2020高考数学一轮复习第7章立体几何初步第5节简单几何体的面积与体积教师用书文北师大版

合集下载

高考数学大一轮总复习 第七章 立体几何 7.5 简单几何

高考数学大一轮总复习 第七章 立体几何 7.5 简单几何
第七章 立体几何
第五节 简单几何体的面积和体积
基础知识 自主学习
热点命题 深度剖析
思想方法 感悟提升
最新考纲 了识 自主学习
知识梳理
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式 S圆柱侧=_2_π_r_l___ S圆锥侧=_π_r_l___ S圆台侧=π_(_r+__r_′__)_l_
答案 C
2.(2015·陕西卷)一个几何体的三视图如图所示,则该几何体的表面 积为( )
A.3π C.2π+4
B.4π D.3π+4
解析 由三视图知,该几何体为半圆柱,故其表面积为S侧+S上底+ S下底=(π+2)×2+π=3π+4。
答案 D
3.某四棱台的三视图如图所示,则该四棱台的体积是( )
A.4 16
C. 3
14 B. 3 D.6
解析 解法一:由三视图可知,原四棱台的直观图如图所示, 其中上,下底面分别是边长为 1,2 的正方形,且 DD1⊥平面 ABCD, 上底面面积 S1=12=1,下底面面积 S2=22=4。 又∵DD1=2,∴V 台=13(S1+ S1S2+S2)h =13(1+ 1×4+4)×2=134。
基础自测
[判一判] (1)多面体的表面积等于各个面的面积之和。( √ ) 解析 正确。多面体的表面积等于侧面积与底面积之和。 (2)锥体的体积等于底面积与高之积。(× )
解析 错误。锥体的体积等于底面积与高之积的13。
(3)球与球的体积之比等于它们半径比的平方。( × ) 解析 错误。球与球的体积之比等于它们半径比的立方。 (4)简单组合体的体积等于组成它的简单几何体体积的和或差。( √ ) 解析 正确。简单组合体是由简单几何体拼接或截去或挖去一部分组 成。 (5)长方体既有外接球又有内切球。( × ) 解析 错误。长方体只有外接球,没有内切球。

高考数学一轮复习第7章第5节简单几何体的面积与体积教师用书文北师大版03

高考数学一轮复习第7章第5节简单几何体的面积与体积教师用书文北师大版03

第五节简单几何体的面积与体积[考纲传真] 了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.圆柱、圆锥、圆台的侧面展开图及侧面积公式1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)锥体的体积等于底面面积与高之积.( )(2)球的体积之比等于半径比的平方.( )(3)台体的体积可转化为两个锥体的体积之差.( )(4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( ) [答案] (1)× (2)× (3)√ (4)√2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD .32cm B [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4,∴r =2(cm).] 3.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,图7­5­1下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图7­5­1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛B [设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B.]4.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .323πC .8πD .4πA [设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π.]5.(2017·郑州质检)某几何体的三视图如图7­5­2所示(单位:cm),则该几何体的体积是________cm 3.【导学号:66482340】图7­5­2323[由三视图可知该几何体是由棱长为2 cm 的正方体与底面为边长为2 cm 的正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.]( )图7­5­3A .8+2 2B .11+2 2C .14+2 2D .15(2)(2016·全国卷Ⅰ) 如图7­5­4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π图7­5­4(1)B (2)A [(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为4+22+2+2=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2) 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.][规律方法] 1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.[变式训练1] (2016·全国卷Ⅲ)如图7­5­5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5C .90D .81图7­5­5B [由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.](1)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B .4π3C.5π3D .2π(2)(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图7­5­6所示(单位:m),则该四棱锥的体积为________m 3.图7­5­6(1)C (2)2 [(1) 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示.由于V 圆柱=π·AB 2·BC =π×12×2=2π,V 圆锥=13π·CE 2·DE =13π·12×(2-1)=π3,所以该几何体的体积V =V 圆柱-V 圆锥=2π-π3=5π3.(2)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V =13Sh =13×2×1×3=2.][规律方法] 1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解. 2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.[变式训练2] (2017·陕西质检(二))某几何体的三视图如图7­5­7所示,则此几何体的体积是( )【导学号:66482341】A .28πB .32πC .36πD .40π图7­5­7C [由三视图得该几何体为一个底面半径为2,高为2的圆柱体和一个上底半径为2,下底半径为4,高为3的圆台,则其体积为2×π×22+13π×3(22+42+2×4)=36π,故选C.]111AB⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3B [由AB ⊥BC ,AB =6,BC =8,得AC =10,要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .则12×6×8=12×(6+8+10)·r ,则r =2.此时2r =4>3,不合题意.因此球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π.][迁移探究1] 若本例中的条件变为“直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.[解] 将直三棱柱补形为长方体ABEC ­A ′B ′E ′C ′, 则球O 是长方体ABEC ­A ′B ′E ′C ′的外接球, ∴体对角线BC ′的长为球O 的直径. 因此2R =32+42+122=13, 故S 球=4πR 2=169π.[迁移探究2] 若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.[解] 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.[规律方法] 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[变式训练3] (2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256πC [如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O ­ABC =V C ­AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O ­ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ­ABC 最大为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.][思想与方法]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错与防范]1.求组合体的表面积时,要注意各几何体重叠部分的处理,防止重复计算.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.。

