介电和铁电材料.ppt
合集下载
电介质材料(压电和铁电材料)

压电陶瓷材料Байду номын сангаас
锆钛酸铅系(PZT)陶瓷, 其化学式为Pb(Zrx, Ti1-x)O3, 是钙 钛矿结构的二元系固溶体,晶胞中B位置可以是Zr4+, 也可以 是Ti4+。居里点随锆钛比变化。根据器件的要求,可以选择 不同的锆钛比。 然而,锆钛酸铅系陶瓷在制备和使用过程中,都会给环 境和人类健康带来很大的损害。近年来,随着环境保护和人 类社会可持续发展的需求,研发新型环境友好的压电陶瓷已 成为世界各国致力研发的热点材料之一。2001年欧州议会通 过了关于"电器和电子设备中限制有害物质"的法令,并定于 2008年实施。其中在被限制使用的物质中就包括含铅的压电 器件。为此,欧洲共同体立项151万欧元进行关于无铅压电 陶瓷的研究与开发。美国和日本以及我国电子信息产业部也 相继通过了类似的法令,并逐年提高对研制无铅压电陶瓷项 目的支持力度。对新型无铅压电陶瓷的研究和开发也同样受 到了国内科技界与企业界的普遍关注。
小资料:最新的无铅压电材料 任晓兵博士在其论文中提出一种不同于上述机制的全 新原理,该原理利用铁电体在90度畴翻转时产生巨大变形 这一特性,并利用时效点缺陷的对称性性质而产生可回复 的应变(该性质亦为任晓兵博士所发现,X. Ren and K., Otsuka, 《Nature》, 1997)。任晓兵博士认为,存在点缺陷 的情况下,电畴在电场作用下发生翻转,当电场解除时, 在点缺陷的影响下,畴将回到原来的取向。在200V/mm的 电压下可产生0.75%的巨大可逆变形,是相同电压下PZT形 变量的37.5倍。 值得注意的是,产生这一巨大电致应变的材料为钛酸 钡基材料,这为开发对环境无害的高性能电致应变材料提 供了重要新途径。此项成果发表后,立即引起国际学术界 和工业界的强烈反响。
《介电材料》课件

介电损耗
介电损耗
指电介质在电场作用下,由于能量损 耗而引起的电阻性损耗,表现为介质 发热和能量耗散。
介质损耗因数
衡量介电材料在电场作用下的能量损 耗程度,是介电损耗的重要参数。
电场强度与介电强度
电场强度
表示电场对介电材料的电场作用力,是影响介电材料性能的 重要因素。
介电强度
表示介电材料能够承受的最高电场强度,是衡量介电材料耐 压性能的重要指标。
安全可靠。
电容器
02
介电材料作为电容器的重要介质,用于储存和释放电能,调节
电路中的电压和电流。
变压器
03
介电材料用于制造变压器的绝缘层,提高变压器的电气性能和
稳定性。
在电子工业中的应用
集成电路
介电材料作为集成电路的 衬底材料,提供电子元件 相互连接的电路。
电子封装
介电材料用于封装电子元 件,保护电子元件免受环 境影响和机械损伤。
铁电材料
探索铁电材料的介电性能和相关应用,如铁电器件和存储器等。
介电材料在其他领域的应用
电子信息领域
介电材料在电子信息领域具有广泛的应用,如电子元件、集成电路 、微电子器件等。
生物医学领域
探索介电材料在生物医学领域的应用,如生物传感器、医疗设备、 组织工程等。
环境监测领域
利用介电材料的敏感特性,开发环境监测传感器和仪器,用于检测气 体、水质等环境参数。
智能化与多功能化
随着智能化时代的到来,介电材料将向智能化、多功能化方向发展, 如具有传感、驱动、信息处理等多功能的介电材料。
绿色环保
在可持续发展理念的指导下,介电材料的生产和使用将更加注重环保 和节能,推动绿色低碳发展。
谢谢
THANKS
铁电体、热释电体、压电体和介电体及其之间的关系

铁电体、热释电体、压电体和介电体及其之间的关系
铁电体、热释电体、压电体和介电体都是电子材料种类之一,它们在电子领域和工业
领域中有着广泛的应用,是电子材料中的重要种类。
下面我们来了解一下这些电子材料之
间的关系。
铁电体:铁电体是具有铁电性的晶体材料,铁电性是材料自身结构的一个特性,即当
材料暴露在电场中时,会发生电偶极矩的取向变化。
这个特性使得铁电体在电子产品中有
非常广泛的应用,比如它可以用作电容器、震荡器、传感器、存储器等,这些器件在电子
