青海省西宁市2017-2018学年九年级第一学期9月月考数学试卷
2017-2018学年第一学期9月月考 初一年级 数学 试卷及参考答案

元的
4 在数轴上表示 , 两数的点如图所示,则?列判断正确的是( ).
A. B.
第1页(共5页)
C. D.
5 在数轴上到 点的距离等于 个单位的点所表示的数是( ). A. B. C. 或 D. 或
6 如图 的三幅图分别是从不同方向看图 所示的工件立体图得到的平面图形,(不考虑尺寸)其中 正确的是 ( ).
,
,则
.
15 将两块直角三角尺的直角顶点重合为如图的位置,若
,则
.
16 某校阶梯教室共有座位 排,第一排有 个座位,后面每排都比前一排多一个座位,此阶梯教室
共有座位
个.
三、用心答一答(共52分)
17 计算:
.
18 先化简,再求值:
,其中
,
.
19 解方程:
.
第4页(共5页)
20 如图,
,延长 到 ,使
A. ①②③ B. ①③ C. ②③ D. ①②
几何体 图
从上面看
从左面看 图
从正面看
7 如图,钟表 时 分时,时针与分针所成的角的度数为( ).
A. B. C.
第2页(共5页)
D.
8 已知 A. B. C. D.
是关于 的方程
的解,则 的值是( ) .
9 某商店在某一时间内以每件 元的价格卖出两件衣服,其中一件盈利 商店卖这两件衣服后( ). A. 不赔不赚 B. 赚钱 C. 赔钱 D. 无法确定
, 是 的中点,求 的长度.
21 如图,在无阴影的方格中选出两个画出阴影,使它们与图中 个有阴影的正方形一起可以构成一 个正方体的表面展开图.(在图 和图 中任选一个进行解答,只填出一种答案即可)
图
2017年青海省西宁市中考数学试卷含答案

绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:
上
答 (1)此次抽查的样本容量为
,请补全条形统计图;
(2)全市约有 4 万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少
人?
(3)七年级(1)班从选择社会实践的 2 名女生和 1 名男生中选派 2 名参加校级社会实
题
践活动.请你用树状图或列表法求出恰好选到 1 男 1 女的概率是多少,并列举出所有
D. 34
8. 如 图 , AB 是 O 的 直 径 , 弦 CD 交 AB 于 点
P , AP 2 , BP 6 , APC 30 ,则 CD 的长为
()
A. 15
B. 2 5
C. 2 15
D. 8
9.西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调
用甲车 3 小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2 小时清理完
()
A.1
B. 1
C. 2
D. 0
2.下列计算正确的是
() 答
A. 3m m 2
C.(-m2 )3 m6
B. m4 m3 m D. -(m n) m n
3.下列图形中,是轴对称图形但不是中心对称图形的是
()
题
A.等边三角形
B.平行四边形
C.正六边形
D.圆
4.下列调查中,适合采用全面调查(普查)方式的是
速度运动,同时动点 N 自 D 点出发沿折线 DC CB 以每秒 2 cm 的速度运动,到达 B
点时运动同时停止,设 △AMN 的面积为 y(cm2 ) ,运动时间为 x (秒),则下列图象中能
2018年青海省西宁市中考数学试卷(word解析版)

2018年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)﹣的倒数是;4的算术平方根是.2.(4分)分解因式:x3y﹣4xy=;不等式组的解集是3.(2分)近年来,党和国家高度重视精准扶贫,收效显著,据不完全统计约有65000000人脱贫,65000000用科学记数法表示为.4.(2分)函数y=中自变量x的取值范围是.5.(2分)如图,直线AB∥CD,直线EF与AB、CD相交于点E、F,∠BEF的平分线EN与CD 相交于点N.若∠1=65°,则∠2=.6.(2分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC=25°,则∠BAD=.7.(2分)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则=.8.(2分)某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.9.(2分)如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.10.(2分)在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C的度数是.11.(2分)如图,用一个半径为20cm,面积为150πcm2的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r为cm.12.(4分)如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有个正方形,第n个图案中有个正方形.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确的选项序号填入下面相应题号的表格内).13.(3分)关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根14.(3分)用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.B.C.D.15.(3分)若P1(x1,y1),P2(x2,y2)是函数y=图象上的两点,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<016.(3分)某班举行趣味项目运动会,从商场购买了一定数量的乒乓球拍和羽毛球拍作为奖品.若每副羽毛球拍的价格比乒乓球拍的价格贵6元,且用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同.设每副乒乓球拍的价格为x元,则下列方程正确的是()A.=B.=C.=D.=17.(3分)由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块18.(3分)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°19.(3分)如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=30°,B点的坐标为(0,2),将△ABO沿着斜边AB翻折后得到△ABC,则点C的坐标是()A.