大题共14小题.1.已知集合{21}A =-,-,{1,2,3}B =-,则A B =__________. 【答案】{2-,1-,2,3}【解析】根据并集计算即可.【详解】{}2,1A --=,{1,2,3}B =-, {}2,1,2,3A B ∴⋃=--,故答案为:{2-,1-,2,3}2.若复数z 满足(1)2i z i +=,则复数z 的共轭复数为__________.【答案】1i -【解析】根据复数的除法运算求z ,再求共轭复数即可.【详解】(1)2i z i +=,22(1)11(1)(1)i i i z i i i i -∴===+++-, 1z i ∴=-,故答案为:1i -3.如果数据1x ,2x ,3x ,,n x 的方差是a ,若数据132x -,232x -,332x -,,32n x -的方差为36,则实数a 的值为__________.【答案】4【解析】根据公式2()()D aX b a D X +=计算即可.【详解】数据1x ,2x ,3x ,,n x 的方差是a ,∴数据132x -,232x -,332x -,,32n x -的方差为9a ,即936a =,所以4a =,故答案为:44.在1,2,3,4这四个数中,任取两个不同的数,其和大于积的概率是_______.【答案】12【解析】任取两个不同的数共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) 6种取法,其中和大于积的有(1,2),(1,3),(1,4),三种,所以概率是3162= 点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.5.如图所示的算法中,输出的结果是__________.【答案】3【解析】 由程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,。

【数学】江苏地区南师附中,天一,淮中,海门中学四校联考2017年度高三(下)试卷(理)(解析版)

【数学】江苏地区南师附中,天一,淮中,海门中学四校联考2017年度高三(下)试卷(理)(解析版)