产品中起到重要的作用。
热释电体:热释电体是一种能够将温度变化转化为电能的材料,也叫做热电材料。
热
释电体使用的原理是通过热电效应将热能转化为电能,这个效应是指材料在温度差异作用
下会产生电势差。
热释电体具有良好的稳定性和性能,可以应用于如温度测量、温差发电、制冷等领域。
介电体:介电体是一种在电场作用下不会导电的材料,介电体在电子器件中有广泛的
应用,比如用作电容器、滤波器、隔离器、保险丝等。
由于介电体具有较高的绝缘性能,
它可以防止电信号的干扰和噪声,可以使电子器件的性能更加稳定。
尽管以上这些电子材料在应用领域不同,但它们之间有着一些共同的特性,比如它们
都是晶体材料,都可以产生电势差并转化为电能,它们都可以在电子领域中应用,有着一
定的互相联系。
当然,它们也存在一些区别,这主要体现在各自使用效应的不同点上。
(完整PPT)第六章铁电性能和压电性能_材料物理(1)

结晶化学分类法: 软铁电体 硬铁电体
含氢键的晶体(KDP、RS)和双氧化物晶体(BT、PT、LN) 按极化轴数目分类:
单轴铁电体(RS、KDP、LN)和多轴铁电体(BT) 按原型相有无对称中心分类:
压电性铁电体(KDP、RS)和非压电性铁电体(BT) 按铁电相变时原子运动特点分类:
有序-无序型相变的(RS)和位移型相变的(BT、PT、LN) 按居里-外斯常数C的大小分类:
二、BaTiO3自发极化的微观机理 1. BaTiO3的晶体结构
有氧八面体 骨 架 的 ABO3 晶格
BaTiO3的晶体结构
钙钛矿结构
2. BaTiO3的相变
顺电态
Tc 居里温度
铁电态
120°C
5°C
-80°C
立方晶系 四方晶系 斜方晶系
菱形结构
无自发极化 自发极化沿c轴 自发极化沿 自发极化沿
Ps-饱和极化强度 Pr-剩余极化强度(remanent
polarization) Ec-矫顽场强(corcive field)
~2KV/cm -~120KV/cm
按照Ec大小可将铁电体分为: 软铁电体-小Ec 硬铁电体-大Ec
电滞回线是铁电体的重要物理特征之一,也是判别铁电性的 一个重要判据。
3. 铁电体的分类
如: 在钙钛矿结构中,自发极 化起因于[BO6]中中心离子的 位移
[BO6]氧八面体
2. 铁电体的概念
铁电体是在一定温度范围内具有自发极化(必要条件) ,并且极化方向可随外加电场做可逆转动的晶体。
铁电体一定是极性晶体,但自发极化转动的晶体仅发生在某些特殊结 构晶体当中,在自发极化转向时,结构不发生大的畸变。
质
加电场E 成正比。
含氢键的晶体(KDP、RS)和双氧化物晶体(BT、PT、LN) 按极化轴数目分类:
单轴铁电体(RS、KDP、LN)和多轴铁电体(BT) 按原型相有无对称中心分类:
压电性铁电体(KDP、RS)和非压电性铁电体(BT) 按铁电相变时原子运动特点分类:
有序-无序型相变的(RS)和位移型相变的(BT、PT、LN) 按居里-外斯常数C的大小分类:
二、BaTiO3自发极化的微观机理 1. BaTiO3的晶体结构
有氧八面体 骨 架 的 ABO3 晶格
BaTiO3的晶体结构
钙钛矿结构
2. BaTiO3的相变
顺电态
Tc 居里温度
铁电态
120°C
5°C
-80°C
立方晶系 四方晶系 斜方晶系
菱形结构
无自发极化 自发极化沿c轴 自发极化沿 自发极化沿
Ps-饱和极化强度 Pr-剩余极化强度(remanent
polarization) Ec-矫顽场强(corcive field)
~2KV/cm -~120KV/cm
按照Ec大小可将铁电体分为: 软铁电体-小Ec 硬铁电体-大Ec
电滞回线是铁电体的重要物理特征之一,也是判别铁电性的 一个重要判据。
3. 铁电体的分类
如: 在钙钛矿结构中,自发极 化起因于[BO6]中中心离子的 位移
[BO6]氧八面体
2. 铁电体的概念
铁电体是在一定温度范围内具有自发极化(必要条件) ,并且极化方向可随外加电场做可逆转动的晶体。
