智慧树知道网课《空间解析几何》课后章节测试满分答案

合集下载

智慧树答案高等数学II知到课后答案章节测试2022年

智慧树答案高等数学II知到课后答案章节测试2022年

第一章1.向量在向量的投影为()答案:2.已知,,与的夹角为,则()答案:3.已知,,.若,则()答案:4.已知三角形三个顶点的坐标是,,,则角等于()答案:5.已知两直线和相互垂直,则()答案:36.经过点和直线的平面方程为()答案:7.过直线作平面,使其与已知平面垂直,则平面的方程为()答案:8.一条直线过点,且垂直于直线和,则该直线方程为()答案:9.曲线在坐标面上投影的方程是()答案:10.曲线绕轴旋转一周所生成的旋转曲面的方程是()答案:第二章1.极限不存在。

()答案:对2.极限答案:3.设,要使在处连续,则a=(). 答案:4.设则答案:5.设,则答案:6.设,,则分别为()。

答案:7.曲线在对应点处的切线方程是()。

答案:8.旋转抛物面在点处的切平面方程为()。

答案:9.函数在点处的梯度为()。

答案:10.函数,则点()。

答案:是极小值点第三章1.D={(x,y):0≤x≤1,0≤y≤1},则=()答案:4/92.若D={(x,y):},则=()答案:3.D={(x,y): },则=()答案:1/34.交换积分顺序()答案:5.若则的形心坐标为()答案:2/36.设空间曲面部分,表示在第一卦限部分,则有()答案:7.若则为()答案:4π/158.曲面与所围成空间立体的体积为()答案:π/69.若则的结果为()答案:10.假若则的结果为()答案:8π/105第四章1.设L为椭圆曲线,其周长为a,则( )答案:12a2.下列结论一定正确的是()答案:利用积分曲线的参数方程将对弧长的曲线积分转化为定积分计算时,定积分下限一定小于上限;3.设,S1为S在第一卦限中的部分,则()答案:4.已知为某函数的全微分,则a等于()答案:25.设而为光滑闭曲面S的外侧单位法向量,则S说围成的闭区域Ω的体积V可以表示成()答案:6.设C取圆周的顺时针方向,则()答案:-2π7.设Σ是平面x+y+z=4被圆柱面截去的有限部分,则()答案:08.求()答案:4π9.向量场通过场中单位圆的流量为()答案:2π10.向量场在点处的散度等于()答案:3第五章1.这个级数是收敛的.()答案:对2.级数收敛.()答案:错3.级数发散.()答案:对4.幂级数的麦克劳林级数为 .()答案:对5.已知,则().答案:6.幂级数的收敛半径为().答案:7.幂级数的收敛域为().答案:8.函数展开成的幂级数为().答案:9.设函数,是函数的以为周期的余弦级数展开式的和函数,则().答案:10.下列级数中,条件收敛的是().答案:第六章1.方程是( ). 答案:一阶线性微分方程;2.设函数都连续,不恒等于0,都是的解,则它必定有解()答案:3.方程的通解形式为().答案:4.微分方程有特解形式,是下列选项中的哪个()答案:5.微分方程有特解形式()答案:6.(为任意常数)所确定的隐函数是微分方程的通解.()答案:对7.是微分方程的通解.()答案:对8.不是一阶线性方程. ()答案:错9.已知是二阶非齐次线性方程的线性无关的三个解,则(是任意常数)是方程的通解.()答案:对10.是方程的解,是方程的解,则是方程的解. ()答案:错。

空间解析几何(练习题参考答案)

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.39.02=+-z y3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.7.)51,1,57(.5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A .4B .1C .21D .2 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A .5B .61 C .51 D .81 5.D 7.D 8.B 9.A 10.A .3.当m=_____________时,k j i 532+-与k j m i 23-+互相垂直.4.设kj i a ++=2,kj i b 22+-=,kj i c 243+-=,则)(b a prj c += .4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.3.34-=m ; 4.2919 9.332212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴旋转而成.1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=c b a ,则=⨯⨯c b a )(( ) A .8 B .10 C .{}1,1,0-- D .{}21,1,23.若==-+=b a b k j i a ,则,且,14//236( ) A .)4612(k j i -+± B .)612(j i +± C .)412(k i -± D .)46(k j -± 4.若ϕ的夹角与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C .3π D .4π6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A .2π B .6π C .3π D .4π 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223B .553C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90o D .65arcsin1.D 3.A 4.C 6.C 8.A 9.D7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点. 3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________. 1.设k j i a 32+-=,j i b +=2,k j i c ++-=,则c b a 与+是否平行__________.1.不平行7.33222±=++z y x ; 8.25102-=-z x ;9.双叶双曲面; 10.⎩⎨⎧==+--++02342222x z y z yz y练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=b a λ或两向量对应坐标成比例。

空间解析几何习题答案解析(最新整理)

空间解析几何习题答案解析(最新整理)