(2,4)B.(2,2)C.()D.(,)20.(3分)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t 的变化规律如图所示,这个容器的形状可能是()A.B.C.D.三、(本大题共3小题,第21题5分,第22题题5分,第23题8分,共18分). 21.(5分)计算:tan30°++(﹣)﹣1+(﹣1)201822.(5分)先化简,再求值:(1﹣)÷,其中m=2+.23.(8分)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.四、(本大题共3小题,第24题8分,第25题8分,第26题9分,共25分).24.(8分)如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).25.(8分)如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.26.(9分)某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类)并将调查结果绘成如下不完整的统计图.根据两图提供的信息,回答下列问题:(1)最喜欢娱乐类节目的有人,图中x=;(2)请补全条形统计图;(3)根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;(4)在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.五、(本大题共2小题,第27题11分,第28题12分,共23分).27.(11分)请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1:如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.求证:△BCD的面积为a2.(提示:过点D作BC边上的高DE,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.请用含a的式子表示△BCD的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.试探究用含a的式子表示△BCD的面积,要有探究过程.28.(12分)如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.2018年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)﹣的倒数是﹣5;4的算术平方根是2.【解答】解:﹣的倒数是﹣5、4的算术平方根是2,故答案为:﹣5、2.2.(4分)分解因式:x3y﹣4xy=xy(x+2)(x﹣2);不等式组的解集是﹣3≤x<2【解答】解:x3y﹣4xy=xy(x+2)(x﹣2),解不等式组可得:﹣3≤x<2,故答案为:xy(x+2)(x﹣2);﹣3≤x<2.3.(2分)近年来,党和国家高度重视精准扶贫,收效显著,据不完全统计约有65000000人脱贫,65000000用科学记数法表示为 6.5×107.【解答】解:将65000000用科学记数法表示为:6.5×107.故答案为:6.5×107.4.(2分)函数y=中自变量x的取值范围是x≥﹣2且x≠1.【解答】解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.5.(2分)如图,直线AB∥CD,直线EF与AB、CD相交于点E、F,∠BEF的平分线EN与CD 相交于点N.若∠1=65°,则∠2=50°.【解答】解:∵AB∥CD,∠1=65°,∴∠BEN=∠1=65°.∵EN平分∠BEF,∴∠BEF=2∠BEN=130°,∴∠2=180°﹣∠BEF=180°﹣130°=50°.故答案为:50°.6.(2分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC=25°,则∠BAD=70°.【解答】解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.7.(2分)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则=.【解答】解:∵四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,∴=,则==.故答案为:.8.(2分)某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是15.3元.【解答】解:该店当月销售出水果的平均价格是11×60%+18×15%+24×25%=15.3(元),故答案为:15.3.9.(2分)如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=125°.【解答】解:如图,在优弧AC上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=55°,∴∠ABC=180°﹣∠ADC=125°.故答案为:125°.10.(2分)在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C的度数是90°.【解答】解:∵在△ABC中,|sinA﹣|+(cosB﹣)2=0,∴sinA=,cosB=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°.故答案为:90°.11.(2分)如图,用一个半径为20cm,面积为150πcm2的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r为7.5cm.【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=20,由Rl=150π得l=15π;由2πr=15π得r=7.5cm.故答案是:7.5cm.12.(4分)如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有14个正方形,第n个图案中有3n﹣1个正方形.【解答】解:∵第(1)个图形中正方形的个数2=3×1﹣1,第(2)个图形中正方形的个数5=3×2﹣1,第(3)个图形中正方形的个数8=3×3﹣1,……∴第(5)个图形中正方形的个数为3×5﹣1=14个,第n个图形中正方形的个数(3n﹣1),故答案为:14、3n﹣1.