,.江苏省南师附中、天一、淮中、海门中学四校联考2017届高三(下)数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)已知全集I={1,2,3,4,5,6},集合A={1,3,5},B={2,3,6},则(∁I A)∩B= .2.(5分)复数1+的实部为.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)某校在市统测后,从高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图,如图所示.则估计该校高三学生中数学成绩在[110,140)之间的人数为.5.(5分)若双曲线=1的一条渐近线过点(2,1),则双曲线的离心率为.6.(5分)现有5张分别标有数字1,2,3,4,5的卡片,它们大小和颜色完全相同.从中随机抽取2张组成两位数,则两位数为偶数的概率为.7.(5分)已知点P(x,y)满足,则z=的最大值为.8.(5分)设正项等比数列{a n}满足2a5=a3﹣a4.若存在两项a n、a m,使得a1=4,则m+n的值为.9.(5分)在正方体ABCD﹣A1B1C1D1中,P为AA1中点,Q为CC1的中点,AB=2,则三棱锥B﹣PQD的体积为.10.(5分)已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2﹣2x+1,不等式f(x2﹣3)>f(2x)的解集用区间表示为.11.(5分)在平面直角坐标系xOy中,设直线x﹣y+m=0(m>0)与圆x2+y2=8交于不同的两点A,B,若圆上存在点C,使得△ABC为等边三角形,则正数m的值为.12.(5分)已知P是曲线y=x2﹣ln x上的动点,Q是直线y=x ﹣1上的动点,则PQ的最小值为.13.(5分)矩形ABCD中,P为矩形ABCD所在平面内一点,且满足PA=3,PC=4.矩形对角线AC=6,则= .14.(5分)在△ABC中,若+=3,则sin A的最大值为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知f(x)=2sin x cos x+2cos2x﹣1.(1)求f(x)的最大值,以及该函数取最大值时x的取值集合;(2)在△ABC中,a、b、c分别是角A、B、C所对的边长,且a=1,b=,f(A)=2,求角C.16.(14分)如图,在正三棱柱ABC﹣A1B1C1中,每条棱长均相等,D为棱AB的中点,E为侧棱CC1的中点.(1)求证:OD∥平面A1BE;(2)求证:AB1⊥平面A1BE.,.17.(14分)如图,已知椭圆C:=1(a>b>0)过点(0,1)和(1,),圆O:x2+y2=b2(1)求椭圆C的标准方程;(2)若直线l与圆O相切,切点在第一象限内,且直线l与椭圆C交于A、B两点,△OAB的面积为时,求直线l的方程.18.(16分)如图,在某商业区周边有两条公路l1和l2,在点O处交汇;该商业区为圆心角、半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1,l2分别交于A,B,要求AB与扇形弧相切,切点T不在l1,l2上.(1)设OA=a km,OB=b km试用a,b表示新建公路AB的长度,求出a,b满足的关系式,并写出a,b的范围;(2)设∠AOT=α,试用α表示新建公路AB的长度,并且确定A,B 的位置,使得新建公路AB的长度最短.19.(16分)设a>0且a≠1函数f(x)=a x+x2﹣x ln a﹣a(1)当a=e时,求函数f(x)的单调区间;(其中e为自然对数的底数)(2)求函数f(x)的最小值;(3)指出函数f(x)的零点个数,并说明理由.,.20.(16分)如果一个数列从第2项起,每一项与它前一项的差都大于3,则称这个数列为“S型数列”.(1)已知数列{a n}满足a1=4,a2=8,a n+a n﹣1=8n﹣4(n≥2,n∈N*),求证:数列{a n}是“S型数列”;(2)已知等比数列{a n}的首项与公比q均为正整数,且{a n}为“S型数列”,记b n=a n,当数列{b n}不是“S型数列”时,求数列{a n}的通项公式;(3)是否存在一个正项数列{c n}是“S型数列”,当c2=9,且对任意大于等于2的自然数n都满足(﹣)(2+)≤+≤(﹣)(2+)?如果存在,给出数列{c n}的一个通项公式(不必证明);如果不存在,请说明理由.[选修4-1:几何证明选讲]21.(10分)如图,A,B,C是圆O上不共线的三点,OD⊥AB于D,BC和AC分别交DO的延长线于P和Q,求证:∠OBP=∠CQP.[选修4-2:矩阵与变换]22.已知a,b∈R,矩阵A=,若矩阵A属于特征值1的一个特征向量为α1=,属于特征值5的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵.[选修4-4:坐标系与参数方程]23.已知在极坐标系下,圆C:p=2cos()与直线l:ρsin()=,点M为圆C上的动点.求点M到直线l距离的最大值.[选修4-5:不等式选讲]24.已知x,y,z均为正数.求证:.三、解答题(共2小题,满分10分)25.如图,已知长方体ABCD﹣A1B1C1D1,AB=2,AA1=1,直线BD 与平面AA1B1B所成的角为30°,AE垂直BD于点E,F为A1B1的中点.(1)求异面直线AE与BF所成角的余弦值;(2)求平面BDF与平面AA1B1B所成二面角(锐角)的余弦值.,.26.(10分)设集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}满足a1<a2<a3且a3﹣a2≤2,A⊆S(1)若n=6,求满足条件的集合A的个数;(2)对任意的满足条件的n及A,求集合A的个数.,.