一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。

高等数学(经济类)课后习题及答案第八章空间解析几何答案

高等数学(经济类)课后习题及答案第八章空间解析几何答案

习题8-1(A )1.求空间两点(1,2,2)A 与(1,0,1)B -之间的距离.解:3AB ==.2.写出点()456A -,,的对称点坐标:(1)分别关于xOy 、yOz 、xOz 平面的对称点坐标;(2)分别关于x 轴、y 轴、z 轴的对称点坐标;(3)关于原点的对称点坐标.答案:(1)(4,5,6)--;(4,5,6)--;(4,5,6).(2)(4,5,6)-;(4,5,6)---;(4,5,6)-.(3)(4,5,6)--.3.判断由()123A ,,,()315B ,,,()243C ,,三点构成的三角形的形状.解:因为3AB ==,AC ==BC ==, 进一步,计算可得222AB AC BC +=,所以ABC ∆为直角三角形.4.求点(,,)M x y z 到各个坐标轴之间的距离.答案:M 点到x 轴的距离x d =M 点到y 轴的距离y d =,M 点到z 轴的距离z d =5.在x 轴上求一点M ,使它到点()321A -,,和()314B ,,的距离相等.解:由题意设点(,0,0)M x ,且满足MA MB ==,解得1x =,所以(1,0,0)M .6.一动点(,,)M x y z 与定点0000(,,)M x y z 的距离为R (0)R >,求动点(,,)M x y z 所满足的方程.解:由题意0MM R =R =,即2222000()()()x x y y z z R -+-+-=. 7. 一动点(,,)M x y z 与两定点(1,2,3)A 与(2,1,4)B -距离相等,求动点(,,)M x y z 所满足的方程.解:由题意MA MB == 整理得26270x y z -+-=.习题8-2(A )1.设向量23u a b c =+-,32v a b c =-+,求2v u -.解:2(61)(22)(43)547v u a b c a b c -=-+--++=-+.2.已知点C 是线段AB 的中点,O 是线段AB 外一点,若OA a =,OB b =,求OC .解:由题意知AB b a =-,122b a AC AB -==, 因此,22b a a b OC OA AC a -+=+=+=. 3.设点N M ,分别是四边形ABCD 两对角线BD 与AC 之中点,若AB a =, CDc =,求MN .解:设BC 中点为E ,中位线1122EM CD c ==,中位线1122NE AB a ==, 所以在MNE ∆中,1()2MN ME EN a c =+=-+. 4.已知向量(1,2,3)a =-,求2a -以及与a 平行的单位向量e .解:22(1,2,3)(2,4,6)a -=--=--,与a 平行的单位向量1e 2,3)14a a =±=±-. 5.若2a =,1b =,且向量a 与b 的夹角为π6,求: (1)a b ⋅; (2)(2)(3)a b ⋅-; (3)()(2)a b a b +⋅-; (4)a b ⨯; (5)(2)(3)a b ⨯-; (6)()(2)a b a b +⨯-.解:(1)cos 212a b a b θ⋅==⋅⋅= (2)(2)(3)663a b a b ⋅-=-⋅=-;(3)222222()(2)222212a b a b a ab b a ab b +⋅-=--=--=⋅=-;(4)1sin 2112a b a b θ⨯==⋅⋅=; (5)(2)(3)66a b a b ⨯-=⨯=;(6)()(2)22333a b a b a a a b b a b b a b a b +⨯-=⨯-⨯+⨯-⨯=-⨯=⨯=.6.已知向量(2,2,1)a =-、(1,2,3)b =,求a b ⋅ 、a b ⨯及Pr j a b .解:21(2)2131a b ⋅=⋅+-⋅+⋅=; 221856(8,5,6)123i j ka b i j k ⨯=-=--+=--;3a =,14b =,由a b ⋅1=可知cos θ=,所以1Pr j cos 3a b b θ==. 7.设()1,2,3M ,(2,1,3N ,求向量MN 的方向角和方向余弦.解:(1,MN =-,2MN =,方向余弦 1cos 2α=,1cos 2β=-,cos γ= 方向角 3πα=, 23πβ=,4πγ=. 8.一向量的终点为)7,1,2(-B 且它在x 轴、y 轴、z 轴上的投影依次为4,4-和7,求这个向量的起点A 的坐标.解:由题意可知(4,4,7)AB =-,设A 点坐标为000(,,)x y z ,则024x -=,014y --=-,077z -=,解得02x =-,03y =,00z =,所有A 点坐标为(2,3,0)-.9.若向量(,2,1)a k =-与向量(,2,3)b k k =-垂直,求k 值.解:2430a b k k ⋅=--=,解得1k =-或4k =.10.求与向量(2,2,1)a =、(4,5,3)b =都垂直的单位向量. 解:由题意22122(1,2,2)453i j kc a b i j k =⨯==-+=-,且3c =,故所求单位向量为1(1,2,2)3±-.11.已知点()1,1,1M ,()2,2,1A ,()2,1,2B ,求AMB ∠.解:因为()1,1,0MA =,()1,0,1MB =,所以111cos2MA MBAMB MA MB ⋅⋅∠===⋅,因此3AMB π∠=. 12.若a 与b 垂直且都是单位向量,求以u a b =+,v a b =-为邻边的平行四边形面积. 答案:2.解析:由题意1a b ==,由向量积的几何意义可知该平行四边形的面积为: ()()22S u v a b a b a a a b b a b b a b a b =⨯=+⨯-=⨯-⨯+⨯-⨯=-⨯=⨯2sin 21112a b θ==⋅⋅⋅=.习题8-2(B )1.证明向量()()b c a a c b ⋅-⋅与向量c 垂直.证:()()()()()()()()b c a a c b c b c a c a c b c b c a c a c b c ⎡⎤⋅-⋅⋅=⋅⋅-⋅⋅=⋅⋅-⋅⋅⎣⎦, 因为()()()()b c a c a c b c ⋅⋅=⋅⋅,故,所以()()b c a a c b c ⎡⎤⋅-⋅⊥⎣⎦. 2.用向量证明三角不等式+AC BC AB <. 证:设AB c =,AC b =,BC a =,则a c b +=,两边平方得22()a c b +=,即2222a c ac b ++=.又因22a a =,22c c =,22b b =, 又2222cos b a c a c B =++,所以即2222b a c a c <++,故+AC BC AB <.3.已知向量,a b 满足5a =,6b =,15a b ⨯=,求a b ⋅.解:sin 30sin 15a b a b θθ⨯===,1sin 2θ=,cos 2θ=±,所以cos a b a b θ⋅==±. 4.已知向量,a b 满足a b ⊥,且3a =,4b =,求()()a b a b +⨯-.解:()()a b a b a a a b b a b b +⨯-=⨯-⨯+⨯-⨯,因为0a a ⨯=,0b b ⨯=,a b b a ⨯=-⨯,则()()222sin a b a b a b a b a b θ+⨯-=-⨯=⨯=,又因a b ⊥,sin 1θ=,所以()()2sin 24a b a b a b θ+⨯-==. 5.已知向量a 、b 、c 两两垂直,且1a =、2b =、3c =,设s a b c =++,求s 以及s 与a 的夹角.解:22222()22214914s a b c a b c ab bc ac =++=+++++=++=,所以14s =.又因2()1s a a b c a a ⋅=++⋅==,所以=cos 1s a s a θθ⋅==,故 s 与a 的夹角θ=. 