铁电体一定是极性晶体,但自发极化转动的晶体仅发生在某些特殊结 构晶体当中,在自发极化转向时,结构不发生大的畸变。
质
加电场E 成正比。
材料铁电性能的测量课件

02
铁电材料在一定温度范围内表现 出明显的铁电效应,即自发极化 随着温度的升高而降低,反之亦然。
铁电材料的特性
01
02
03
电滞回线
铁电材料具有显著的电滞 回线,即其介电常数和极 化强度随外加电场的变化 而发生非线性变化。
热释电效应
当铁电材料受到温度变化 时,其自发极化强度会发 生变化,产生热释电电流。
铁电测试仪通常采用交流测量方法,通过在材料上施加一定频率和幅度的交流电信 号,测量材料的响应信号,从而计算出材料的铁电性能参数。
铁电测试仪具有高精度、高稳定性和可重复性的特点,是研究材料铁电性能的重要 工具。
示波器
示波器是一种常用的电子测量仪 器,它可以用来观察和测量各种
信号的波形和参数。
在测量材料铁电性能时,示波器 可以用来观察和记录材料的电响 应信号,帮助研究者了解材料的
压电效应
在铁电材料中,自发极化 强度随外力作用而发生改 变,从而产生压电电压。
铁电材料的应用
传感器
利用铁电材料的压电效应 和热释电效应,可以制作 出高灵敏度、高分辨率的 传感器。
存储器
铁电材料具有非易失性的 电滞回线,可以用于制作 铁电随机存储器(FRAM)。
换能器
利用铁电材料的压电效应 和热释电效应,可以制作 出高效能的换能器。
在传感器领域的应用
总结词
铁电材料在传感器领域的应用主要涉及压力传感器和振动传感器。
详细描述
由于铁电材料的压电效应,它们可以用于制造高灵敏度、低噪声和宽频带压力传 感器和振动传感器。这些传感器广泛应用于航空航天、汽车、机械和医疗等领域, 用于监测压力、振动和声学信号,并进行相应的控制和调节。
2023
总结词
铁电材料在一定温度范围内表现 出明显的铁电效应,即自发极化 随着温度的升高而降低,反之亦然。
铁电材料的特性
01
02
03
电滞回线
铁电材料具有显著的电滞 回线,即其介电常数和极 化强度随外加电场的变化 而发生非线性变化。
热释电效应
当铁电材料受到温度变化 时,其自发极化强度会发 生变化,产生热释电电流。
铁电测试仪通常采用交流测量方法,通过在材料上施加一定频率和幅度的交流电信 号,测量材料的响应信号,从而计算出材料的铁电性能参数。
铁电测试仪具有高精度、高稳定性和可重复性的特点,是研究材料铁电性能的重要 工具。
示波器
示波器是一种常用的电子测量仪 器,它可以用来观察和测量各种
信号的波形和参数。
在测量材料铁电性能时,示波器 可以用来观察和记录材料的电响 应信号,帮助研究者了解材料的
压电效应
在铁电材料中,自发极化 强度随外力作用而发生改 变,从而产生压电电压。
铁电材料的应用
传感器
利用铁电材料的压电效应 和热释电效应,可以制作 出高灵敏度、高分辨率的 传感器。
存储器
铁电材料具有非易失性的 电滞回线,可以用于制作 铁电随机存储器(FRAM)。
换能器
利用铁电材料的压电效应 和热释电效应,可以制作 出高效能的换能器。
在传感器领域的应用
总结词
铁电材料在传感器领域的应用主要涉及压力传感器和振动传感器。
详细描述
由于铁电材料的压电效应,它们可以用于制造高灵敏度、低噪声和宽频带压力传 感器和振动传感器。这些传感器广泛应用于航空航天、汽车、机械和医疗等领域, 用于监测压力、振动和声学信号,并进行相应的控制和调节。
2023
总结词
电介质材料压电与铁电材料1

Guangdong Ocean University
Xiong Zhengye
压电石英的主要性能特点是:
(1) 压电常数小,时间和温度稳定性极好; (2) 机械强度和品质因素高,且刚度大,固有频率高, 动态特性好; (3) 居里点573℃,无热释电性,且绝缘性、重复性 均好。
Guangdong Ocean University
Xiong Zhengye
石英晶体振荡器
石英晶体振荡器是高精度和 高稳定度的振荡器,被广泛 应用于彩电、计算机、遥控 器等各类振荡电路中,以及 通信系统中用于频率发生器、 为数据处理设备产生时钟信 号和为特定系统提供基准信 号。