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确的选项序号填入下面相应题号的表格内).13.(3分)关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.14.(3分)用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.B.C.D.【解答】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是,故选:D.15.(3分)若P1(x1,y1),P2(x2,y2)是函数y=图象上的两点,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<0【解答】解:把点P1(x1,y1)、P2(x2,y2)代入y=得y1=,y2=,则y1﹣y2=﹣=,∵x1>x2>0,∴x1x2>0,x2﹣x1<0,∴y1﹣y2=<0,即y1<y2.故选:A.16.(3分)某班举行趣味项目运动会,从商场购买了一定数量的乒乓球拍和羽毛球拍作为奖品.若每副羽毛球拍的价格比乒乓球拍的价格贵6元,且用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同.设每副乒乓球拍的价格为x元,则下列方程正确的是()A.=B.=C.=D.=【解答】解:设每副乒乓球拍的价格为x元,则每副羽毛球拍的价格(x+6)元,依题意得:=故选:B.17.(3分)由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块【解答】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.18.(3分)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°【解答】解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:C.19.(3分)如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=30°,B点的坐标为(0,2),将△ABO沿着斜边AB翻折后得到△ABC,则点C的坐标是()A.(2,4)B.(2,2)C.()D.(,)【解答】解:∵∠OAB=∠ABC=30°,∠BOA=∠BCA=90°,AB=AB,∴△BOA≌△BCA.∴OB=BC=2,∠CBA=∠OBA=60°,过点C作CD⊥y轴,垂直为D,则∠DCB=30°.∴DB=BC=1,DC=BC=.∴C(,3).故选:C.20.(3分)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t 的变化规律如图所示,这个容器的形状可能是()A.B.C.D.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.三、(本大题共3小题,第21题5分,第22题题5分,第23题8分,共18分). 21.(5分)计算:tan30°++(﹣)﹣1+(﹣1)2018【解答】解:原式=×+2﹣2+1=1+2﹣2+1=2.22.(5分)先化简,再求值:(1﹣)÷,其中m=2+.【解答】解:原式=÷=•=,当m=2+时,原式===+1.23.(8分)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.【解答】解:(1)∵E是AB边上的中点,∴AE=BE.∵AD∥BC,∴∠ADE=∠F.在△ADE和△BFE中,∠ADE=∠F,∠DEA=∠FEB,AE=BE,∴△ADE≌△BFE.∴AD=BF.(2)过点D作DM⊥AB与M,则DM同时也是平行四边形ABCD的高.∴S=•AB•DM=AB•DM=×32=8,△AED=32﹣8=24.∴S四边形EBCD四、(本大题共3小题,第24题8分,第25题8分,第26题9分,共25分).24.(8分)如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+60解之得:x=30+30≈81.96.答:河宽约为81.96米.25.(8分)如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.26.(9分)某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类)并将调查结果绘成如下不完整的统计图.根据两图提供的信息,回答下列问题:(1)最喜欢娱乐类节目的有20人,图中x=18;(2)请补全条形统计图;(3)根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;(4)在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.【解答】解:(1)∵被调查的总人数为6÷12%=50人,∴最喜欢娱乐类节目的有50﹣(6+15+9)=20,x%=×100%=18%,即x=18,故答案为:20、18;(2)补全条形图如下:(3)估计该校最喜欢娱乐类节目的学生有1800×=720人;(4)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为=.五、(本大题共2小题,第27题11分,第28题12分,共23分). 27.(11分)请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1:如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.求证:△BCD的面积为a2.(提示:过点D作BC边上的高DE,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.请用含a的式子表示△BCD的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.试探究用含a的式子表示△BCD的面积,要有探究过程.【解答】解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,∴∠BED=∠ACB=90°,由旋转知,AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°,∵∠A+∠ABC=90°,∴∠A=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD∴S=;△BCD解:(2)△BCD的面积为.