6.两个非零向量a 和b 满足如下条件:向量3a b +与75a b -垂直,并且向量4a b -与72a b -垂直,求向量a ,b 的夹角.解:设向量a 与b 的夹角为θ,由(3)(75)a b a b +⊥-,有 220(3)(75)7151671516cos a b a b a a b b a b a b a b θ=+⋅-=⋅-⋅+⋅=-+;由(4)(72)a b a b -⊥-,有 220(4)(72)78307830cos a b a b a a b b a b a b a b θ=-⋅-=⋅+⋅-⋅=+-, 上述两个方程联立,解得 21cos =θ,得π3θ=,所以向量a 与b 的夹角为π3.习题8-3(A )1. 分别求满足下列各条件的平面方程:(1)过点(3,2,4)M --且垂直于x 轴;(2)过点(2,0,1)M -且平行于平面3753x y z -+=;(3)过点(2,9,6)M 且与线段OM 垂直,其中O 为坐标原点;(4)过三点(2,1,4)A -,(1,3,2)B --,(0,2,3)C ;(5)线段AB 的垂直平分面,其中(0,3,6)A ,(2,1,4)B -;(6)平行于xOz 平面且过点(2,4,3)M -;(7)过y 轴和点(1,4,1)M --;(8)过x 轴且垂直于平面03245=+-+z y x ;(9)过原点及点(6,3,2)M 且垂直平面8345=-+z y x ;(10)过点(2,1,1)M -且在x 轴和y 轴上的截距分别为2和1.解:(1)由于所求平面垂直于x 轴,故所求平面平行于yOz 平面,所以所求平面的方程为3x =;(2)设所求平面为375x y z k -+=,又因为其过点(2,0,1)M -,代入得1k =,所以所求平面方程为3751x y z -+=;(3)向量(2,9,6)OM =即为所求平面的法向量,又平面过点(2,9,6)M ,所以所求平面方程为2(2)9(9)6(6)0x y z -+-+-=,即296121x y z ++=;(4)所求平面的法向量为(3,4,6)(2,3,1)(14,9,1)n AB AC =⨯=--⨯--=-,代入点(2,1,4)A -,得到所求平面方程为14(2)9(1)(4)0x y z -++--=,即14915x y z +-=;(5)(2,4,2)AB =--即为所求平面的法向量,且过线段AB 的中点(1,1,5),所以所求平面方程为2(1)4(1)2(5)0x y z -----=,即260x y z --+=;(6)由题意所求平面垂直于y 轴,且过点(2,4,3)M -,所以所求平面方程为4y =-;(7)设所求平面方程为0Ax Cz +=,代入点(1,4,1)M --得A C =,所以所求平面方程为0x z +=;(8)所求平面的法向量为1(1,0,0)(5,4,2)(0,2,4)n i n =⨯=⨯-=,且过原点,所以所求平面方程为20y z +=;(9)所求平面的法向量为1(6,3,2)(5,4,3)(17,28,9)n OM n =⨯=⨯-=-,所以所求平面方程为172890x y z -++=;(10)由题意设所求平面的截距式方程为121x y z c++=,其中c 为平面在z 轴上的截距, 代入点(2,1,1)M -,解得1c =,所以所求平面为1211x y z ++=. 2. 指出下列各平面的特殊位置,并作平面的草图:(1)0=z ; (2)012=-x ;(3)1=+y x ; (4)02=-z x ;(5)0=++z y x ; (6)1432=+-z y x . 答案:(1)xOy 平面;(2)垂直于x 轴的平面;(3)平行于z 轴的平面;(4)平行于y 轴的平面;(5)在x 轴、y 轴和z 轴上截距全为1的平面;(6)在x 轴、y 轴和z 轴上截距分别为2、3-和4的平面;3. 求平面072=-+-z y x 与平面0112=-++z y x 的夹角.解:1(2,1,1)n =-,2(1,1,2)n =, 11111cos 24n n n n θ⋅===, 所以两平面夹角π3θ=. 4. 一平面过点(5,4,3)M 且在各坐标轴上的截距相等,求该平面方程.解:由题意设所求平面方程为1()1x y z a++=,代入(5,4,3)M 得12a =, 所以所求平面为12x y z ++=.5. 一平面过点(3,1,5)M --,且与平面3227x y z -+=-和5431x y z -+=-都垂直,求该平面方程.解:由题意知所求平面的法向12(3,2,2)(5,4,3)(2,1,2)n n n =⨯=-⨯-=-,又知其过点(3,1,5)M --,所以得到所求平面方程为2(3)(1)2(5)0x y z -++-+=,即2215x y z +-=.6. 求点(4,2,3)M -到平面25x y z +-=的距离.解:由点到平面的距离公式可得d ===习题8-3(B )1.一平面过两点)3,4,0(-A ,)3,4,6(-B ,且在三个坐标轴上的截距之和为零,求该平面方程. 解:设所求平面方程为1x y z a b c++=,且0a b c ++=,将点)3,4,0(-A ,)3,4,6(-B 代入平面方程中,联立方程组解得3,6,9a b c ===-,或3,2,1a b c ==-=-, 所以所求平面方程为1369x y z ++=-或1321x y z ++=--. 2.一动点(,,)M x y z 与平面1=+y x 的距离等于它到z 轴的距离,求动点M 的轨迹.解:由题意点M 到z轴的距离为,点M 到平面1=+y x,所以=,解得2222210x y xy x y +-++-=,即为动点M 的轨迹. 3.设平面π位于平面0221=-+-z y x :π与平面0622=-+-z y x :π之间,且将此两平面的距离分为1︰3,求平面π的方程.解:平面1π与2π之间的距离为641)2(126222=+-++-.设所求平面方程为02=++-D z y x :π,则π与1π的距离应为611=d ,π与2π的距离应为632=d ,而666221+=+=D d D d 、,于是3612=+=+D D 、,得3-=D ,所以所求平面方程为032=-+-z y x :π.4.一平面与平面632120x y z +++=平行,若点(0,2,1)M -到两平面的距离相等,求该平面的方程.解:依题意设所求平面方程为6320x y z D +++=,又点(0,2,1)M -到两平面的距离相等,则=,即164D =+,得20D =-,12D =(舍),所以所求平面方程为632200x y z ++-=.5.求过x 轴且与点)5,0,2(M 的距离为5的平面方程.解:由π过x 轴,设所求平面方程为0=+Cz By ,由点)5,0,2(M 到π的距离为,有5522=+C B C,即2225C B C +=,得C B 2±= ,所求方程为02=+±Cz Cy ,即02=±z y . 6.求平行于平面2250x y z +++=且与三坐标平面所构成的四面体的体积为1个单位的平面的方程.解:设所求平面的方程为220x y z D +++=,即122x y z D D D ++=---, 由题意 11622D D V D =-⋅-⋅-=,解得D =±220x y z ++±=.习题8-4(A )1. 分别求满足下列各条件的直线方程:(1) 过点)1,2,1(-M 且与直线43121zy x =--=+平行; (2) 过原点垂直于平面03=-++z y x ; (3) 过两点)1,2,3(-A ,)2,0,1(-B ;(4) 过点)4,2,0(M 且与两平面12=+z x 及23=-z y 都平行;(5) 过点)1,2,1(-M 且与直线210210x y z x y z +--=⎧⎨+-+=⎩,平行.答案:(1)121234x y z --+==-;(2)x y z ==; (3)321421x y z -+-==-(或12421x y z +-==-);(4)24231x y z --==-; (5)121311x y z +--==-. 