第四节 区间估计(概率论与数理统计)

合集下载

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。

概率论与数理统计 参数估计

概率论与数理统计 参数估计

数理统计
你就会想,只发一枪便打中, 猎人命中的概率 一般大于这位同学命中的概率 . 看来这一枪是猎人 射中的 . 这个例子所作的推断已经体现了极大似然法的 基本思想 .
数理统计
最大似然估计原理:
当给定样本X1,X2,…Xn时,定义似然函数为:
L( ) P( ; x1 , , xn ) P( ; X 1 x1 , X 2 x2 , , X n xn P( X 1 x1 ; ) P( X 2 x2 ; ) P( X n xn ; ) L( ) f ( ; x1 , , xn ) f ( x1 ; ) f ( x2 ; ) f ( xn ; )
而全部信息就由这100个数组成 . 据此,我们应如何估计 和 呢 ?
数理统计
二、寻求估计量的方法 1. 矩估计法 2. 极大似然法
数理统计
1. 矩估计法
矩估计法是英国统计学家K.皮尔逊 最早提出来的 . 由辛钦定理 , 若总体 X 的数学期望 E X μ 有限, 则有

1 n P X X i E( X ) μ n i 1 1 n k P Ak X i E ( X k ) μk ( k 1,2,) n i 1
数理统计
常用的几条标准是:
1.无偏性 2.有效性 3.相合性 这里我们重点介绍前面两个标准 .
数理统计
一、无偏性
估计量是随机变量,对于不同的样本值会得到 不同的估计值 . 我们希望估计值在未知参数真值附 近摆动,而它的期望值等于未知参数的真值. 这就 导致无偏性这个标准 .
ˆ( X ,, X ) 是未知参数 的估计量,若 设 1 n
在似然函数中 可以看成是“原因”,而 ( x1 , x2 ,, xn ) 则被看成是 “结果” .导致结果 ( x1 , x2 ,, xn ) 发生的所有

概率论与数理统计-第6章-第4讲-区间估计

概率论与数理统计-第6章-第4讲-区间估计
5
本讲内容
01 置信区间定义 02 求置信区间的步骤 03 几点说明
02 求置信区间的步骤
例 设X1,…Xn 是取自 N (, 2 ) 的样本, 2已知,
求参数 的置信水平为 1 的置信区间.
明确问题:求什么参数的置信区间?置信水平是多少?
解 选 的点估计为 X
寻找未知参数的
取 U X N (0,1) 一个良好估计 n
u
2} 1
1
为什么 这样取?
u
u
2
2
8
02 求置信区间的步骤
从中解得
P{|
X
n
|u2}源自1P{Xn u 2
X
n
u
2}
1
于是所求 的 置信区间为
[X
n u 2 ,
X
n u
2]
也可简记为 X n u 2
从例题的过程,我们归纳出求置信区间的
一般步骤如下:
1
u
u
2
2
9
02 求置信区间的步骤
求置信区间的步骤
10
本讲内容
01 置信区间定义 02 求置信区间的步骤 03 几点说明
03 几点说明
1. 要求 θ 以很大的可能被包含在 [θˆ1, θˆ2 ]
内,P(ˆ1 ˆ2 ) 1 要尽可能大.
即要求估计尽量可靠. 2. 估计的精度要尽可能的高. 如要求区间
长度 θˆ2 θˆ1 尽可能短.
置信度与精度是一对矛盾,当样本容 量固定时,置信度越高,则精度越差.
u
u
2
2
区间的长度为 2u —— 达到最短
2n
14
03 几点说明
特别说明
即使在概率密度不对称的情形,如