理由:如图2,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°,∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD∴S=;△BCD(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.∵S=BC•DE=•a•a=a2.△BCD∴△BCD的面积为.28.(12分)如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.【解答】解:(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得:,解得:a=﹣,b=,c=2,∴抛物线的解析式为y=﹣x2+x+2.(2)设点P的坐标为(t,﹣t2+t+2).∵A(﹣1,0),B(3,0),∴AB=4.∴S=AB•PD=×4×(﹣t2+t+2)=﹣t2+t+4(0<t<3);(3)当△ODP∽△COB时,=即=,整理得:4t2+t﹣12=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).当△ODP∽△BOC,则=,即=,整理得t2﹣t﹣3=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).综上所述点P的坐标为(,)或(,).。
青海省西宁市昆仑中学2017-2018学年第一学期初三月考英语试卷

2017—2018学年度第一学期九年级月考英语试题试卷命题人温孝琴审题人李志芳听力部分(20%)1.听句子,选择正确的图片,句子读两遍1._____2._____3._____4._____5._____II.听小对话,选择正确选项,对话读两遍6.What is the woman looking for?A.The restroomB.A shopping mallC. A parking lot7.What fruit does the boy like?A.GrapesB.ApplesC.Oranges8.When does the book store lose?A.At 6:30B.At 7:OOC.At 7:309.What is on David's desk?A. A parkingB.A photoC.A map10.Where does the woman wan to go?A.To a hospitalB.To a hotelC.To a post officeIII.听长对话,选择正确选项,对话读两遍听第一段对话,完成第11-12 小题11.Where does the girl want to go ?A.To a clothes storeB.To an amusement parkC.to an Italian restaurant12.What should the girl do on North Street?A.Turn leftB.Tum rightC.Cross the street听第二段对话,完成第13-15 小题13.Who did tho boy go to the water park wit?A.His friendB.His sisterC.Cross the cousin14.What is beside the water park?A.A shopping mallB.An art museumC.A post office15.How did the boy get to the water park?A.By busB.By bikeC.By subway1V听段文。
2017-2018学年九年级第一次月考英语试卷

初2018级第一学月月考英 语第一部分 听力部分(每小题1.5分,共30分)Ⅰ.听句子,选择与句子意思相符的图片。
每个句子读一遍。
(每小题1.5分,共7.5分)( )1.( )2.( )3.( )4.( )5.Ⅱ. 听句子,选择与所听句子意思相近选项。
每个句子读一遍。
(每小题1.5分,共7.5分)( )6.A.Tom is a student.B.Tom is not a student.C.Tom do esn’t like school. ( )7.A.Kangkang is at home. B. Kangkang is at school.C. Kangkang isn’t at home. ( )8.A.She works hard. B. She is a good woman. C. She teaches well. ( )9.A.School ended a little earlier.B.School ended as early as usual.C.School didn’t end so early as usual.( )10.A.Tom doesn’t like the heavy traffic. I don’t like it, either.B.I don’t like the heavy traffic, but Tom likes it.C.Tom doesn’t like the heavy traffic, but I like it.Ⅲ. 听对话,选择正确答案。
每段对话读两遍。
(每小题1.5分,共7.5分)听第一段对话,回答第11-12小题。
( )11. What’s the meaning of the three Rs?A. Reduce, right, and ride.B. Reuse, recycle, and reduce.C. Reuse, resource, and report. . . . A. B.C. A . B. C. A. B.C. A. B. C.( ) 12. Who wants to be a greener person?A.M ikeB. Smith.C. Martin.听第二段对话,回答第13-15小题。
2017-2018年度汇文中学初三第一次月考数学试卷