2. 分别求满足下列各条件的平面方程:(1) 过点)1,1,2(M 且垂直于直线20210x y z x y z +-=⎧⎨+-+=⎩,;(2) 过点)2,1,3(-M 及直线12354zy x =+=-; (3) 过z 轴,且平行于直线L :102340x y z x y z +++=⎧⎨-++=⎩,;(4) 过两平行直线13121-=+=-z y x 与 11322--=-=z y x . 答案:(1)36x y z ++=;(2)892259x y z --=;(3)40x y +=;(4)697x y z -+=.3. 用对称式方程及参数方程表示直线123 4.x y z x y z -+=-⎧⎨-+=-⎩,解:先在直线上找一点,令1x =,解方程组236z y y z -=-⎧⎨-=⎩,得0,2y z ==-.故点(1,0,2)-在直线上.再求直线的方向向量s ,由题意可知12(2,1,1)s n n =⨯=--,所以对称式方程为12211x y z -+==--,从而参数式方程为122.x t y t z t =-⎧⎪=-⎨⎪=-+⎩,, 4. 求两直线113:141x y z L -+==-与220:20x y L x z ++=⎧⎨+=⎩ 的夹角. 解:由已知,有直线2L 的方向向量为(1,4,1)-,直线2L 的方向向量为(2,2,1)--,由夹角公式可得cos 2θ==,所以π4θ=. 5. 求直线313x y z x y z ++=⎧⎨--=⎩与平面02=+-z y x 的夹角ϕ.解:直线313x y z x y z ++=⎧⎨--=⎩的方向向量113(242)2(121)111ijks ==-=---,,,,,平面02=+-z y x 的法线向量(112)n =-,,,由直线与平面的夹角公式,有1πarcsinarcsin26s n s nϕ⋅====⋅. 6.试确定下列各组中的直线与平面的位置关系:(1)37423zy x =-+=-+和3224=--z y x ; (2)723z y x =-=和8723=+-z y x ;(3)431232--=+=-z y x 和3x y z ++=; (4)310220x y z x y +-+=⎧⎨--=⎩和253x y z ++=.答案:(1)平行;(2)垂直;(3)平行;(4)垂直.7. 求直线11321x y z+-==- 与平面010=-+-z y x 的交点. 解:将直线11321x y z+-==-改写为参数方程t z t y t x =+-=-=、、1213,将其代入到平面方程010=-+-z y x 之中,有0101213=-+-+-t t t ,即0126=-t ,得2=t ,再将2=t 代到直线的参数方程之中,得235=-==z y x 、、,所以直线与平面的交点为(532)-,,.8.设直线1:112y L x z -==+,222:102x z L y +-=-=-,求同时平行于12,L L 且与它们等距的平面方程.解:所求平面的法向量12(5,2,1)n l l =⨯=---,则其方程为520x y z D +++=,下面求D . 在1L 上取点1(1,0,1)M -,在2L 上取点2(2,1,2)M -,利用点到平面距离相等可得:=,解得1D =.因此,所求平面为5210x y z +++=. 9.求点(1,2,0)M -在平面点012=+-+z y x 上的投影.解:做过点(1,2,0)M -且垂直于平面012=+-+z y x 的直线方程为12121x y z+-==-,该直线与平面的交点522,,333⎛⎫- ⎪⎝⎭即为所求的投影点.习题8-4(B )1.求点(2,1,3)A 关于直线11:321x y zL +-==-的对称点M 的坐标. 解:设000(,,)M x y z ,过(2,1,3)A 做平面L ∏⊥,则的方程为∏325x y z +-=,求得直线L 与平面∏的交点为2133,,777B ⎛⎫-⎪⎝⎭,则点B 是线段AM 的中点,因此由中点公式得101927,,777M ⎛⎫-- ⎪⎝⎭.2.求原点关于平面6291210x y z +--=的对称点.解:过原点做该平面的垂线629x ty t z t =⎧⎪=⎨⎪=-⎩,代入平面方程解得1t =,得直线与平面的交点为(6,2,9)-.设所求对称点为(,,)x y z ,则有0006,2,9222x y z +++===-,所以(,,)(12,4,18)x y z =-. 3.求点()1,1,4M 到直线234112x y z ---==的距离. 解:过点()1,1,4M 作一个垂直于直线234112x y z ---==的平面,方程为(1)(1)2(4)0x y z -+-+-=,即2100x y z ++-=将直线234112x y z ---==的参数方程2324x t y t z t =+⎧⎪=+⎨⎪=+⎩代入到平面方程中,得12t =- 所以直线与平面的交点坐标为35,,322⎛⎫⎪⎝⎭,所以 点()1,1,4M 到直线234112x y z ---==的距离为点()1,1,4M 与交点35,,322⎛⎫⎪⎝⎭的距离,即所求4.设直线L 在yOz 平面上的投影方程为231y z x -=⎧⎨=⎩,在zOx 平面上的投影方程为20x z y +=⎧⎨=⎩,求直线L 在xOy 平面上的投影方程.解:设过直线L 的平面束方程为231(2)0y z x z λ--++-=, 即2(3)120x y z λλλ++---=,若该平面与z 轴平行,则有3λ=,所以L 在xOy 平面上的投影方程为327x y z +=⎧⎨=⎩.5.若直线131:23x y z L m --==-与2243:340x y z L +--==-相交,求m 的值及其交点的坐标. 解:两直线相交即共面,有12120s s M M ⨯⋅=,12(12,9,83)s s m ⨯=----,12(5,3,3)M M =-,所以1m =.下面求交点:将直线方程改写为参数方程123:13x t L y t z t =+⎧⎪=+⎨⎪=-⎩,232:443x k L y k z =-⎧⎪=-+⎨⎪=⎩,1L 与2L 相交时,下列方程组应有解:233214433t k t k t +=-⎧⎪+=-+⎨⎪-=⎩,解得1,1t k =-=,代入参数方程得到交点坐标为(1,0,3).6. 求过直线2821705810x y z x y z +-+=⎧⎨+-+=⎩且与球面2221x y z ++=相切的平面方程.解:所求平面为28217(581)0x y z x y z λ+-+++-+=,即 (15)(288)(2)170x y z λλλλ+++-+++=,球心为原点,到平面的距离等于半径1,所以1d ==,分子分母平方相等化简得2894285000λλ++=,即(2)(89250)0λλ++=,解得25089λ=-或2λ=-,代入方程,得所求平面为38716424421x y z --=或345x y -=. 7.求过原点,且经过点(1,1,0)P -到直线3:24x z L y x =-⎧⎨=-⎩的垂线的平面方程.解:由已知得L 的方向向量(1,2,1)s =,过点P 做直线L 的垂直平面,其方程为(1)2(1)0x y z -+++=,即210x y z +++=. 设交点0000(,,)P x y z 为直线L 与此平面的交点,解得0002811,,333x y z ==-=. 由于所求平面过原点,可设其方程为0Ax By Cz ++=,将P 、0P 坐标代入平面方程得:028110333A B A B C -=⎧⎪⎨-+=⎪⎩,, 解得116A B C ==. 故所求平面方程为111160x y z ++=.习题8-5(A )1. 分别写出满足下列各条件的曲面方程:(1)以点0(1,2,3)M -为球心,2R =为半径的球面方程; (2)以点(1,1,2)M -为球心,且过原点的球面方程; (3)与两定点(1,2,1)A -和(3,1,4)B 等距的动点轨迹;(4)与原点O 及定点)4,3,2(A 的距离之比为1﹕2的动点轨迹. 