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

4.6 概率论——区间估计

4.6 概率论——区间估计

3.
方差比
2 1
/
2 2
的置信区间
F
S12 S22
2 1
2 2
S12
2 1
S22
2 2
~ F (n1 1, n2 1)
给定, 找临界值,使
P(F1 / 2(n1 1, n2 1) F F / 2(n1 1, n2 1)) 1
方差比
2 1
/
2 2
的置信度为
1
的置信区间
S12 S22 F /(2 n1 1,n2
1004 1000 996 1002 998 999 如何估计该包装机所包 装的洗衣粉重量的方差
( 0.05) 解: 2 的0.95的置信区间
(n
2 /
1) 2(n
S
2
1)
,
(n
12
1)S 2 / 2 (n 1)
02.97(5 11) 3.816 02.02(5 11) 21.92 (n 1)S 2 76.25
的置信水平为0.90的置信区间
的置信水平为0.50的置信区间
取=0.50,我
们也可以给 出100个这样 的区间,可 以看出,这 100个区间中 有50个包含 参数真值15, 另外50个不 包含参数真 值。
二. 正态总体均值的区间估计
例1. 总体
X
~
N
(
,
2 0
)
2 0
已知
X1, X2, , Xn为来自总体X 的一个样本, 求 一 个 区 间 , 使 之 以95% 的 把 握 断 定 这 个 区 间
1
2 1
/2
(n
1)
2的 1 的置信区间
2 2 / 2 (n 1)

概率论与数理统计

概率论与数理统计

概率论与数理统计本篇笔记内容主要整理自笔者的教材——《概率论与数理统计》(第四版),作者为盛骤、试式千、潘承毅等人 ,高等教育出版社出版。

一、概率论的基本概念1. 什么是概率?描述性定义:随机事件A发生的可能性的大小的度量(非负值),称为事件A发生的概率。

公理化定义:在随机试验的样本空间的每一个事件A,都对应一个实数值P(A),如果函数P( · )满足下列条件:非负性:规范性:S是必然事件,有P(S) = 1;可列可加性:设A1,A2,...,是两两不相容的事件(即i≠j时,AiAj = ∅),有P(A1∪A2∪...∪An) = P(A1) + P(A2) + ... + P(An)不相容事件的并的概率 等于 这些事件的概率的和。

2. 古典概型有什么特点?随机试验的样本空间只包含有限个元素;随机试验中的每个基本事件发生的可能性都相同。

3. 几何概型有什么特点?样本空间 是一个可度量的有界区域;有无限个基本事件,每个基本事件发生的可能性都一样,即样本点落入 的某一个可度量子区域S可能性与S的几何度量成正比,而与S的位置及形状无关。

4. 什么是条件概率?在已知事件A发生的情况下事件B发生的概率为条件概率P(A|B),公式有5. 什么是全概率公式?有一些时候事件B的概率不容易直接求,可以通过计算给B在各个条件下Ai发生的概率P(B| · ),来研究B发生的概率。

6. 什么是贝叶斯公式?解释一下“先验”和“后验”的概念(按照课本的思路)通过已知信息B来修正A发生的概率(即后验概率),可以通过先验概率P(A)以及AB之间的关系来研究。

举个例子:假设由多年的统计数据可以知道某种疾病的发病率,有一种检测试剂的准确率为99%,即=99%,同时有=5%会误报(检测没有病的病人为阳性),可以通过全概率公式计算试剂表现为阳性的概率。

根据这些信息,就可以计算一个病人在这种试剂检测为阳性的情况下患病的概率7. 什么叫做事件相互独立?P(AB) = P(A)P(B)即一个事件的发生,不会影响另一个事件的发生。

概率论与数理统计(第4版)浙江大学 盛聚编

概率论与数理统计(第4版)浙江大学 盛聚编
置信区间也不是唯一的.
对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.

概率论与数理统计 7.3 区间估计

概率论与数理统计 7.3 区间估计

不依赖于未知参数 ;
(3) 对给定的置信水平 1 , 确定 = 1 ,
5
一般是选取满足
2 (4) 由不等式 1 < g < 2 解出 的置信区间
( 1 , 2 ) .
P{ g 1 } = P{ g 2 } =
中, 分别独立抽取一些样品, 测得蓄电池的电
容量为 甲: 144, 141, 138, 142, 141, 143, 138, 137; 乙: 142, 143, 139, 140, 138, 141, 140, 138, 140, 136 设两个工厂生产的蓄电池电容量分别服从正态 分布 N( μ1 ,σ12), N( μ2 ,σ22) . 求 σ12/σ22 的 95% 的置信区间
[2.18, 9.52]
18
二 、两个正态总体 N( μ1 ,σ12), N( μ2 ,σ22) 的情况 (一) 两个总体均值差 μ1 μ2 的置信区间: 1、两个总体的方差 σ12 , σ22已知:
由于 X
12 N 1 , , Y n1
2 2 N 2 , , n2
引言
前面我们介绍了点估计的概念。点估计只是给出 了未知参数值的近似值。人们常常不满足于得到近 似值,还需要知道估计的误差是多少?即参数的一个 估计范围,还希望知道该范围覆盖参数真值的可信
程度。这种范围的估计称为区间估计。
1
7. 3 区间估计
定义7.6:
设 是总体的一个参数, ( X 1 , X 2 , , X n )是
由于
故有
2 S12 S2