(教师用书)2020届高考数学第一轮复习 第七篇 立体几何细致讲解练 理 新人教A版

(教师用书)2020届高考数学第一轮复习 第七篇 立体几何细致讲解练 理 新人教A版

第七篇立体几何第1讲空间几何体的结构及其三视图和直观图[最新考纲]1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).知识梳理1.多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆锥可以由直角三角形绕其任一直角边旋转得到.(2)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(3)球可以由半圆面或圆面绕直径旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.辨析感悟1.对棱柱、棱锥、棱台的结构特征的认识(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.(√)2.对圆柱、圆锥、圆台、球的结构特征的认识(4)夹在圆柱的两个平行截面间的几何体还是圆柱.(×)(5)上下底面是两个平行的圆面的旋转体是圆台.(×)(6)用一个平面去截一个球,截面是一个圆面.(√)3.对直观图和三视图的画法的理解(7)在用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中∠A=45°.(×)(8)(教材习题改编)正方体、球、圆锥各自的三视图中,三个视图均相同.(×)[感悟·提升]1.两点提醒一是从棱柱、棱锥、棱台、圆柱、圆锥、圆台的定义入手,借助几何模型强化空间几何体的结构特征.如(1)中例如;(2)中例如.二是图形中与x轴、y轴、z轴都不平行的线段可通过确定端点的办法来解,即过端点作坐标轴的平行线段,再借助所作的平行线段来确定端点在直观图中的位置.如(7).2.一个防范三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.如(8)中正方体与球各自的三视图相同,但圆锥的不同.学生用书第106页考点一空间几何体的结构特征【例1】给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( ).A.0 B.1 C.2 D.3解析①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.答案 B规律方法 (1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.【训练1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中错误的命题的序号是________.解析认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③都不准确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确.答案①②③④考点二由空间几何体的直观图识别三视图【例2】(2013·新课标全国Ⅱ卷)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( ).审题路线在空间直角坐标系中画出四面体⇒以zOx平面为投影面⇒可得正视图.解析在空间直角坐标系中,先画出四面体O-ABC的直观图,如图,设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体被还原成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.答案 A规律方法空间几何体的三视图是分别从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【训练2】(2014·济宁一模)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过A,M,N和D,N,C1的两个截面截去正方体的两个角后得到的几何体如图1,则该几何体的正视图,侧视图、俯视图依次为图2中的( ).A.①②③ B.②③④ C.①③④ D.②④③解析由正视图的定义可知;点A,B,B1在后面的投影点分别是点D,C,C1,线段AN在后面的投影面上的投影是以D为端点且与线段CC1平行且相等的线段,即正视图为正方形,另外线段AM在后面的投影线要画成实线,被遮挡的线段DC1要画成虚线,正视图为②;同理可得侧视图为③,俯视图为④.答案 B考点三由空间几何体的三视图还原直观图【例3】(1)(2013·四川卷)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).(2)若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析(1)由于俯视图是两个圆,所以排除A,B,C,故选D.(2)A,B的正视图不符合要求,C的俯视图显然不符合要求,答案选D.答案(1)D (2)D学生用书第107页规律方法图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.【训练3】若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析所给选项中,A,C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有选项B符合.答案 B1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”.易错辨析7——三视图识图不准致误【典例】(2012·陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为( ).[错解] 选A或D.[错因] 致错原因是根据提示观测位置确定三视图时其实质是正投影,将几何体中的可见轮廓线在三视图中为实线,不可见轮廓线为虚线,错选A或D都是没有抓住看到的轮廓线在面上的投影位置,从而导致失误.[正解] 还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.[答案] B[防范措施] 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图问题时,就要抓住正投影,结合具体问题和空间几何体的结构特征进行解答.【自主体验】(2014·东北三校模拟)如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).解析注意BE,BG在平面CDGF上的投影为实线,且由已知长度关系确定投影位置,排除A,C选项,观察B,D选项,侧视图是指光线从几何体的左面向右面正投影,则BG,BF的投影为虚线,故选D.答案 D对应学生用书P307基础巩固题组(建议用时:40分钟)一、选择题1.一个棱柱是正四棱柱的条件是( ).A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱解析A,B两选项中侧棱与底面不一定垂直,D选项中底面四边形不一定为正方形,故选C.答案 C2.