Guangdong Ocean University
加应力不 产生极化
Guangdong Ocean University
Xiong Zhengye
在这些电介质的一定方向上施加机械力而产生变形时, 就会引起它内部正负电荷中心相对转移而产生电的极化,从 而导致其两个相对表面(极化面)上出现符号相反的束缚电荷 Q,且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张 量T
电介质材料
Dielectric Materials
(piezoelectric material )
Guangdong Ocean University
Xiong Zhengye
电介质材料之压电材料
一 概述
介电体 压电体 热释电体
铁电体
Guangdong Ocean University
Xiong Zhengye
压电材料可以因机械变形产生电场,也可以因电场作用产 生机械变形,这种固有的机-电耦合效应使得压电材料在工程中 得到了广泛的应用。
《介电材料》PPT课件

编辑ppt
30
§ 1-2 典型低介装置瓷
3、降低烧结温度、改进工艺性能的措施 加入变价金属氧化物MnO2、TiO2 加入助熔剂,固液烧结 利用超细粉体,提高粉体烧结活性 采用还原气氛烧结或热压烧结
编辑ppt
31
§ 1-2 典型低介装置瓷
§ 1-2-3 高热导率陶瓷基片
1、基片应具有的机电性能 2、电介质导热机制 3、高热导率晶体的结构特征 4、高导热陶瓷材料特征比较 5、多芯片组装-多层基片
原顽辉石是滑石瓷的主晶相,有少量斜顽辉石
编辑ppt
11
3、滑石瓷存在的问题及解决方案 (1) 老化 (2) 开裂 (3) 烧结温区过窄
编辑ppt
12
(1) 老化(粉化): 老化原因:
原顽 斜 辉 顽 石 密 辉 体 度 石 积 内 应力
微 裂 纹 老、 化白 斑
防老化措施: a. 用粘度大的玻璃相包裹晶粒,防止相变 b. 抑制晶粒生长 c. 去除游离石英
编辑ppt
3
• (1)高的体积电阻率(室温下大于1012Ωm)和高介电强 度(>104kVm-1),以减少漏导损耗和承受较高的电压。
• (2)高频电场下的介电损耗要小(tanδ一般在2×10-4~ 9×10-3范围内)。介电损耗大,会造成材料发热,使整机 温度升高,影响工作。另外,还可能造成一系列附加的衰减 现象。
8
滑石瓷
§ 1-2-1 滑石瓷 1、滑石的结构
共价键\离子键 复合层
滑石瓷分子式:
3MgO·4SiO2·H2O 滑石矿为层状结构的镁硅酸盐, 属单斜晶系,[SiO4]四面体联结 成连续的六方平面网,活性氧离 子朝向一边,每两个六方网状层 的活性氧离子彼此相对,通过一 层水镁氧层联结成复合层。
铁电材料ppt课件

10
ABO3型钙钛矿晶胞结构
11
Байду номын сангаас
铁电材料的分类
(1)结晶化学分类
含有氢键的晶体:磷酸二氢钾(KDP)、三甘氨酸硫酸盐(TGS)、罗息盐
(RS)等。这类晶体通常是从水溶液中生长出来的,故常被称为水溶性铁电体,
又叫软铁电体;
(Li2双O氧-N化b2物O晶5)体等:,如这B类aT晶iO体3(是B从aO高-T温iO熔2)体、或K熔N盐bO中3生(长K2出O来-N的b2,O5又)称、为L硬iN铁bO电3 体.它们可以归结为ABO3型,Ba2+,K+、Na+离子处于A位置,而Ti4+、Nb6+、 Ta6+离子则处于B位置。
Kbit和1Mbit等密度。
非易失性记忆体掉电后数据不丢失。可
是所有的非易失性记忆体均源自ROM技术。
你能想象到,只读记忆体的数据是不可能修改
的。所有以它为基础发展起来的非易失性记
忆体都很难写入,而且写入速度慢,它们包
括EPROM(现在基本已经淘汰),EEPROM
和Flash,它们存在写入数据时需要的时间长
非铁电相时有对称中心:不具有压电效应,如BaTiO3、TGS(硫酸三甘肽)
以及与它们具有相同类型的晶体。