【参考答案】一、填空题1.{2,6}【解析】因为全集I={1,2,3,4,5,6},集合A={1,3,5},所以∁I A={2,4,6},又B={2,3,6},则(∁I A)∩B={2,6},故答案是:{2,6}.2.【解析】1+=,则复数1+的实部为:.故答案为:.3.6【解析】模拟程序的运行,可得n=1,执行循环体,n=2不满足条件42>2017,执行循环体,n=3不满足条件43>2017,执行循环体,n=4不满足条件44>2017,执行循环体,n=5不满足条件45>2017,执行循环体,n=6满足条件46>2017,退出循环,输出n的值为6.故答案为:6.4.660【解析】由样本频率分布直方图,知:该校高三学生中数学成绩在[110,140)之间的频率为:(0.02+0.026+0.02)×10=0.66,∴估计该校高三学生中数学成绩在[110,140)之间的人数为:1000×0.66=660.故答案为:660.5.【解析】双曲线=1的一条渐近线过点(2,1),可得a=2b,即:a2=4b2=4c2﹣4a2,e>1,解得e=.故答案为:;6.【解析】从这5张卡片中随机同时抽取两张,用抽出的卡片上的数字组成的两位数为:12;13;14;15;21;23;24;25;31;32;34;35;41;42;43;45;51;52;53;54,共20个,偶数为:12,14,24,32,34,42,52,54,共8个,故两位数是偶数的概率是.故答案为7.3【解析】画出满足条件的平面区域,如图示:由z=表示过平面区域的点(x,y)与(0,0)的直线的斜率,由,得A(1,3),显然直线过A(1,3)时,z取得最大值,z==3,故答案为:3.8.6【解析】正项等比数列{a n}满足2a5=a3﹣a4.则2a3q2=a3(1﹣q),可得2q2+q﹣1=0,q>1,解得q=.若存在两项a n、a m,使得a1=4,∴a1=4,∴n+m=6.故答案为:6.9.【解析】如图,连接PQ,则PQ∥AC,取PQ中点G,连接BG,DG,,.可得BG⊥PQ,DG⊥PQ,又BG∩DG=G,则PQ⊥平面BGD,在Rt△BPG中,由BP=,PG=,可得BG=,同理可得DG=,则△BDG边BD上的高为,∴,则.故答案为:.10.(﹣1,3)【解析】根据题意,f(x)是定义在R上的奇函数,则有f(0)=0,当x<0时,f(x)=x2﹣2x+1=(x﹣1)2,为减函数,则当x>0时,f(x)也为减函数,综合可得f(x)在R上为减函数,若f(x2﹣3)>f(2x),则有x2﹣3<2x,解可得﹣1<x<3,即不等式f(x2﹣3)>f(2x)的解集为(﹣1,3),故答案为:(﹣1,3).11.2【解析】根据题意画出图形,连接OA,OB,作OD垂直于AB于D 点,因为△ABC为等边三角形,所以∠AOB=120°,由余弦定理知:AB=2,故BD=,所以OD=,所以O(0,0)到直线AB的距离=,解得m=±2,∵m是正数,∴m的值为2故答案为2.12.【解析】函数的定义域为(0,+∞),由y=x2﹣ln x的导数为y′=x﹣,令x﹣=,可得x=2,所以切点为(2,1﹣ln2),它到直线y=x﹣1即3x﹣4y﹣4=0的距离d==.即点P到直线y=x﹣1的距离的最小值为.故答案为:.13.﹣【解析】由题意可得=(+)•(+)=+•+ +=9+•(+)+0=9+=9+3•6•cos(π﹣∠PAC)=9﹣18•=9﹣18•=﹣,故答案为:.14.【解析】在△ABC中,+=3,∴.∴,即,∴.根据正弦定理得:.∴a2=3bc cos A.又根据余弦定理得:a2=b2+c2﹣2bc cos A,∴b2+c2﹣2bc cos A=3bc cos A.∴.当且仅当b=c时等号成立,∴.∴,即,∴.故答案为:二、解答题,. 15.解:(1)f(x)=2sin x cos x+2cos2x﹣1=sin2x+cos2x=2≤2.当=1,即2x+=+2kπ,解得x=kπ+,k∈Z时取等号.∴f(x)的最大值为2,该函数取最大值时x的取值集合为{x|x=kπ+,k∈Z}.(2)f(A)=2,∴2sin=2,解得A=kπ+,k∈Z.∵a<b,∴A为锐角,∴A=.由余弦定理可得:a2=b2+c2﹣2bc cos A,∴12=+c2﹣2c,化为:c+1=0,解得c=.由正弦定理可得:,可得sin C==×=.∴C=15°,75°,或105°.16.解:(1)设AB1和A1B的交点为O,连接EO,连接OD,因为O为AB1的中点,D为AB的中点,所以OD∥BB1,且又E 是CC1中点,则EC∥BB1且,所以EC∥OD且EC=OD.所以四边形ECDO为平行四边形,所以EO∥CD.又CD⊄平面A1BE,EO⊂平面A1BE,则CD∥平面A1BE(2)因为正三棱柱,所以BB1⊥平面ABC.因为CD⊂平面ABC,所以BB1⊥CD.由已知得AB=BC=AC,所以CD⊥AB.所以CD⊥平面A1ABB1由(1)可知EO∥CD,所以EO⊥平面A1ABB1所以EO⊥AB1.因为正三棱柱各棱长相等,所以侧面是正方形,所以AB1⊥A1B.又EO∩A1B=O,EO⊂平面A1EB,A1B⊂平面A1EB.所以AB1⊥平面A1BE.17.解:(1),椭圆方程为:(2)因为切点在第一象限,可设直线l为y=kx+m(k<0,m>0),联立方程,得(x1,x2分别为A、B横坐标)AB长:=∴∴∴m==,直线l为18.解:(1)在△AOB中,OA=a km,OB=b km,;由余弦定理得:=a2+b2﹣ab;所以;如图,以O为原点,OA所在直线为x轴,建立直角坐标系,,.则,所以直线AB的方程为,即;因为AB与扇形弧相切,所以,即;a,b∈(3,6)(2)因为OT是圆O的切线,所以OT⊥AB.