(2014·福州模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( ).解析给几何体的各顶点标上字母,如图1.A,E在侧投影面上的投影重合,C,G在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B(而不是A).答案 B3.下列几何体各自的三视图中,有且仅有两个视图相同的是( ).A .①②B .①③C .①④D .②④解析 正方体的三视图都是正方形,不合题意;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆,符合题意;三棱台的正视图和侧视图、俯视图各不相同,不合题意;正四棱锥的正视图和侧视图都是三角形,而俯视图是正方形,符合题意,所以②④正确. 答案 D4.(2013·汕头二模)如图,某简单几何体的正视图和侧视图都是边长为1的正方形,且其体积为π4,则该几何体的俯视图可以是( ).解析 若该几何体的俯视是选项A ,则其体积为1,不满足题意;由正视图、侧视图可知俯视图不可能是B 项;若该几何体的俯视图是选项C ,则其体积为12,不符合题意;若该几何体的俯视图是选项D ,则其体积为π4,满足题意.答案 D 5.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( ).解析空间几何体的正视图和侧视图的“高平齐”,故正视图的高一定是2,正视图和俯视图“长对正”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合以上可知,这个空间几何体的正视图可能是C.答案 C二、填空题6.利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号).①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.解析①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.答案①②④7.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析显然,三棱锥、圆锥的正视图可以是三角形;三棱柱的正视图也可以是三角形(把三棱柱放倒,使一侧面贴在地面上,并让其底面面对我们,如图所示);只要形状合适、摆放适当(如一个侧面正对着观察者的正四棱锥),四棱锥的正视图也可以是三角形(当然,不是任意摆放的四棱锥的正视图都是三角形),即正视图为三角形的几何体完全有可能是四棱锥;不论四棱柱、圆柱如何摆放,正视图都不可能是三角形(可以验证,随意摆放的任意四棱柱的正视图都是四边形,圆柱的正视图可以是圆或四边形).综上所述,应填①②③⑤.答案①②③⑤8. 如图,用斜二测画法得到四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是________.解析作DE⊥AB于E,CF⊥AB于F,则AE=BF=AD cos 45°=1,∴CD=EF=3.将原图复原(如图),则原四边形应为直角梯形,∠A =90°,AB =5,CD =3,AD =22,∴ S 四边形ABCD =12×(5+3)×22=8 2. 答案 8 2三、解答题9.如图所示的是一个零件的直观图,试画出这个几何体的三视图. 解 这个几何体的三视图如图.10.如图是一个几何体的正视图和俯视图. (1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积; (3)求出该几何体的体积. 解 (1)正六棱锥.(2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =12 3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.能力提升题组 (建议用时:25分钟)一、选择题1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ). A .球 B .三棱锥 C .正方体 D .圆柱解析 球的正视图、侧视图和俯视图均为圆,且形状相同、大小相等;三棱锥的正视图、侧视图和俯视图可以为全等的三角形;正方体的正视图、侧视图和俯视图可以为形状相同、大小相等的正方形;圆柱的正视图、侧视图均为矩形,俯视图为圆. 答案 D2.一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于( ).A.24a2 B.22a2 C.22a2 D.223a2解析根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=24S,本题中直观图的面积为a2,所以原平面四边形的面积等于a224=22a2.答案 B二、填空题3.如图所示,E,F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E 在该正方体的面上的正投影可能是________(填序号).解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.答案②③三、解答题4.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解(1)直观图如图所示:(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.学生用书第108页第2讲空间几何体的表面积与体积[最新考纲]1.了解球体、柱体、锥体、台体的表面积的计算公式.2.了解球体、柱体、锥体、台体的体积计算公式.知识梳理1.柱、锥、台和球的侧面积和体积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨 析 感 悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .(×) (2)设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为3πa 2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)(2013·浙江卷改编)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24 cm 3.(√)(5)在△ABC 中,AB =2,BC =3,∠ABC =120°,使△ABC 绕直线BC 旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(6)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(7)(2014·青州模拟改编)将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为312a 3.(×) [感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.