答案:(1)222(1)(2)(3)4x y z -+-++=; (2)6)2()1()1(222=-+++-z y x ; (3)2510x y z -+=;(4)22224116(1)339x y z ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.2.求出下列球面方程的球心坐标及半径: (1)222230x y z z ++--=; (2)2222420x y z x y z ++-++=. 答案:(1)球心(0,0,1),半径2;(2)球心(1,2,1)--. 3. 写出满足下列条件的旋转曲面方程: (1)yOz 面上抛物线2y z =绕z 轴旋转一周; (2)yOz 面上直线z y 2=绕y 轴旋转一周;(3)xOy 面上椭圆1322=+y x 分别绕x 及y 轴旋转一周; (4)xOy 面上双曲线1222=-y x 分别绕x 及y 轴旋转一周.答案:(1)22z x y =+; (2)y =± (3)绕x 轴:2223()1x y z ++=,绕y 轴:22231x z y ++=; (4)绕x 轴:2222()1x y z -+=;绕y 轴:22221x z y +-=.4.分别在平面直角坐标系和空间直角坐标系下,指出下列方程所表示的图形名称:(1)3x =; (2)221x y -=; (3)2222=+y x .答案:(1)在平面直角坐标系下表示一条直线,在空间直角坐标系下表示一个平面; (2)在平面直角坐标系下表示一条双曲线,在空间直角坐标系下表示一个双曲柱面; (3)在平面直角坐标系下表示一个椭圆,在空间直角坐标系下表示一个椭圆柱面;. 5.画出下列各方程所表示的曲面:(1)22(1)1x y -+=; (2)22194y x -= (3)22194x y +=; (4)22x z +=. 答案:略.习题8-5(B )1. 一球面过原点和)0,0,4(A 、)0,3,1(B 和)4,0,0(-C ,求该球面的方程.解:设球面方程为222z 0x y z Dx Ey F +++++=,由于它过)0,0,4(A 、)0,3,1(B 和)4,0,0(-C ,因此164019301640D D E F +=⎧⎪+++=⎨⎪-=⎩,,解得424.D E F =-⎧⎪=-⎨⎪=⎩,, 因此,该球面的方程为2224240x y z x y z ++--+=. 2. 画出下列各曲面所围立体的图形:(1)0z =,3z =,x y =,x =,221x y +=(在第一卦限内); (2)0x =,0y =,0z =,222x y R +=,222y z R +=(在第一卦限内).答案:略.习题8-6(A )1. 说出下列曲线的名称,指出曲线的特点并作出曲线的草图.(1)12x y =⎧⎨=⎩,; (2)221z x y z ⎧=+⎨=⎩,;(3)2228x y z z ⎧-=⎨=⎩,; (4)22282.x y z y ⎧-=⎨=-⎩,答案:(1)直线;(2)圆;(3)双曲线;(4)抛物线.2.分别在平面直角坐标系和空间直角坐标系下,指出下列方程所表示的图形名称.(1)5232;y x y x =+⎧⎨=-⎩, (2)22211.2x y y ⎧+=⎪⎨=⎪⎩,答案:(1)在平面直角坐标系下表示一个点,在空间直角坐标系下表示一条直线;(2)在平面直角坐标系下表示两个点,在空间直角坐标系下表示两条直线.3.求曲线1z z ⎧=⎪⎨=⎪⎩在xOy 面上的投影.解:由1z z ⎧=⎪⎨=⎪⎩,有221x y +=.因此,曲线1z z ⎧=⎪⎨=⎪⎩在xOy 面上的投影为2210.x y z ⎧+=⎨=⎩,4. 求曲线2222222160x y z x y z ⎧++=⎪⎨-+=⎪⎩,在xOz 面上的投影. 解:由2222222160x y z x y z ⎧++=⎪⎨-+=⎪⎩,,有223216x z +=. 因此,曲线2222222160x y z x y z ⎧++=⎪⎨-+=⎪⎩,在xOz 面上的投影为2232160.x z y ⎧+=⎨=⎩, 5. 画出下列空间区域Ω的草图.(1)Ω由平面1=++z y x 及三个坐标面围成; (2)Ω由圆锥面22y x z +=及上半球面222y x z --=围成;(3)Ω由抛物面z x -=12,平面0=y ,0=z 及1=+y x 围成;(4)Ω是由不等式222R z x ≤+及222R z y ≤+确定的第一卦限的部分.答案:略.6.作出下列空间区域在xOy 面及xOz 面上的投影区域.(1)介于球面22224a z y x =++内的圆柱体222)(a y a x ≤+-; (2)Ω由圆锥面22y x z +=及抛物柱面x z 22=围成.答案:略.习题8-6(B )1. 分别求母线平行于x 轴与y 轴且都通过曲线2222222160x y z x y z ⎧++=⎪⎨-+=⎪⎩的柱面方程. 答案:平行于x 轴:22316y z -=;平行于y 轴:223216x z +=.2. 求曲线22229x y z y z⎧++=⎨=⎩的参数方程.答案:3cos ,(02π)x y z θθθθ=⎧⎪=≤<⎨⎪=⎩.总习题八一、填空题1.设向量a m n =+,2b m n =-,且2m =,1n =,m 与n 的夹角π3θ=,则向量a 与b 的数量积a b ⋅= ; 答案:1.解析:2222()(2)2cos 2a b m n m n m mn n m m n n θ⋅=+-=--=--142212=-⋅-=. 2.同时垂直于()1,2,1a =和()3,4,5b =的单位向量为 ; 答案:)6,2,2--. 解析:c a b =⨯=()1216,2,2345i j k=--,211c =所以)016,2,2211c c c==±--,即为所求单位向量. 3.设单位向量0a 的两个方向余弦为1cos 3α=,2cos 3β=,则向量0a 的坐标为 ;答案:0122,,333a ⎛⎫=±⎪⎝⎭. 解析:设第三个方向角为γ,由222cos cos cos 1αβγ++=,得2cos 3γ=± 所以0122,,333a ⎛⎫=±⎪⎝⎭. 4.过点(3,1,2)M -且平行于直线121:2329x y z L x y z ++=⎧⎨++=⎩,和直线223:34x y z L x y z --=-⎧⎨++=⎩,的平面方程是 ; 答案:32x y z ++=.解析:由题意可求得两直线的方向向量分别为1(1,2,1)(2,3,2)(1,0,1)s =⨯=-,2(2,1,1)(1,3,1)(2,3,7)s =--⨯=-,所以所求平面的法向量为12(3,9,3)n s s =⨯=---,又因为所求平面过点(3,1,2)M -,由点法式得平面方程为3(3)9(1)3(2)0x y z ---+--=,化简得32x y z ++=.5.过点()0,2,3M -且与平面23x z +=垂直的直线方程为 ; 答案:2302y z x -+==. 解析:因为所求直线与所给平面垂直,所以方向向量为()1,0,2n =由对称式得所求直线方程为2302y z x -+==. 6.过点)3,1,3(-且通过直线211132-=+=-z y x 的平面方程是 ; 答案:247x y z -++=-.解析:点)3,1,3(-与题中的直线共面,所以点)3,1,3(-和直线通过的点(2,1,1)-所形成的向量1(1,0,2)s =--,直线的方向向量为2(3,1,2)s =,所求平面的法向量为12n s s =⨯(2,4,1)=-,所求平面方程为247x y z -++=-.7.xOz 平面上的抛物线22x z =+绕x 轴旋转所形成的旋转曲面方程是 ,绕z 轴旋转所形成的旋转曲面方程是 ;答案:绕x 轴的旋转曲面方程是222()x y z =++,绕z 轴的旋转曲面方程是2222(2)x y z +=+.8.曲线2221x y z y x⎧+-=⎨=⎩在xOz 平面上的投影是 ;答案:22210x z y ⎧-=⎨=⎩.