在Rt△OTA中,AT=3tanα;在Rt△OTB中,;所以,AB=AT+TB=3tanα+3tan(﹣α)(0<α<);所以,AB=3(tanα+)=;设,u∈(1,4),则,当且仅当u=2,即时取等号;此时km.所以,当km时,新建公路AB的长度最短.19.解:(1)当a=e时,f(x)=e x+x2﹣x﹣e,f'(x)=e x+2x﹣1.设g(x)=e x+2x﹣1,则g(0)=0,且g'(x)=e x+2>0.所以,g(x)在(﹣∞,+∞)上单增,当x>0时,g(x)>g(0)=0;当x<0时,g(x)<g(0)=0.即当x>0时,f′(x)>0;当x<0时,f'(x)<0.综上,函数f(x)的单增区间是(0,+∞),单减区间是(﹣∞,0).(2)f'(x)=a x ln a+2x﹣ln a=(a x﹣1)ln a+2x①当a>1,若x>0,则a x>1,ln a>0,所以f'(x)>0若x<0,则a x<1,ln a>0,所以f'(x)<0②当0<a<1,若x>0,则a x<1,ln a<0,所以f'(x)>0若x<0,则a x>1,ln a<0,所以f′(x)<0,所以f(x)在(﹣∞,0)上减,(0,+∞)上增.所以f(x)min=f(0)=1﹣a,(3)由(2)得:a>0,a≠1,f(x)min=1﹣a.(ⅰ)若1﹣a>0即0<a<1时,f(x)min=1﹣a>0,函数f(x)不存在零点.(ⅱ)若1﹣a<0即a>1时,f(x)min=1﹣a<0.f(x)的图象在定义域是不间断的曲线,f(x)在(﹣∞,0)上单减,在(0,+∞)上单增.f(a)=a a+a2﹣a ln a﹣a>a2﹣a ln a﹣a=a(a﹣ln a﹣1).令t(a)=a﹣ln a﹣1,(a>1),,所以t(a)在(1,+∞)递增;所以t(a)>t(1)=0.所以f(a)>0.故f(x)在(0,a)有一个零点.又f(﹣a)>a2﹣a>0,故f(x)在(﹣a,0)有一个零点.所以f(x)在(﹣∞,0)和(0,+∞)各有一个零点,即f(x)有2个零点.综上:①0<a<1时,函数f(x)不存在零点;②a>1时,函数f(x)有2个零点.20.(1)证明:由题意,a n+1+a n=8n+4 ①,a n+a n﹣1=8n﹣4 ②,②﹣①得a n+1﹣a n﹣1=8所以a2n=8n,a2n﹣1=8n﹣4,因此a n=4n,从而a n﹣a n﹣1=4>3 所以,数列{a n}是“S型数列”(2)由题意可知a1≥1,且a n﹣a n﹣1=4>3,因此{a n}单调递增且q≥2而(a n﹣a n﹣1)﹣(a n﹣1﹣a n﹣2)=a n﹣1(q﹣1)﹣a n﹣2(q﹣1)=(q﹣1)(a n﹣1﹣a n﹣2)>0所以{a n﹣a n﹣1}单调递增,又b n=a n,因此{b n﹣b n﹣1}单调递增又{b n}不是“S型数列”所以,存在n0,使得﹣≤3,所以b2﹣b1≤﹣≤3,即a1(q﹣1)≤4又因为a2﹣a1>3,即a1(q﹣1)>3且a1,q∈N+,,.所以a1(q﹣1)=4从而a1=4,q=2或a1=2,q=3或a1=1,q=5∴a n=2n+1或或(3)可取a n=(n+1)2,验证符合(﹣)(2+)≤+≤(﹣)(2+)条件,而且a n﹣a n﹣1=2n+1>321.证明:连接OA,因为OD⊥AB,OA=OB,所以,又,所以∠ACB=∠DOB,又因为∠BOP=180°﹣∠DOP,∠QCP=180°﹣∠ACB,所以∠BOP=∠QCP,所以B,O,C,Q四点共圆,所以∠OBP=∠CQP.22.解:由矩阵A属于特征值1的一个特征向量为α1=,得:=,∴3a﹣b=3,由矩阵A属于特征值5的一个特征向量为α2=,得:,∴a+b=5,解得,即A=.∵→→→→.∴A的逆矩阵A﹣1=.23.解:圆C:p=2cos()即x2+y2+2y=0,x2+(y+1)2=1,表示圆心为(0,﹣1),半径等于1的圆.直线l:ρsin()=,即ρcosθ+ρsinθ﹣2=0,即x+y﹣2=0,圆心到直线的距离等于=,故圆上的动点到直线的距离的最大值等于+1.24.证明:因为x,y,z都是为正数,所以①同理可得②③当且仅当x=y=z时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得:三、解答题25.解:(1)在长方体ABCD﹣A1B1C1D1中,以AB所在直线为x轴,AD所在直线为y轴,AA1所在直线为z轴,建立空间直角坐标系,如图.由已知AB=2,AA1=1,可得A(0,0,0),B(2,0,0),F(1,0,1).又AD⊥平面AA1B1B,从而BD与平面AA1B1B所成的角为∠DBA=30°.又AB=2,AE⊥BD,AE=1,AD=,由已知得得E(,,0),D(0,,0)=(﹣1,0,1),,∴,即异面直线AE、BF所成的角的余弦值为.(2)平面AA1B的一个法向量为=(0,1,0).设=(x,y,z)是平面BDF的一个法向量,.由,取.∴所以cos=.平面BDF与平面AA1B1B所成二面角(锐角)的余弦值为.26.解:(1)n=6时,S={1,2,3,4,5,6};∵a3﹣a2≤2;,.∴a3﹣a2=2,或a3﹣a2=1;当a3﹣a2=2时,a2和a3可分别为2和4,3和5,4和6;此时对应的a1分别有1个,2个和3个;当a3﹣a2=1时,a2和a3可分别取2和3,3和4,4和5,5和6;对应的a1分别有1个,2个,3个和4个;∴集合A的个数=1+2+3+1+2+3+4=16个;(2)当n≥5时,若a3﹣a2=2,则a2和a3可分别为2和4,3和5,…,n﹣2和n;此时,对应的a1可分别为1个,2个,…,n﹣3个,共有个;同理,a3﹣a2=1时,a1共有个;∴集合A的个数为:==(n﹣2)2,n≥5,n∈N*.。