(4)按相转变的微观机构分类
(5)"维度模型"分类法
12
铁电材料的历史发展和现状
小型 化 铁电软膜理论
热力学理论
发现铁电性
铁电薄膜及器件
钙钛矿时期
KDP时期
罗息盐的发现
13
Company Logo
9
晶体结构
现在发现,具有铁电性的晶体很多,但概括起来可以分 为两大类:
ABO3型钙钛矿晶胞结构
11
Байду номын сангаас
铁电材料的分类
(1)结晶化学分类
含有氢键的晶体:磷酸二氢钾(KDP)、三甘氨酸硫酸盐(TGS)、罗息盐
(RS)等。这类晶体通常是从水溶液中生长出来的,故常被称为水溶性铁电体,
又叫软铁电体;
(Li2双O氧-N化b2物O晶5)体等:,如这B类aT晶iO体3(是B从aO高-T温iO熔2)体、或K熔N盐bO中3生(长K2出O来-N的b2,O5又)称、为L硬iN铁bO电3 体.它们可以归结为ABO3型,Ba2+,K+、Na+离子处于A位置,而Ti4+、Nb6+、 Ta6+离子则处于B位置。
Kbit和1Mbit等密度。
非易失性记忆体掉电后数据不丢失。可
是所有的非易失性记忆体均源自ROM技术。
你能想象到,只读记忆体的数据是不可能修改
的。所有以它为基础发展起来的非易失性记
忆体都很难写入,而且写入速度慢,它们包
括EPROM(现在基本已经淘汰),EEPROM
和Flash,它们存在写入数据时需要的时间长
非铁电相时有对称中心:不具有压电效应,如BaTiO3、TGS(硫酸三甘肽)
以及与它们具有相同类型的晶体。
(4)按相转变的微观机构分类
(5)"维度模型"分类法
12
铁电材料的历史发展和现状
小型 化 铁电软膜理论
热力学理论
发现铁电性
铁电薄膜及器件
钙钛矿时期
KDP时期
罗息盐的发现
13
Company Logo
9
晶体结构
现在发现,具有铁电性的晶体很多,但概括起来可以分 为两大类:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:把各种不同颜色的颜料混合得到什么颜色?
第二节 材料发色/光的机理-1
1、原子激发和分子振动 a.原子中电子的激发跃迁。 例:当燃烧物质中含Na原子,火 焰呈黄色:Na从激发态返回基态 时,发出波长为589.6nm、589.0nm 的黄光 应用:原子发射光谱、焰火 一般固体热辐射的颜色与温度关系:
无反演对称中心的石英晶体有压电效应
第六节 压电材料-2
+
压电体必须是离子晶体或离子团组成的分子
第六节 压电材料-3
三、压电材料主要工程参数 1、机械品质因素 压电振子:具有一定取向和形状的压电晶片具有固有的机械谐振频率。 当外电场的频率与其一致时,由于逆压电效应会产生机械谐振。这种 晶片称压电振子。 压电振子在谐振子时,会产生内耗,造成机械能损失,反映这种机械能损 耗程度的参数为机械品质因数Qm,定义为:
第七节 热释电材料-1
一、热释电效应 晶体因温度变化而引起晶体表 面电荷的现象称为热释电效应 二、热释电效应机制
p s T
电气石中发现:硫磺粉末(黄色)和 氧化铅粉末(红色)混合,用丝质筛 子筛洒加热后的电气石,它们将分别 覆盖于电气石沿三次轴方向的两端。 电气石是一种具有固有极化的晶体
第一节 光与固体的相互作用-5
附:人眼感知的物质颜色
物质的颜色:物体反射或发射特定频率的可见光 颜色:人类的视觉系统对特定频率的可见光的一种感觉 颜色的合成:糊涂的视觉系统 大多数颜色可以由三种基本颜色以适当比例合成,三种基色可以任意选 定。一般选红、绿、蓝三种为基色。 例:红+黄=橙色 红+蓝=紫色 类似地,从白色光中去掉特定频段的光后会呈现特定的颜色。例:白光除去 红色光后呈淡蓝色。
第一节 光与固体的相互作用-2
电子的两种响应行为: 电子极化:电磁波对电子运动产生微扰 电子能态跃迁:电子吸收整个光子能量,使得状态显著改变 1、金属材料 金属吸收光子后 能态的变化 由于自由电子的存 在,金属对所有的 低频电磁波(从无 线电波到紫外光) 者是不透明的,只 有对高频电磁波X 射线和γ 射线才透 明(为什么?)