学生用书第109页考点一空间几何体的表面积【例1】(2014·日照一模)如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是( ).A.8 B.20+8 2C.16 D.24+8 2解析由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为22,由面积82,得长为4,则该几何体的表面积为S =2×12×2×2+22×4+2×2×4=20+8 2. 答案 B规律方法 (1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【训练1】 一个几何体的三视图如图所示,则该几何体的表面积为________.解析如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱后剩下的部分.∴S表=(4×1+3×4+3×1)×2+2π×1×1-2π×12=38.答案38考点二空间几何体的体积【例2】(1)(2013·新课标全国Ⅰ卷)某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8π B.8+8πC.16+16π D.8+16π(2)(2014·福州模拟)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为 ( ).A.312B.34C.612D.64解析 (1)由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4,2,2,圆柱的底面半径为2、高为4.所以V =2×2×4+12×22×π×4=16+8π.故选A.(2)三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 答案 (1)A (2)A规律方法 (1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.【训练2】 如图所示,已知E ,F 分别是棱长为a 的正方体ABCD -A 1B 1C 1D 1的棱A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解 法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF , 过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,EF ⊂平面B 1EDF .∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. ∵平面B 1D 1D ⊥平面B 1EDF ,且平面B 1D 1D ∩平面B 1EDF =B 1D , ∴O 1H ⊥平面B 1EDF , 即O 1H 为棱锥的高. ∵△B 1O 1H ∽△B 1DD 1, ∴O 1H =B 1O 1·DD 1B 1D =66a .O 1H =13·12·2a ·3a ·66a =16a 3. 法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,=13·S △C 1EF ·(h 1+h 2)=16a 3.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·福建卷)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是______________.(2)(2013·辽宁卷)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为A.3172B .210 C.132D .310审题路线 (1)正方体内接于球⇒正方体的体对角线长等于球的直径⇒求得球的半径⇒代入球的表面积公式(注意只算球的表面积).(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解.解析 (1)由三视图知,棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为S =4π·⎝⎛⎭⎪⎫2322=12π. (2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)12π (2)C学生用书第110页规律方法 关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】 (2013·新课标全国Ⅰ卷)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为 ( ). A.500π3 cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3解析 作出该球的轴截面,如图所示,依题意BE =2 cm ,AE =CE =4 cm ,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3(cm),故该球的半径AD =5 cm ,所以V =43πR 3=500π3(cm 3).答案 A考点四 几何体的展开与折叠问题【例4】 (1)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O ,剪去△AOB ,将剩余部分沿OC ,OD 折叠,使OA ,OB 重合,则以A ,B ,C ,D ,O 为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC =CC1=3.P是BC1上一动点,则CP+PA1的最小值为________(其中PA1表示P,A1两点沿棱柱的表面距离).解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823. (2)由题意知,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +PA 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3, ∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8, ∴A 1C =82+32=73.故CP +PA 1的最小值为73.答案 (1)823(2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】 如图为一几何体的展开图,其中ABCD 是边长为6的正方形,SD =PD =6,CR =SC ,AQ =AP ,点S ,D ,A ,Q 共线,点P ,D ,C ,R 共线,沿图中虚线将它们折叠起来,使P ,Q ,R ,S 四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析 由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P -ABCD (如图所示), 其中PD ⊥平面ABCD ,因此该四棱锥的体积V =13×6×6×6=72,而棱长为6的正方体的体积V =6×6×6=216,故需要21672=3个这样的几何体,才能拼成一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以=13×12×1=16.[优美解法] E 点移到A 点,F 点移到C 点,则==13×12×1×1×1=16. [答案] 16。