【江苏省南通市】2017届高三年级第二次模拟考试理科数学试卷(附答案与解析)

【江苏省南通市】2017届高三年级第二次模拟考试理科数学试卷(附答案与解析)

江苏省南通市2017届高三第一次调研测试理科数学试卷参考公式:样本数据1x ,2x ,…,n x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.棱锥的体积公式:1V Sh =棱锥,其中S 为棱锥的底面积,h 为高.{3}AB =,则A B =________为虚数单位,则z 的实部为________.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.已知摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为________.5.如图是一个算法的流程图,则输出的n 的值为________.6.若实数x ,y 满足24,37,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则32z x y =+的最大值为________.7.抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:8.如图,在正四棱柱1111–ABCD A B C D 中,3cm AB =,11cm AA =,则三棱锥11D A BD -的体积为 ______3cm .9.在平面直角坐标系xOy 中,直线20x y +=为双曲线22221(00)x y a b a b-=>>,的一条渐近线,则该双曲线的离心率为________.10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为________升. 中,若2BC BA AC AB CA CB +=,则sin sin AC12.已知两曲线()2sin f x x =,()cos g x a x =,π(0,)2x ∈相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为________.13.已知函数()|||4|f x x x =+-,则不等式2(2)()f x f x +>的解集用区间表示为________.14.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点(1,1)A ,且A B A C ⊥,则线段BC 的长的取值范围为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A .以OA 为始边作锐角β,其终边与单位圆交于点B ,5AB =. (1)求cos β的值; (2)若点A 的横坐标为513,求点B 的坐标.16.(本小题满分14分)如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E PC 为的中点,OP OC =,PA PD ⊥.求证:(1)直线PA BDE ∥平面; (2)平面BDE PCD ⊥平面.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的离心率为2,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O OP 作的垂线交直线y 于点Q ,求2211OP OQ +的值. 18.(本小题满分16分)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F AD 为的中点,点E BC 在边上,裁剪时先将四边形CDFE EF MNFE 沿直线翻折到处(点C ,D BC M 分别落在直线下方点,N 处,FN BC P 交边于点),再沿直线PE 裁剪.(1)当4EFP ∠=π时,试判断四边形MNPE 的形状,并求其面积; (2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由.19.(本小题满分16分)已知函数2()ln f x ax x x =--,a ∈R .(1)当38a =时,求函数()f x 的最小值; (2)若10a -≤≤,证明:函数()f x 有且只有一个零点;(3)若函数()f x 有两个零点,求实数a 的取值范围. 20.(本小题满分16分)已知等差数列{}n a 的公差d 不为0,且1k a ,2k a ,…,n k a ,…(12k k <<…n k <<…)成等比数列,公比为q . (1)若11k =,23k =,38k =,求1a d的值; (2)当1a d为何值时,数列{}n k 为等比数列; (3)若数列{}n k 为等比数列,且对于任意n *∈N ,不等式2n n k n a a k +>恒成立,求1a 的取值范围.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修41-:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C AO 为的中点,弦2DE C CE CD =过点且满足,求OCE △的面积.B .[选修42-:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点(1,1)P 在矩阵A 对应的变换作用下变为(3,3)P ',求矩阵A .C .[选修44-:坐标系与参数方程](本小题满分10分) 在极坐标系中,求直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长. D .[选修45-:不等式选讲](本小题满分10分)求函数3sin y x =+【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在棱长为11112ABCD A B C D -的正方体中,11P C D 为棱的中点,1Q BB 为棱上的点,且1(0)BQ BB λλ=≠.(1)若12λ=,求AP AQ 与所成角的余弦值; (2)若直线1AA APQ 与平面所成的角为45︒,求实数λ的值. 23.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线22(0)x py p =>上的点(,1)M m 到焦点2F 的距离为. (1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E x P 处的切线与轴相交于点,直线PF 与抛物线相交于A ,B 两点,求EAB △面积的最小值.江苏省南通市2017届高三第一次调研测试数学试卷∞2)(2,+)+2,62]二、解答题:本大题共∠OA OB AOBcos2-ABOA OB3,PC PD P=,PCD.PN MN=2m )解法一:=0 EFDθ(<19.【解】(1)当38a =时,23()ln 8f x x x x =--.所以31(32)(2)()144x x f x x x x+-'=--=,(0x >).2分令()0f x '=,得2x =,当(0,2)x ∈时,()0f x '<;当(2,)x ∈+∞时,()0f x '>, 所以函数()f x 在(0,2)上单调递减,在(2,)+∞上单调递增. 所以当2x =时,()f x 有最小值1(2)ln 22f =--.4分(2)由2()ln f x ax x x =--,得2121()21,0ax x f x ax x x x--'=--=>.所以当0a ≤时,221()<0ax x f x x--'=,函数()f x 在(0,+)∞上单调递减,所以当0a ≤时,函数()f x 在(0,+)∞上最多有一个零点. 6分因为当10a -≤≤时,(1)1<0f a =-,221e e ()>0e e af -+=,所以当10a -≤≤时,函数()f x 在(0,+)∞上有零点.综上,当10a -≤≤时,函数()f x 有且只有一个零点.8分(3)解法一:由(2)知,当0a ≤时,函数()f x 在(0,+)∞上最多有一个零点. 因为函数()f x 有两个零点,所以>0a .9分由2()ln f x ax x x =--,得221(),(0)ax x f x x x--'=>,令2()21g x ax x =--.因为(0)10g =-<,2>0a ,所以函数()g x 在(0,)+∞上只有一个零点,设为0x .当0(0,)x x ∈时,()0,()0g x f x '<<;当0(,)x x ∈+∞时,()0,()0g x f x '>>. 所以函数()f x 在0(0,)x 上单调递减;在0(,)x +∞上单调递增.要使得函数()f x 在(0,+)∞上有两个零点,只需要函数()f x 的极小值0()0f x <,即200ln 0ax x x --<. 又因为2000()210g x ax x =--=,所以002ln 10x x +->, 又因为函数h()=2ln 1x x x +-在(0,+)∞上是增函数,且h(1)=0, 所以01x >,得0101x <<. 又由20210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<.13分以下验证当01a <<时,函数()f x 有两个零点. 当01a <<时,21211()10a a g a a a a-=--=>, 所以011x a <<. 因为22211e e ()10e e e e a af -+=-+=>,且0()0f x <.所以函数()f x 在01(,)ex 上有一个零点.又因为2242222()ln (1)10a f a a a a a a=----=>≥(因为ln 1x x ≤-),且0()0f x <.所以函数()f x 在02(,)x a上有一个零点.所以当01a <<时,函数()f x 在12(,)e a内有两个零点.综上,实数a 的取值范围为(0,1).16分下面证明:ln 1x x ≤-.