2017-2018年度汇文中学初三第一次月考数学试卷一选择题(3×12=36)1. 下列函数是二次函数的有(1)y=1-x²;(2)2x 2y;(3)y=x(x-3);(4)y=ax²+bx+c;(5)y=2x+1;(6)y=2(x+3)²-2x² A. 1个 B. 2个 C. 3个 D. 4个2. y=(x-1)²+2的对称轴是直线A. x=-1B. x=1C. y=-1D. y=13. 已知α,β是一元二次方程x²-4x-3=0的两实数根,则代数式(α-3)(β-3)的值是A. 6B. 4C. 5D. -64. 已知x=2是关于x 的方程23x²-2α=0的一个根,则2α-1的值是 A. 3B. 4C. 5D. 6 5. 对于抛物线y=-31(x-5)²+3,下列说法正确的是 A. 开口向下,顶点坐标(5,3) B. 开口向上,顶点坐标(5,3)C. 开口向下,顶点坐标(-5,3)D. 开口向上,顶点坐标(-5,3) 6. 已知关于x 的一元二次方程x²-bx+c=0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为A. b=-1,C=2B. b=1,C=-2C. b=1,C=2D. b=-1,c=-27. 某县为发展教育事业,加强了对教育经费的投入,2015年投入3亿元,预计2017年投入5亿元,设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是A. 3(1+x)²=5B. 3x²=5C. 3(1+x%)²=5D. 3(1+x)+3(1+x)²=58. 已知二次函数y 1=-3x²、y 2=-31x²、y 3=23x²,它们的图像开口有小到大的顺序是 A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 1<y 3<y 2D. y 2<y 3<y 1 9. 与抛物线y=-21x²+3x-5的形状、开口方向都相同,只有位置不同的抛物线是 A. y=x²+3x-5 B. y=-21x²+2x C. y=21x²+3x-5 D. y=21x² 10. 在一幅长50cm,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是1800cm²,设金色纸边的宽为xcm,那么x 满足的方程为A. y=3(x-1)²-2B. y=3(x+1)²-2C. y=3(x+1)²+2D. y=3(x-1)²+211. 在同一直角坐标系中,函数y=mx+m 和y=-mx²+2x+2(m 是常数,且m≠0)的图像可能是A. B. C. D.12. 已知二次函数y=ax²+bx+c (a≠0)的图像如图所示,有下列结论:①abc>0;②a+b+c>0;③a-b+c<0;④2a+b=0其中正确的结论有A. 1个B. 2个C. 3个D. 4个二、填空题13. 已知a<0,b>0,那么抛物线y=ax²+bx+2的顶点在第 象限14. 若A(-4,y 1),B(-3,y 2),C(1,y 3)为二次函数y=x²+4x-5的图像上的三点,则y 1,y 2,y 3的大小关系是15. 若y=(m²+m)x m²-m 是二次函数,m=16. 抛物线y=3x²向右平移1个单位,再向下平移2个单位,所得到的抛物线是17. 如果关于x 的一元二次方程kx²-1k 2 x-1=0没有实数根,那么k 的取值范围是18. 如图,在平面直角坐标系中,抛物线y=ax²与正方形ABCD 有公共点,则a 的取值范围是三、解答题19. 解方程①x²-49=0②x²-4x+1=0③(y-1)²+2y(y-1)=0④mx²-(m-n)x-n=020. 已知关于x 的一元二次方程x²-6x-k²=0(k 为常数)(1)求证:方程有两个不相等的实数根;(2)设x 1,x 2为方程的两个实数根,且x 1+2x 2=14,试求出方程的两个实数根和k 的值21. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?22. 已知二次函数y=-21x²-x+4回答下列问题 (1)用配方法将其化成y=a(x-h)²+k 的形式(2)直接指出抛物线的顶点坐标和对称轴(3)当x 取何值时。
2018年青海省西宁市中考数学试卷含答案

2018年青海省西宁市中考数学试卷一、选择题<本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是最符合题目要求的.)1.<3分)<2018•西宁)﹣3的相反数是< )A .﹣3B.﹣C.D.3考点:相反数.分析:根据只有符号不同的两个数互为相反数解答.解答:解:﹣3的相反数是3.故选D.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.<3分)<2018•西宁)下列各式计算正确的是< )A .3a+2a=5a2B.<2a)3=6a3C.<x﹣1)2=x2﹣1D.2×=4考点:二次根式的乘除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则,积的乘方,二次根式的乘法与完全平方公式的知识求解即可求得答案.解答:解:A、3a+2a=5a,故A选项错误;B、<2a)3=8a3,故B选项错误;C、<x﹣1)2=x2﹣2x+1.故C选项错误;D、2×=4,故D选项正确.故选:D.点评:此题考查了合并同类项的法则,积的乘方,二次根式的乘法与完全平方公式的知识,解题要熟记法则,公式.3.<3分)<2018•西宁)下列线段能构成三角形的是< )A .2,2,4B.3,4,5C.1,2,3D.2,3,6考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.解答:解:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.<3分)<2018•西宁)一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是< )b5E2RGbCAPA .中位数是91B.平均数是91C.众数是91D.极差是78考点:中位数;算术平均数;众数;极差.分析:根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.解答:解:A、将数据从小到大排列为:78,85,91,98,98,中位数是91,故本选项正确;B、平均数是<91+78+98+85+98)÷5=90,故本选项错误;,C、众数是98,故本选项错误;D、极差是98﹣78=20,故本选项错误;故选:A.点评:本题考查了极差、中位数、众数及平均数的知识,中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<最中间两个数的平均数),众数是一组数据中出现次数最多的数,极差是用最大值减去最小值.5.<3分)<2018•西宁)如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是< )p1EanqFDPwA .中B.钓C.鱼D.岛考点:专题:正方体相对两个面上的文字.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选C.点评:本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.