高考数学一轮复习课件:简单几何体的面积与体积

高考数学一轮复习课件:简单几何体的面积与体积

[解析] 沿这条母线将圆柱剪开,展成平面图形, 则该平面图形为如图所示的矩形,
易知 AB=3πcm,AD=4πcm, 当铁丝为线段 AC 时最,为 5πcm.
球的有关问题
=2DC=2,∠DAB=60°,E 为 AB 的中点,将△ADE 与 △BEC 分别沿 ED、EC 向上折起,使 A、B 重合,求形成三 棱锥的外接球的体积.
A.3πa2
B.6πa2
C.12πa2
D.24πa2
[答案] B
[解析] 2R= a2+a2+2a2= 6a,R= 26a, S=4πR2=4π·64a2=6πa2.
5.若圆锥的侧面积为 2π,底面面积为 π,则该圆锥的体 积为________.
[答案]
3 3π
[解析] 本题考查圆锥的侧面积、体积以及圆锥中基本量 的关系、运算,只需求出基本量代入公式即可.
B.48π D.24π
[解析] 本题考查三视图及圆锥、球的体积公式,由三视 图知,该几何体是由一个半球与一个圆锥的组合体,半球半径 为 3,圆锥底面半径为 3,母线长为 5,所以其体积 V=12×43π×33 +13×π×32×4=30π.
2. (2012·南昌模拟)如图是一个空间几何体的三视图,根据 图中尺寸(单位:cm),可知几何体的表面积是( )
∵正四面体棱长为
1,∴正方体棱长为
2 2.
∴外接球直径 2R=
2 3·2 .
∴R=
6 4.
∴体积为43π·(
46)3=
6 8 π.
[点评] 1.折叠问题是高考经常考查的内容之一,解决这 类问题的关键是搞清楚处在折线同一个半平面的量是不变的, 然后根据翻折前后图形及数量的关系的变化,借助立体几何与 平面几何知识即可求解.

高三一轮复习数学第7章第5节简单几何体的表面积与体积

高三一轮复习数学第7章第5节简单几何体的表面积与体积

C.144π D.256π 【解析】 (1)由三视图可知该几何体是一个直三棱柱,如图所示.由题意
知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球 1 的半径最大,故其半径r=2×(6+8-10)=2. 故选B.
高三一轮总复习
1 2 (2)如图,设球的半径为R,∵∠AOB=90° ,∴S△AOB=2R . ∵VOABC=VCAOB,而△AOB的面积为定值, ∴当点C到平面AOB的距离最大时,VOABC最大, 1 1 ∴当C为与球的大圆面AOB垂直的直径的端点时,体积VOABC最大为 3 × 2 R2×R=36, ∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.
高三一轮总复习
【解析】 由三视图可知,该几何体是一个以棱长为2的正方体,挖去一 个以该正方体的中心为顶点,以该正方体的上底面为底面的棱锥后得到的几何 1 2 20 体,所以该几何体的体积V=2 -3×2 ×1= 3 ,故选A.
3
【答案】 A
高三一轮总复习
2.(2015· 全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视 图如图756,则截去部分体积与剩余部分体积的比值为( )
【答案】 C
高三一轮总复习
攻考向·三级提能
空间几何体的表面积
1.(2015· 北京高考)某三棱锥的三视图如图753所示,则该三棱锥的表面积 是( )
A.2+ 5 C.2+2 5 B.4+ 5 D.5
图753
高三一轮总复习
【解析】 作出三棱锥的示意图如图,在△ABC中,作AB边上的高CD,
连接SD.在三棱锥SABC中,SC⊥底面ABC,SC=1,底面三角形ABC是等腰三 角形,AC=BC,AB边上的高CD=2,AD=BD=1,斜高SD= 5 ,AC=BC=