2 1
2 2
F ( n1 1 , n2 1) ,
2 2 S S 1 2 P F ( n1 1 , n2 1) < 2 < F ( n1 1 , n2 1) 2 1 1 2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(
2 1 2
(n 1) S 2


2
2
~ 2 (n 1)
2
0.15 0.125 0.1 0.075
则由
2

(n 1) S 2
) 1

2
得 2 的置信区间为
0.05 0.025
(n 1)S 2 (n 1)S 2 (4) , 2 2 (n 1) 1 (n 1) 2 2
到质量(单位:kg)为
10.1, 10, 9.8, 10.5, 9.7, 10.1, 9.9, 10.2, 10.3, 9.9
假设所称出的物体的质量都服从 N ( , 2 ), 求该物体质量 μ 的置信度为95%的置信区间.
解 由题意知, 0.05, n 10, 2 未知,
1 10 t0.025 (9) 2.262, x xi 10.05, 10 i 1
2 1 2 2
(n 1)S (m 1)S ~ 2 (n m 2) 2 2
( X Y ) ( 1 2 ) 1 1 (n 1) S (m 1) S n m nm2
2 1 2 2
~ t ( n m 2)
P
第七章
§7.4
区间估计
引例 已知 X ~ N ( ,1), 的无偏、有效点估计为 X
常数
随机变量
不同样本算得的 的估计值不同, 因此除了给出 的点估计外, 还希望根据 所给的样本确定一个随机区间, 使其包含 参数真值的概率达到指定的要求.
如引例中,要找一个区间,使其包含 的 真值的概率为0.95. ( 设 n = 5 )
故该物体质量 μ 的置信度为95%的置信区间为 (9.88, 10.22).
(二) 两个正态总体的情形
( X 1 , X 2 , , X n )为取自总体 N ( 1 12 ) 的样本,
( Y1 , Y2 ,, Ym ) 为取自总体 N ( 2 22 ) 的样本,
X , S ; Y , S 分别表示两样本的均值与方差.
称随机区间 X 1.96 15 , X 1.96 15

为未知参数 的置信度为0.95的置信区间.
置信区间的意义
反复抽取容量为5的样本,都可得
一个区间,此区间不一定包含未知参数
的真值, 而包含真值的区间占95%.
若测得 一组样本值, 算得 x 1.86 则得一区间(1.86 – 0.877, 1.86 + 0.877) 它可能包含也可能不包含 的真值, 反复 抽样得到的区间中有95%包含 的真值.
( X Y ) ( 1 2 ) 1 1 (n 1) S12 (m 1) S 22 n m nm2
t 1 2
1 2 的置信区间为
2 2 1 1 (n 1) S1 (m 1) S 2 ( X Y ) t 2 n m nm2 (6)
这时, T2 T1 往往增大, 因而估计精度降低.
确定后, 置信区间 的选取方法不唯一,
常选最小的一个.
处理“可靠性与精度关系”的原 则 先
求参数 置信区间
保 证 可靠性

提 高 精 度
求置信区间的步骤
寻找一个样本的函数 g ( X1 , X 2 ,, X n , ) 它含有待估参数, 不含其它未知参数, 它的 分布已知, 且分布不依赖于待估参数 (常由
( 引例中 a 1.96, b 1.96 )
由 a g ( X1 , X 2 ,, X n , ) b 解出 T1 , T2
得置信区间 ( T1 , T2 ) 引例中
( T1 , T2 ) ( X 1.96 1 , X 1.96 1 ) 5 5
置信区间常用公式 (一) 一个正态总体 X ~N ( 2)的情形
2 1
2 2
置信度设为 1
2 12 , 2 已知, 1 2 的置信区间 (1) 2 2 1 2 X ~ N ( 1 , ), Y ~ N ( 2 , ) X , Y 相互独立, n m
( X Y ) ( 1 2 )