第五节 介电和铁电材料-12
四、反铁电材料(反铁电体)
一般是离子晶体,电畴内存在两套极化强度相等、 方向相反的亚晶格,使得宏观不显自发极化
双电滞回线:
AB:反铁电体特征,类似于一般的线性介质 BC、CD:铁电体特征,出现固有电极化强度
五、介电铁电材料的应用
电容器,铁电材料可用于高容量电容器: 电子线路中用于阻断、耦合、交直流分离、 滤波和能量存贮等
温度引起的自发极化的改变。自发极化的改变来自于离子的位移
为热释电系数;P s 为自发极化强度;T 为温度
晶体中存在热释电效应的前提 具有自发极化,即晶体结构的 某些方向正负电荷重心不重合。 不存在对称中心,且存在与其 他极化轴不同的唯一极化轴
石英晶体不产生热释电效应示意图
第七节 热释电材料-2
T0
第八节 热电材料-2
基本规律:
均质导体定律:要确定热电势的大小必须保证A、B两种材料的化学成 分和物理状态完全均匀,否则将要难以获得确定的热电势 中间导体定律:如果在回路中引入第三种金属导体,那么只要第三种 金属接入的两端温度相同,则对原回路年产生的热电势不发生影响 中间温度定律:只要两种材料厂均质,两端温度恒定,即使回路中某 一部分处于任何其他温度,原回路产生的热电势不变 定量描述: 规定:冷端电流流出的材料的电势相对于流入的材料的电势为正。 即,若T1<T2时,电流由a点流向b点,称A的电势φA大于B的电势φB。 设△VAB=φA-φB; △T=T2-T1,则实验证明,△T不太大时,有 △VAB 与∝△T
价带电子吸收光子进入禁带中的杂质或缺陷 能级
价带电子或禁带中杂质或缺陷能级上的电子 吸收光子而越过禁带进入导带
非金属材料的透光性: 理想无缺陷的单晶体: h Eg 时, 不透光;h Eg 时, 透光 可见光光子的能量范围约为:1.8eV~3.1eV。因此禁带宽度小于1.8eV 的半导体材料是不透明的,大于3.1eV是透明的,在这之间是半透明的 有晶界和缺陷的非金属材料:即使禁带较宽,也可能不透明 能量的释放形式:光子或声子形式释放
第六节 压电材料-5
五、压电材料的应用举例 1、水声换能器
水中声纳=空中雷达
实现水中电能与声能的相互转化 2、压电超声换能器 利用逆压电效应,在高强度电场下产生高强度超声波,用 于超声清洗、超声乳化、超声粉碎、超声治疗等 3、压电点火器 压电晶体受到外力作用后,在电极面上会感应出电荷,电荷聚集形 成高电。 利用高压可产生火花放电。这种电火花可用于点燃煤气、 炮弹,及用于压电高压发生器。 其他:拾音器、蜂鸣器、 4、石英电子表 流量计、计数器等
说明:汤姆逊效应发生在同一导体上;也是一种可逆的热 效应,容易与焦耳热区分开。
第八节 热电材料-6
二、热电效应的产生机理:
1、温度引起热电子由热端向冷瑞迁移,建立内电场,从而形成 温差电动势 - - - - - - - 热电子流 冷
-
定义热电势系数S:
dV dT dV为温差为dT时导体两端建立的电位差 S
科研和工程中最重要的参数,有的材料可达70%以上 四、压电材料种类 晶体:石英、铌 酸 锂(LiNbO3)、 碘酸锂等 半导体:CdS, CdSe, ZnO, ZnS, ZnTe, ZdTe, GaAs, GaSb等 压电陶瓷:BaTiO3, PbTiO3
材料 介电常数 机电耦合系 数/% 罗息盐 350 73 钛酸钡 1700 21 PZT 1200 30 水晶 4.5 10
第二节 材料发色/光的机理-2
b.分子振动和转动 水或冰的振动吸收主峰在红外区域,近可见光区域也有少量吸收。故 纯水、冰呈淡蓝色。 Cl2蒸气为绿色,I2蒸气为紫色 2、过渡金属原子的能级在配位场中的变化 在化合物中,过渡金属离子处于周围其它离子产生的配位场中。由于配位的几 何形式不同,配位场强弱不同。d轨道或f轨道中能级分离状况和电子排布不同, 电子在能级间跃迁产生的颜色就有差别。即同一元素的原子在不同配位体中产 生不同颜色。 无机化合物中色彩绚丽的矿石、宝石、涂料,许多都是过渡金属化合物形成的。