(新课标)2020年高考数学一轮总复习第七章立体几何7_2简单几何体的表面积与体积课件理新人教A版

(新课标)2020年高考数学一轮总复习第七章立体几何7_2简单几何体的表面积与体积课件理新人教A版

面BCC1B1是边长为 5 的菱形,连接CB1,BC1,易得CB1=2 3 ,BC1=2 2 ,且
CB1⊥BC1,所以S侧面BCC1B1=
1 2
CB1·BC1=
1 2
×2
3 ×2
2 =2
6 ,所以斜三棱柱
ABC-A1B1C1的表面积为4+2( 5+ 6),故选D.
(3)由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面 积应为球的表面积与圆柱的表面积面积之和,即S=4π+2π+2π×3=12π,故选 D. [答案] (1)A (2)D (3)D
的表面积为6+4 2+2 3,故选A.
(2)由题意知,斜三棱柱的直观图如图中ABC-A1B1C1所示.易知正方体的棱长为
2,斜三棱柱的两个底面积的和为2S△ABC=2×
1 2
×AB×AC=2,侧面ABB1A1的面积
S侧面ABB1A1=2×1=2,侧面ACC1A1为矩形,S侧面ACC1A1=AA1·AC=2 5 ,侧
出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为

答案:1∶47
3.(必修2·第二章复习参考题改编)一直角三角形的三边长分别为6 cm,8
cm,绕斜边旋转一周所得几何体的表面积为

答案:3356π cm2
4.(必修2·习题1.3A组改编)球内接正方体的棱长为1,则球的表面积为
cm,10 .
答案:3π
和计算能力,广泛应用转化与化归思想.
[基础梳理] 1.多面体的表面积与侧面积 因为多面体的各个面都是平面,所以多面体的侧面积就是 所有侧面的面积之和 , 表面积是 侧面积 与 底面面积 之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式

2025版高考数学一轮总复习第七章立体几何7.1基本立体图形简单几何体的表面积与体积课件

2025版高考数学一轮总复习第七章立体几何7.1基本立体图形简单几何体的表面积与体积课件
中, = 2 2, = ′′ = 1,
= 2 + 2 = 8 + 1 = 3 = ,所以四边形为菱形
(如图所示).则原图形的面积为 = × = 6 2.故选C.
考点二 空间多面体的面积、体积
命题角度1 空间多面体的面积
例2 《九章算术》中将正四棱台称为“方亭”.现有一方亭,高为2,上底面边长为2,下
括(
)
A.一个圆柱、一个圆锥

B.一个圆柱、两个圆锥
C.一个圆台、一个圆柱
D.两个圆柱、一个圆台
解:直角梯形可以分割成一个矩形和一个直角三角形,矩形绕其一边旋转一周
得圆柱,直角三角形绕其直角边旋转一周得圆锥.可得几何体包括一个圆柱、一个圆
锥.故选A.
3.【多选题】如图,长方体 − 1 1 1 1 被一个平面截成两个
合)的直观图.
【教材梳理】
1.棱柱、棱锥、棱台
类别
图形
棱柱
棱锥
棱台
续表
类别
棱柱
互相平行
有两个面__________,其
四边形
余各面都是________,并
定义 且相邻两个四边形的公共
互相平行
边都__________,由这些
面所围成的多面体
结构特

棱锥
棱台
有一个面是多边形,其
平行
用一个______于棱锥
3.立体图形的直观图
(1)概念:直观图是观察者站在某一点观察一个空间几何体获得的图形,立体
平行投影
几何中通常是在__________下得到的平面图形.
(2)斜二测画法画水平放置的平面图形直观图的步骤:
①在已知图形中取互相垂直的轴和轴,两轴相交于点.画直观图时,把它们画

高考数学一轮复习第7章立体几何7.2空间几何体的表面积

高考数学一轮复习第7章立体几何7.2空间几何体的表面积

(2)(2016· 浙江高考)某几何体的三视图如图所示(单位:
2 32 cm3. 72 cm), 则该几何体的表面积是______cm , 体积是______
解析
由几何体的三视图可得该几何体的直观图如图
所示.该几何体由两个完全相同的长方体组合而成,其中 AB = BC = 2 cm , BD = 4 cm ,所以该几何体的体积 V = 2×2×4×2=32 cm3,表面积 S=(2×2×3+2×4×3)×2 =36×2=72 cm2.
圆柱侧
=π×2×4=8π.又 S
=2π×2×4=16π,S
圆柱底