设()1ln t x x x =--,所以11()1x t x x x-'=-=,(0x >). 令()0t x '=,得1x =.当(0,1)x ∈时,()0t x '<;当(1,)x ∈+∞时,()>0t x '. 所以函数()t x 在(0,1)上单调递减,在(1,)+∞上单调递增. 所以当1x =时,()t x 有最小值(1)0t =. 所以()1ln 0t x x x =--≥,得ln 1x x ≤-成立. 解法二:由(2)知,当0a ≤时,函数()f x 在(0,+)∞上最多有一个零点. 因为函数()f x 有两个零点,所以>0a .9分由2()ln 0f x ax x x =--=,得关于x 的方程2ln x xa x +=,(0x >)有两个不等的实数解. 又因为ln 1x x ≤-,所以222ln 211(1)1x x x a x x x+-=≤=--+,(0x >). 因为0x >时,21(1)11x--+≤,所以1a ≤.又当1a =时,1x =,即关于x 的方程2ln x xa x +=有且只有一个实数解.所以<<1a 0.13分(以下解法同解法1)20.【解】(1)由已知可得:1a ,3a ,8a 成等比数列,所以2111(2)(7)a d a a d +=+, 2分 整理可得:2143d a d =.因为0d ≠,所以143a d =.4分(2)设数列{}n k 为等比数列,则2213k k k =. 又因为1k a ,2k a ,3k a 成等比数列,所以2111312[(1)][(1)][(1)]a k d a k d a k d +-+-=+-. 整理,得21213132132(2)(2)a k k k d k k k k k k --=---+. 因为2213k k k =,所以1213213(2)(2)a k k k d k k k --=--. 因为2132k k k ≠+,所以1a d =,即11a d=. 6分当11a d=时,1(1)n a a n d nd =+-=,所以n k n a k d =. 又因为1111n n n k k a a q k dq --==,所以11n n k k q -=.所以1111nn n n k k q q k k q +-==,数列{}n k 为等比数列. 综上,当11a d=时,数列{}n k 为等比数列. 8分(3)因为数列{}n k 为等比数列,由(2)知1a d =,11(1)n n k k q q -=>.1111111n n n n k k a a q k dq k a q ---===,11(1)n a a n d na =+-=. 因为对于任意n ∈*N ,不等式2n n k n a a k +>恒成立. 所以不等式1111112n n na k a q k q --+>,即111112n n k q a n k q -->+,111111110222n n nn k q q na k q k q --+<<=+恒成立.10分下面证明:对于任意的正实数(01)εε<<,总存在正整数1n ,使得11n n εq <. 要证11n n εq <,即证11ln ln ln n n q ε<+. 因为11ln e 2x x x ≤<,则1122111ln 2ln n n n =<,解不等式1211ln ln n n q ε<+,即1122211()ln ln 0n q n ε-+>,可得121n >,所以21n >.不妨取20]1n =+,则当10n n >时,原式得证.所以11102a <≤,所以12a ≥,即得1a 的取值范围是[2,)+∞.16分21.A .[选修41-:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C AO 为的中点,弦2DE C CE CD =过点且满足,求OCE △的面积. 【解】设CD x =,则2CE x =. 因为1CA =,3CB =,由相交弦定理,得CA CB CD CE =, 所以21322x x x ⨯==,所以2x =. 2分取DE 中点H ,则OH DE ⊥. 因为2222354()28OH OE EH x =-=-=,所以OH =.6分又因为2CE x ==,所以OCE △的面积1122S OH CE ==⨯ 10分B .[选修42-:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点11P (,)在矩阵A对应的变换作用下变为(3,3)P ',求矩阵A .【解】设ab Acd ⎡⎤=⎢⎥⎣⎦, 因为向量11⎡⎤⎢⎥-⎣⎦是矩阵–1A 的属于特征值的一个特征向量,所以111(1)111a b cd -⎡⎤⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦.所以11a b c d -=-⎧⎨-=⎩,.4分因为点(1,1)P 在矩阵A 对应的变换作用下变为(3,3)P ',所以1313a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.所以+3+3a b c d =⎧⎨=⎩,.8分解得1a =,2b =,2c =,1d =,所以1221A ⎡⎤=⎢⎥⎣⎦. 10分C .[选修44-:坐标系与参数方程](本小题满分10分) 在极坐标系中,求直线.π()4θρ=∈R .被曲线4sin ρθ=所截得的弦长. 【解】解法一:在4sin ρθ=中,令π4θ=,得π4sin 4ρ=AB =. 10分解法二:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线π()4θρ=∈R 的直角坐标方程为y x =①, 3分 曲线4sin ρθ=的直角坐标方程为2240x y y +-=②.6分由①②得00x y =⎧⎨=⎩,,或22x y =⎧⎨=⎩,,8分所以(0,0),(2,2)A B ,所以直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长AB =. 10分D .[选修45-:不等式选讲](本小题满分10分)求函数3sin y x =+【解】3sin y x x =++2分由柯西不等式得222222(3sin (34)(sin cos )25y x x x =+≤++=,8分所以max 5y =,此时3sinx =. 22.【解】以{}1,,AB AD AA 为正交基底,建立如图所示空间直角坐标系A xyz -. (1)因为=(1,2,2)AP ,=(2,0,1)AQ ,所以cos =||||AP AQ AP AQ AP AQ <>==,.所以AP 与AQ . 4分(2)由题意可知,1(0,0,2)AA =,(2,0,2)AQ λ=. 设平面APQ 的法向量为(,,)x n y z =,则0,0,AP AQ⎧=⎪⎨=⎪⎩n n 即220,220x y z x z λ++=⎧⎨+=⎩.令2z =-,则2x λ=,2y λ=-. 所以(2,2,2)n λλ=--.6分又因为直线1AA 与平面APQ 所成角为45︒,所以111||=||||||2,AA AA AA cos n <>==n n , 23.【解】(1)抛物线22(0)x py p =>的准线方程为2py =-, 因为(,1)M m ,由抛物线定义,知12p MF =+, 所以122p+=,即2p =, 所以抛物线的方程为24x y =.3分(2)因为214y x =,所以12y x '=. 设点2(,),04t E t t ≠,则抛物线在点E 处的切线方程为21()42t y t x t -=-.令0y =,则2tx =,即点(,0)2t P .因为(,0)2t P ,(0,1)F ,所以直线PF的方程为2()2ty x t =--,即20x ty t +-=.则点2(,)4t E t 到直线PF 的距离为3|2|t t t d +-= 5分联立方程2,420,x y x ty t ⎧=⎪⎨⎪+-=⎩消元,得2222(216)0t y t y t -++=. 因为2242(216)464(4)0t t t ∆=+-=+>,所以1y =2y =所以221212222164(4)1122tt AB y y y y t t ++=+++=++=+=. 7分所以EAB △的面积为3222214(4)1(4)22||t t S t t ++=⨯=⨯.不妨设322(4)()x g x x +=(0)x >,则12222(4)()(24)x g x x x+'=-.因为x ∈时,()0g x '<,所以()g x 在上单调递减;)x ∈+∞上,()0g x '>,所以()g x 在)+∞上单调递增.所以当x 32min 4)()g x ==所以EAB △的面积的最小值为10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海门中学2017届高三第二次教学质量调研数学试卷
一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上......... 1.已知集合}3,2,0,1{,02|
-=⎭
⎬⎫
⎩⎨⎧
>-=B x x x A ,则=B A ▲ . 2.已知复数z 满足i z i =+)43((i 为虚数单位),则=||z ▲ . 3.函数x x x x f ln )23()(2
++=的零点的集合为 ▲ .
4.若31tan ),2
,0(,=
∈απ
βα,21
)tan(=+βα,则=+βα2 ▲ . 5.将函数)32sin(π+=x y 图像上的点),12
(t P π-,
向右平移)0(>k k 个单位长度得到点'
P ,若'
P 在函数x y 2sin =的图像上,则k 的最小值为 ▲ .
6.已知函数⎩⎨⎧<++-≥+=0
),cos(0
,sin )(2
2x x x x x x x f α是奇函数,则=αcos ▲ . 7.若双曲线),(1322
2
2R n m n
m y n m x ∈=--+的焦距为4,则实数n 的取值范围为 _____▲ .
8.若实数y x ,满足⎪⎩