解析:曲线在xOz 坐标平面上的投影是xOz 坐标平面上的柱面与xOz 坐标平面的交线,xOz 坐标平面上的柱面方程是2221x z -=,xOz 坐标平面的0y =,故投影方程是2221x z y ⎧-=⎨=⎩.二、选择题:1.设向量a 与b 满足a b a b +=-,则a 与b 一定( ); (A) 平行 (B) 同向 (C) 反向 (D) 垂直 答案:C .解析:当a 与b 反向时,a b a b +=-,故选C . 2.设向量()()u b c a a c b =⋅-⋅,则有( );.(A) u 与a 垂直 (B) u 与b 垂直 (C) u 与c 垂直 (D) u 与c 平行 答案:C .解析:()()u b c a a c b =⋅-⋅两边乘以c ,则()()()()0u c b c a c a c b c ⋅=⋅⋅-⋅⋅=, 故u 与c 垂直.3. 已知向量a 的方向平行于向量(2,1,2)b =--和(7,4,4)c =--之间的角平分线,且56a =,则a =( );(A) 5(1,7,2)3- (B) 2(1,7,2)3- (C) 5(1,7,2)2- (D) 2(1,7,2)3答案:A .解析:由题意可知3,9b c ==,则01(2,1,2)3b =--,01(7,4,4)9c =--,于是可设0()(1,7,2)9a b c λλ=+=-,又因56a =,故=15λ=,所以a =5(1,7,2)3-,选A . 4.设空间直线的方程为043x y z==-,则该直线必定( );(A) 过原点且垂直于X 轴(B) 不过原点但垂直于X 轴(C) 过原点且垂直于Y 轴 (D) 不过原点但垂直于Y 轴答案:A .解析:直线通过原点,且直线的方向向量为(0,4,3)s =-,X 轴的单位向量为(1,0,0)i =,所以0s i ⋅=,s i ⊥,选A .5.已知平面π通过点(1,0,1)-,且垂直于直线30:240x y z L x y --+=⎧⎨-+=⎩,则平面π的方程是( );(A) 21x y z -+= (B) 21x y z ++= (C) 22x y z -+= (D) 22x y z +-= 答案:B .解析:由题意所求平面的法向量就是所给直线的方向向量,即(1,1,1)(1,2,0)(2,1,1)n s ==--⨯-=---,所以平面π的方程为210x y z ++-=,选B .6.若直线121:110x y z L λ--==与直线2210:50x y L x z λ++=⎧⎨-+=⎩垂直,则=λ( ); (A) 4 (B) 2 (C) 2- (D) 2± 答案:2λ=±.解析:直线1L 的方向向量1(1,10,)s λ=,直线2L 的方向向量2(1,2,0)(,0,1)(2,1,2)s λλ=⨯-=--,由题意知12s s ⊥,故120s s ⋅=, 所以2λ=±.7.下列结论中错误的是( );(A) 2230z x y ++=表示椭圆抛物面 (B) 222312x y z +=+表示双叶双曲面(C) 22220x y z +-=表示圆锥面 (D) 24y x =表示抛物柱面 答案:B.解析:双叶双曲面的方程为2222221x y z a b c--=,故选择B.8.曲线22z z x y⎧=⎪⎨=+⎪⎩xOy 坐标平面上的投影是( );(A) 122=+y x (B) 222=+y x(C) 2210x y z ⎧+=⎨=⎩ (D) 222x y z ⎧+=⎨=⎩答案:C .解析:联立两个曲面z =和22z x y =+,消去z 得到在xOy 坐标平面上的柱面方程为221x y +=,该柱面与xOy 坐标平面0z =的交线即为所求投影,故选C .三、解答题.1.一单位向量e 与x 轴y 、轴的夹角相等,与z 轴夹角是前者的2倍,求向量e .解:设)2cos ,cos ,(cos ααα=e,由12cos cos cos 222=++ααα,有02sin cos 222=-αα,即0)sin 21(cos 22=-αα,所以2πα=或4πα=(43πα=舍去),于是)1,0,0(-=e 或)0,22,22(=e . 2.设非零向量,a b 满足Pr j 1a b =,计算极限0limx a xb ax→+-.解:原式222()()limlimlim()()x x x a xb aa xb aa xb a xb axx a xb a x a xb a →→→+-+-+⋅+-==++++22022limlimlimPr 1()a x x x a a xab x b b aa b xb b a b j b x a xb a a xb aa→→→⋅+⋅+⋅-⋅+⋅⋅=====++++.3.求平面3546x y z +-=与42x y z -+=的等分角平面方程. 解:设所求平面为3546(42)0x y z x y z λ+--+-+-=, 即 (3)(5)(44)620x y z λλλλ++-+---=, 依题意有 =解得53λ=±,代入所设方程有75414x y z ++=和582x y z +-=. 4.过点)3,2,1(M ,求垂直于直线z y x ==且与z 轴相交的直线方程.解:设所求直线方程为p z n y m x 321-=-=-,由与已知直线垂直,有0=++p n m ①;又设与z 轴交点为),0,0(0z ,有pz n m 3210-=-=-②,由①、②两式得m p m n 32-==、,所求直线方程是332211--=-=-z y x . 5.求与已知直线135:23x y L z +-==及2107:54x y L z -+==相交,且平行于直线321:387x y L z +-==-的直线方程.解:由题意可知所求直线L 的方向向量3(8,7,1)s s ==,以参数形式表示直线1L 和2L ,则L 与1L 和2L 的交点分别为1(23,35,)M t t t -+和2(510,47,)M λλλ+-,显然只需确定1M 和2M 之中的一点即可,因123//M M s ,故5213431287t t t λλλ-+--==-,即52138()43127()t t t t λλλλ-+=-⎧⎨--=-⎩,解得252t =-,从而知16525(28,,)22M ---, 所以所求直线方程经整理得282652258142x y z +++==. 6.指出下列方程所表示的曲面的名称,若是旋转面,指出它是什么曲线绕什么轴旋转而成的.(1)2221499x y z ++=; (2)22214y x z -+=; (3)2221x y z --=; (4)222099x y z +-=; (5)224x y z -=; (6)0z =.答案:(1)旋转椭球面.可看成椭圆221490x y z ⎧+=⎪⎨⎪=⎩,绕x 轴旋转而成,或者椭圆221490x z y ⎧+=⎪⎨⎪=⎩,绕x 轴旋转而成.(2)单叶旋转双曲面.可看成双曲线22140y x z ⎧-=⎪⎨⎪=⎩,绕y 轴旋转而成,或者双曲线221,40y z x ⎧-=⎪⎨⎪=⎩绕y 轴旋转而成.(3)双叶旋转双曲面.可看成双曲线2210x y z ⎧-=⎨=⎩,绕x 轴旋转而成,或者双曲线221,x z y ⎧-=⎨=⎩绕x轴旋转而成.(4)旋转抛物面.可看成抛物线20,90x z y ⎧-=⎪⎨⎪=⎩绕z 轴旋转而成,或者抛物线20,90y z x ⎧-=⎪⎨⎪=⎩绕z 轴旋转而成.(5)双曲抛物面.(6)旋转锥面.可看成射线,0z x y ==绕z 轴旋转而成,或者射线,0z y x ==绕z 轴旋转而成.7.指出曲面22219254x y z -+=在下列各平面上的截痕是什么曲线,并写出其方程: (1)2x =; (2)5y =; (3)2z =; (4)1z =.答案:(1)双曲线,方程为22542592z y x ⎧-=⎪⎨⎪=⎩,;(2)椭圆,方程为222945x z y ⎧+=⎪⎨⎪=⎩,; (3)两条直线,方程为352x yz ⎧=⎪⎨⎪=⎩,和352x y z ⎧=-⎪⎨⎪=⎩,;(4)双曲线,方程为22392541.x y z ⎧-=⎪⎨⎪=⎩,。