4π,∴该几何体的表面积为 8π+16π+4π=28π.故选 C.
方法技巧 几何体表面积的求法 1.简单组合体:应搞清各构成部分,并注意重合部分 的删或补. 2.若以三视图形式给出,解题的关键是根据三视图, 想象出原几何体及几何体中各元素间的位置关系及数量关 系. 提醒: 求组合体的表面积时, 组合体的衔接部分的面积 要减去.
题型 2 角度 1 典例
空间几何体的体积 根据几何体的三视图计算体积 (2017· 浙江高考) 某几何体的三视图如图所示 )
(单位:cm),则该几何体的体积(单位:cm3)是(
π A. +1 2 3π C. +1 2
π B. +3 2 3π D. +3 2 还原几何体,分清组合体构成部分.
解析
由几何体的三视图可知,该几何体是一个底面
半径为 1, 高为 3 的圆锥的一半与一个底面为直角边长是 2 的等腰直角三角形,高为 3 的三棱锥的组合体, ∴该几何体的体积 1 π 2 1 1 π V= × ×1 ×3+ × × 2× 2×3= +1. 3 2 3 2 2 故选 A.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年第五节 简单几何体的面积与体积[考纲传真] 了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l2.表面积 体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh 台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2 V =43πR 31.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)锥体的体积等于底面面积与高之积.( ) (2)球的体积之比等于半径比的平方.( ) (3)台体的体积可转化为两个锥体的体积之差.( ) (4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( ) [答案] (1)× (2)× (3)√ (4)√2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cmB .2 cmC .3 cmD .32cm B [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4,∴r =2(cm).]3.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,图7­5­1下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图7­5­1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛B [设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B.]4.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .323πC .8πD .4πA [设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π.] 5.(2017·郑州质检)某几何体的三视图如图7­5­2所示(单位:cm),则该几何体的体积是________cm 3.【导学号:66482340】图7­5­2323[由三视图可知该几何体是由棱长为2 cm 的正方体与底面为边长为2 cm 的正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.]空间几何体的表面积(1)图7­5­3A .8+2 2B .11+2 2C .14+2 2D .15(2)(2016·全国卷Ⅰ) 如图7­5­4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π图7­5­4(1)B (2)A [(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为4+22+2+2=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2) 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.][规律方法] 1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.[变式训练1] (2016·全国卷Ⅲ)如图7­5­5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5C .90D .81图7­5­5B [由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.]空间几何体的体积(1)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B .4π3C.5π3D .2π(2)(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图7­5­6所示(单位:m),则该四棱锥的体积为________m 3.图7­5­6(1)C (2)2 [(1) 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示.由于V 圆柱=π·AB 2·BC =π×12×2=2π,V 圆锥=13π·CE 2·DE =13π·12×(2-1)=π3,所以该几何体的体积V =V 圆柱-V 圆锥=2π-π3=5π3.(2)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V =13Sh =13×2×1×3=2.][规律方法] 1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解.2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. [变式训练2] (2017·陕西质检(二))某几何体的三视图如图7­5­7所示,则此几何体的体积是( )【导学号:66482341】A .28πB .32πC .36πD .40π图7­5­7C [由三视图得该几何体为一个底面半径为2,高为2的圆柱体和一个上底半径为2,下底半径为4,高为3的圆台,则其体积为2×π×22+13π×3(22+42+2×4)=36π,故选C.]多面体与球的切、接问题111,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3B [由AB ⊥BC ,AB =6,BC =8,得AC =10,要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .则12×6×8=12×(6+8+10)·r ,则r =2.此时2r =4>3,不合题意.因此球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π.][迁移探究1] 若本例中的条件变为“直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.[解] 将直三棱柱补形为长方体ABEC ­A ′B ′E ′C ′,则球O 是长方体ABEC ­A ′B ′E ′C ′的外接球, ∴体对角线BC ′的长为球O 的直径. 因此2R =32+42+122=13, 故S 球=4πR 2=169π.[迁移探究2] 若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.[解] 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16. [规律方法] 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[变式训练3] (2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256πC [如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O ­ABC =V C ­AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O ­ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ­ABC 最大为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.][思想与方法]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错与防范]1.求组合体的表面积时,要注意各几何体重叠部分的处理,防止重复计算.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.。

相关文档
最新文档