第二节 材料发色/光的机理-4
例一:Cr2O3呈绿色,刚玉Al2O3无色 把少量Cr2O3 掺入Al2O3 中,由于结构相似,Cr3+ 会取代部分Al3+ 。虽然 周围6个O2-配位不变,但Al3+比Cr3+略小,配位场强弱产生变化,呈红 色。即红宝石Al2O3:Cr3+ 例二:CuSO4· 2O呈蓝色,CuSO4为无色,因为Cu2+的配位场不同 5H 3、共轭效应和有机染料 有机共轭分子中的离域π键:最高占据能级与最低空轨道之间跃 迁在可见光区 有机染料和带色的有机化合物都 是由离域π键引起的。 应用:服装、印刷品、食用色素 最古老的有机染料-靛蓝
第六节 压电材料-1
一、正压电效应和逆压电效应 正压电效应:材料受到应力作用而处于应变状态时,材料内部会引 起电极化和电场,表面出现感应电荷。 逆压电效应:材料受到电场力作用产生电极化时,材料会产生应变。 二、压电效应的机制 无对称中心的晶体中正负离子的位移引起压电效应
具有反演对称中心的晶体ห้องสมุดไป่ตู้压电效应
三、热释电材料 1、晶体 热释电晶体:CaS, CaSe, Li2SO4· 2O, ZnO H 特点:自发极化不能为外电场转向 铁电晶体:LiNbO3, LiTaO3, PhTiO3, Pb(ZnTi)O3, BaTiO3等 特点:自发极化能为外电场转向 2、 有机高聚物晶体 例:聚偏二氟乙烯PVDF,大面积制作,工艺简单,一般用薄膜 四、热释电材料的应用 1938年首先用于红外探测器 030923
第八节 热电材料-10
2、温差发电:塞贝克效应 3、致冷:利用珀尔贴效应 高山、太空、月球等用电
第二章 光学材料
第一节 光与固体的相互作用-1
一、光的本质
光的波粒二象性:
E h h c
真空中:c 1 介质中:c 1 0 0
电磁波谱: 可见光:390nm~770nm 二、光与固体的作用 作用的本质:光是一种电磁波, 光与固体的作用就是固体中的带 电粒子或磁性粒子在电磁场作用 的表现出来的行为。实际上主要 表现为与电子的相互作用
第一节 光与固体的相互作用-3
能量的释放形式:反射光和热能 金属的高反射率的应用:反光镜
金属的色泽: 金属的颜色不是由吸收光的波长决定,而是由反射光的波长决定 金为黄色:光谱红端吸收和反射都最强,紫端透射最多。金泊的射光呈淡绿色
第一节 光与固体的相互作用-4
2、非金属材料 非金属材料对可见 光吸收的三种机理 电子极化:当光的频率与电子极化时间的倒 数相近时才显著
第八节 热电材料-3
定义相对塞贝克系数SAB=SA-SB : S AB lim 则:△VAB=SAB· △T 称SA和SB分别为材料A和B的塞贝克系数 一些元素的热电势排序(前者热电势相对于后者为正): Si, Sb, Fe, Mo, Cd, W, Au, Ag, Zn, Rh, Ir, Tl, Cs, Ta, Sn, Pb, Mg, Al, Hg, Pt, Nd, Pd, K, Ni, Co, Bi 例:若T1>T2, 电流逆时针流 动;反之,顺时针流动 若温度差较大,一般有:
S与材料性质、微结构及其温度有关
2、不同金属的温差电动势的叠加构成闭合回路的净的热电动势
+++++
热
塞贝克系数S本 质上就是热电势 系数
第八节 热电材料-7
一般半导体的热电 势系数最大
铂和铂铑合金 的热电势系数 温度参考点是 273K,0.1MPa
第八节 热电材料-8
三、热电材料的应用
1、测温:热电偶 接触电动势和温差电动势共同构成两种材料构成的闭合回路的电动势