(完整版)空间解析几何及向量代数测试题及答案(20200730065716)

(完整版)空间解析几何及向量代数测试题及答案(20200730065716)

军教院第八章空间解析几何测试题一、填空题(共7题,2分/空,共20分)1. 四点O(0,0,0) , A(1,0,0) , B(0,1,1), C(0,0,1)组成的四面体的体积是2. ____________________________________________________________ 已知向量 a (1,1,1), b (1,2,3), c (0,0,1),则(a b) c =__(-2,-1,0) _________________3. ------------------------------------------------------------------------------- 点(1,0,1)到直线3x X z y 0的距离是一晋 ---------------------------------------- 4•点(1,0,2)到平面3x y 2z 1的距离是3皿_75.曲线C: 0对xoy坐标面的射影柱面是对yoz坐标面的射影柱面是—(z 1)2 y2 z 0 ________________ ,对xoz坐标面的射影柱面是____ z x 1 0 _____________ .26.曲线C: x y绕x轴旋转后产生的曲面方程是x4 4(y2 z2) ,曲线z 0 —C绕y轴旋转后产生的曲面方程是_x2 z2 2y ______________________ .2 2 27.椭球面—— 1的体积是??????9 4 25 —二、计算题(共4题,第1题10分,第2题15分,第3题20分,第4题10分, 共55分)1.过点P(a,b,c)作3个坐标平面的射影点,求过这3个射影点的平面方程.这里a,b,c是3个非零实数.解:设点P(a,b, c)在平面z 0上的射影点为M1(a,b,0),在平面x 0上的射影ujujmr f点为M2(0, a,b),在平面y 0上的射影点为M3(a,0, c),贝U M1M2 ( a,0,c),lULULUM1M3 (0, b,c)3.求曲线2y绕x 轴旋转产生的曲面方面1解:设皿1(为,丫1,乙)是母线x 22y上任意一点则过皿1(为』1, z ,)的纬圆方程是⑵由于 V 1 V 2(0,0, 2), V 1 V 2uuJuuuuuuuulr 阿皿2,川2)11和12间的距离d ----------------------V 1 v 2uuuuuir 于是 IVh , M,M 2 , uuuuuuM 側3所确定的平面方程是 即 bc(x a) ac(yb) abz 0 .2-已知空间两条直线'1::y0 o ,l 2:(1)证明11和12是异面直线;(2)求11和12间的距离;(3) 求公垂线方程.证明:(1)11的标准方程是-1片今,h 经过点艸1,方向向量 V 1 {1, 1,0} I 2的标准方程是,12经过点M 2(0,0, 2),方 向向量V 2{1,1,0},于uujuir(M 1M 2M V 2)0,所以11和12是异面直线。