2 1
n


2 2
~ N (0,1)
置信度 均为0.95
解 (1) X ~ N ( , 0.06 / 6) 即 N ( ,0.01) X ~ N (0,1) z z0.025 1.96 2 0.1
1 由给定数据算得 x xi 14.95 6 i 1 由公式 (1) 得 的置信区间为 ( 14.95 1.96 0.1 , 14.95 1.96 0.1 ) ( 14.75 , 15.15 )
的点估计出发考虑, 最好是无偏估计).
例如 X~N ( , 1 / 5) 取样本函数
X g ( X 1 , X 2 , , X n , ) ~ N (0, 1) 1/ 5
给定置信度 1 ,定出常数 a , b ,使得 P(a g ( X1 , X 2 ,, X n , ) b) 1
1 10 s ( xi x ) 2 0.058, s 0.24. n 1 i 1
2
由前面的公式(2)得
s 0.24 x t (n 1) 10.05 2.262 9.88, n 10 2 s 0.24 x t (n 1) 10.05 2.262 10.22. n 10 2
m
1 2 的置信区间为
2 2 2 2 ( X Y ) z 1 2 , ( X Y ) z 1 2 2 2 n m n m

(5)
(2) , 未知( 但 12 22 2 ) 1 2的置信区间
2 1 2 2
X Y ~ N ( 1 2 , ) n m ( X Y ) ( 1 2 ) ~ N (0,1) 1 1 n m
2 2
(n 1) S 2 ~ (n 1) 2
2 1
(m 1) S 22 2 ~ (m 1) 2
2
5S
2
查表得
5s
2
2 0.025
(5) 12.833 ,
2

2
~ (5)
2
s 0.051.
2
2 0975
(5) 0.831
由公式 (4) 得 2 的置信区间为
(

2 0.025
(5)
,
5s

2 0.975
(5)
) ( 0.0199 , 0.3069 )
例2 为了估计一件物体的质量 μ ,将其称了10次,得
2
3.92
0.4 0.3 0.2 0.1
z 2 z1 1.84 ( 2.13)
3 3
3.97
1
-2 z1
-1
z 22
3
3
置信区间的定义 设 为待估参数, 是一给定的数,
( 0<<1). 若能找到统计量 T1 , T2 , 使
P(T1 T2 ) 1
(1) 方差 2已知, 的置信区间
( X z
2
n
, X z
2
2
n
) (1)
推导 由 X ~ N ( , ) 选取样本函数 n X g ( X 1 , X 2 ,, X n , ) ~ N (0,1) n
X 由 P z 确定 z 2 2 n
X ~ t (5) 查表 t0.025 (5) 2.5706 (2) 取 T S 6
6
由给定数据算得
6 2
x 14.95
1 2 2 s ( xi 6 x ) 0.051. s 0.226 5 i 1
由公式 (2) 得 的置信区间为 s s (x t0.025 (5), x t0.025 (5) ) 6 6 (14.71, 15.187 ) (3) 选取样本函数

X

n
z
2
得 的置信度为 1 的置信区间为 0 0 ( X z , X z ) 2 2 n n
(2) 方差 2未知 , 的置信区间
S S X t (n 1) , X t (n 1) (2) 2 2 n n
(3) 当 已知时, 方差 2 的 置信区间
Xi Q ~ 2 (n) 由概率 取样本函数, i 1 n 2 (Xi ) 2 P 12 (n) i 1 ( n) 1 2 2 2
( X Y ) z 2
S S (7) n m
2 1 2 2
(4)
, 未知, 但 n = m , 1 2 的置信区间
2 1 2 2
令 Zi = Xi -Yi , i = 1,2,…, n, 可以将它们看成来
推导
选取样本函数 T X ~ T (n 1)
S
n X 由P t (n 1) 确定t ( n 1) 2 S 2 n

S S 的置信区间为 X t2 (n 1) , X t2 (n 1) n n
n 2
得 2 的置信度为1 置信区间为
n 2 ( X i ) i 1 , 2 2 (n)
n 2
( X i ) i 1 (3) 2 1 (n) 2
相关文档
最新文档