⎨⎧≤≥-+≤+-4030
1y y x y x ,则y x -2)21(的最大值为 ▲ . 9.设n S 是公差不为零的等差数列}{n a 的前n 项和,若2
5242322a a a a +=+,且279=S ,则数列}{n a 的通项公式=n a ▲ .
10.已知圆:C 042
2
=-+x y x 及点)2,1(),0,1(B A -,直线l 平行于AB ,与圆C 相交于
N M ,两点,AB MN =若直线l 与直线AB 在圆心C 的同侧,则直线l 的方程为
____▲ .
11.若0,0>>b a ,且直线06=-+by ax 与直线052)3(=+--y x b 垂直,则b a 2
131
+的最小值为 ▲ .
12.设R m ∈,若过点),2(m 存在三条直线与曲线x x y 33
-=相切,则实数m 的取值范围是 ▲ .
13.在ABC ∆中,2=AB ,0
60=∠A ,点D 满足DB CD 2=,且3
37
=
AD ,则=∙ ▲ .
14.在ABC ∆中,2
tan 2tan 2tan
222
C
B A ++的最小值为 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本题满分14分)
在ABC ∆中,c b a ,,分别是角C B A ,,所对的边,若b
c A 23)3sin(=+π (1)求角B 的大小;
(2)若2,32==c b ,求ABC ∆的面积。