空间造型基础智慧树知到课后章节答案2023年下四川音乐学院

空间造型基础智慧树知到课后章节答案2023年下四川音乐学院

空间造型基础智慧树知到课后章节答案2023年下四川音乐学院四川音乐学院第一章测试1.习近平在2020年召开科学家座谈会上讲到“加快科技创新,是实现人民高品质生活的需要。

”所以设计师对待新技术的态度错误的是()。

A:保持对新科技的关注和学习B:设计中炫耀高科技C:设计的文化含义和民族精神在新时代需要新科技的助力D:设计中充分利用新科技表达中国文化答案:设计中炫耀高科技2.空间中,地面、顶面、墙壁、柱子为(),把空间限定出来供人使用,人们使用的正是墙、地、顶面限定出的“虚”的空间。

A:虚体B:本体C:客体D:实体答案:实体3.有关创新的说法,正确的是()A:创新需要与科技有机结合B:创新就是高科技C:创新就是自由想象D:创新需要守正创新答案:创新需要与科技有机结合;创新需要守正创新4.设计师的责任包括()A:没有责任B:自我责任C:国家责任D:社会责任答案:自我责任;国家责任;社会责任5.意大利著名建筑理论家布鲁诺·塞维在他的名著《建筑空间论》中强调“空间——实的部分——应当是建筑的主角”()A:对 B:错答案:错6.以下哪个设计作品,不是王澍设计的?()。

A:中国美院象山校区B:银河sohoC:富春山馆D:宁波博物馆答案:银河soho7.在公园中,哪个属于附属空间?()。

A:公厕B:湖泊C:树林、湖泊和公厕D:树林答案:公厕8.“灰空间”也被称为过渡空间,一种既非室内也非室外的空间,以下哪种空间不符合“灰空间”的特质?()。

A:门厅、阳台、抄手游廊B:抄手游廊C:阳台D:门厅答案:门厅9.“下列哪项不属于人们对空间形态的感知()。

A:温暖的空间B:穹顶性空间C:高耸的空间D:圆形的空间答案:温暖的空间10.“宿舍”对个人来讲,应该包含哪些内容呢?()。

A:休息B:娱乐C:庇护D:学习;娱乐;庇护;学习第二章测试1.空间中点和线可能存在以下哪些关系?()A:线形成点B:点分割线C:点形成线D:点形成线、点分割线以及线形成点答案:点形成线、点分割线以及线形成点2.关于点的面化说法不正确的是()A:许多点的聚集能形成面的效果B:点的面化不能表现出立体感C:通过点的面化可以表现曲面的效果D:点画派就是利用点的面化来进行绘画创作的答案:点的面化不能表现出立体感3.空间中的点的形状可以是()。

高等数学理工类(下)知到章节答案智慧树2023年嘉兴学院

高等数学理工类(下)知到章节答案智慧树2023年嘉兴学院

高等数学理工类(下)知到章节测试答案智慧树2023年最新嘉兴学院第一章测试1.空间平面的法向量是唯一确认的。

()参考答案:错2.空间中任意三点可以确定一个平面。

()参考答案:错3.向量满足,则必有()。

参考答案:与平行4.向量的三个方向角分别为,以下结论成立的是()。

参考答案:5.下列平面中与垂直的有:()。

参考答案:;第二章测试1.若二元函数在某一点处可微分,则它在该点处的两个一阶偏导数都是连续函数。

()参考答案:错2.二元函数的极值点都是驻点。

()参考答案:错3.求三元函数在点处沿从点到点方向的方向导数。

()参考答案:4.极限()。

参考答案:不存在5.下列向量中,可以作为曲线在点处切线的方向向量的有()。

参考答案:;;第三章测试1.重积分、曲线积分和曲面积分的计算,最终都需要转化成若干次定积分的计算。

()参考答案:对2.均匀平面薄片的质心即为形心。

()参考答案:对3.任何第二类曲线积分与路径无关,只与起点和终点有关。

()参考答案:错4.参考答案:5.设为柱面及平面所围成的立体的表面的外侧,则第二类曲面积分()。

参考答案:6.重积分的应用主要有:()。

参考答案:计算转动惯量;计算光滑曲面的面积;计算引力;计算物体的质心第四章测试1.比值审敛法适用于任意数项级数的敛散性判断。

()参考答案:错2.如果级数收敛,则对这级数的项任意加括号后所成的新级数仍收敛,且其和不变。

()参考答案:对3.求级数的和()。

参考答案:4.设幂级数在处收敛,则它在处()。

参考答案:绝对收敛5.下列级数收敛的有:()。

参考答案:;;。

解析几何课后答案

解析几何课后答案

§ 4.1柱面1、已知柱面的准线为:222(1)(3)(2)2520x y z x y z ⎧-+++-=⎨+-+=⎩且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。

解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x上式中消去t 后得到:02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。

2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。

解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z y y tx x tz z y y t x x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x消去t ,得到:010*******22=--+++z x xz z y x 此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为:⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x此即为欲求的圆柱面的准线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档