16. (本题满分14分) 已知函数x
x
x f -+=22)(
(1)求不等式4
17
)(>
x f 的解集; (2)若函数)()
()2()(R m x mf x f x g ∈-=的最小值为11-,求实数m 的值。

17. (本题满分14分)
如图,有一块矩形空地ABCD ,km AB 2=,km BC 4=,现规划在该空地四边形
AEFG 建一个商业区,其中顶点G F E A ,,,为商业区四个入口,且入口F 在边BC 上(不
包含顶点),入口G E ,分别在边AD AB ,上,EF AE =,GF AG =,矩形内其余区域均为绿化区。

(1)设tkm BF =,以点A 为坐标原点,直线AB 为x 轴,建立直角坐标系,如图所示。

①求直线GE 的方程 ②求t 的取值范围。

(2)设商业区域的面积为1S ,绿化区域的面积为2S ,问入口F 如何选址,即t 为何值时,可使得该商业区域的环境舒适度指数
1
2
S S 最大?
18. (本题满分16分)
在平面直角坐标系xoy 中,设),(00y x D 为椭圆:C 122
22=+b
y a x )0(>>b a 上的点,
直线x k y l x k y l 2211:,:==与圆D :)0()()(2
2020>=-+-r r y y x x 均相切.
(1)若椭圆C 的两条准线间的距离为8,焦距为2 . ①求椭圆C 的方程; ②若2
6
=
r ,且21l l ⊥,求圆D 的方程. (2)若椭圆C 的离心率为
23,b r 5
5
2=
,求||21k k -的最小值.
19. (本题满分16分)已知数列{}n a 中,λλλ,),12(3,1*
11N n n a a a n n ∈-+=-=+为
常数。

(1) 设,n a b n n λ+=求证:数列{}n b 为等比数列;
(2) 求数列{}n a 的前n 项的和n S ;
(3) 若3S 为数列{}n S 的最小项,求实数λ的取值范围。

20. (本题满分16分)设R a ∈,函数e e x e
ex
x f (],,0(,)(2
∈=
为自然对数的底数),a x ax x g --=ln 2)(,
(1) 求实数)(x f 的值域;
(2) 若的最小值;
成立,求实数使a x g x 0)(],2
1,0(≤∈∃ (3) 若对于]00)()(],,0(00e x f x g x e x ,在(的方程关于=-∈∀总有两个不等实根,
求实数a 的取值范围。

相关文档
最新文档