<3分)<2018•西宁)将两个全等的直角三角形纸片构成如图的四个图形,其中属于中心对称图形的是< )DXDiTa9E3dA .B.C.D.考点:中心对称图形.分根据中心对称图形的概念求解.析:解答:解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.点评:此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.<3分)<2018•西宁)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB 交BC于点D,E为AB上一点,连接DE,则下列说法错误的是< )RTCrpUDGiTA .∠CAD=30°B.AD=BD C.BD=2CD D.CD=ED考点:含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.分析:根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.解答:解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故D.点评:本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.8.<3分)<2018•西宁)反比例函数y1=和正比例函数y2=mx的图象如图,根据图象可以得到满足y1<y2的x的取值范围是< )5PCzVD7HxAA .x>1B.﹣<x<1或x<﹣1C.﹣1<x<0或x>1D.x>2或x<1考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:先根据正比例函数和反比例函数图象的性质得反比例函数y1=和正比例函数y2=mx的另一个交点坐标为<﹣1,﹣2),然后观察函数图象得到当﹣1<x<0或x>1时,正比例函数图象都在反比例函数图象上方,即y1<y2.解答:解:∵反比例函数y1=和正比例函数y2=mx的交点关于原点中心对称,∴反比例函数y1=和正比例函数y2=mx的另一个交点坐标为<﹣1,﹣2),∴当﹣1<x<0或x>1时,y1<y2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解读式.也考查了待定系数法求函数解读式以及观察函数图象的能力.9.<3分)<2018•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13M,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为<精确到0.1M,sin42°≈0.67,tan42°≈0.90)< )jLBHrnAILgA .10.8M B.8.9M C.8.0M D.5.8M考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5kM,AD=12kM,则AB=13kM.∵AB=13M,∴k=1,∴BD=5M,AD=12M.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8M,∴BC≈5.8M.故选:D.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.10.<3分)<2018•西宁)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点<点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C1处;作∠BPC1的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为< )xHAQX74J0XA .B.C.D.考点:动点问题的函数图象.分析:根据翻折变换的性质可得∠CPD=∠C′PD,根据角平分线的定义可得∠BPE=∠C′PE,然后求出∠BPE+∠CPD=90°,再根据直角三角形两锐角互余求出∠CPD+∠PDC=90°,从而得到∠BPE=∠PDC,根据两组角对应相等的三角形相似求出△PCD和△EBP相似,根据相似三角形对应边成比例列式求出y与x的关系式,再根据二次函数的图象解答即可.解答:解:由翻折的性质得,∠CPD=∠C′PD,∵PE平分∠BPC1,∴∠BPE=∠C′PE,∴∠BPE+∠CPD=90°,∵∠C=90°,∴∠CPD+∠PDC=90°,∴∠BPE=∠PDC,又∵∠B=∠C=90°,∴△PCD∽△EBP,∴=,即=,∴y=x<5﹣x)=﹣<x﹣)2+,∴函数图象为C选项图象.故选C.点评:本题考查了动点问题的函数图象,主要利用了翻折变换的性质,相似三角形的判定与性质,表示出y与x的函数解读式是解题的关键,还需注意C、D两选项的区别.二、填空题<本大题共10小题,每小题2分,共20分,不需写出解答过程)11.<2分)<2018•西宁)计算:a2•a3= a5.考点:同底数幂的乘法.分析:根据同底数的幂的乘法,底数不变,指数相加,计算即可.解答:解:a2•a3=a2+3=a5.故答案为:a5.点评:熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.<2分)<2018•西宁)2018年6月4日据经济日报报道:青海格尔木枸杞已进入国际市场,远销美国、欧盟、东南亚等国家和地区,出口创汇达4000000美元,将4000000美元用科学记数法表示为4×106美元.LDAYtRyKfE考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:4000000=4×106.故答案为:4×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.<2分)<2018•西宁)二次根式在实数范围内有意义,则x的取值范围为x≥﹣.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵二次根式在实数范围内有意义,∴2x+1≥0,解得x≥﹣.故答案为:x≥﹣.点评:本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.14.<2分)<2018•西宁)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70 .Zzz6ZB2Ltk考点:因式分解的应用.专题:压轴题.分析:应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.解答:解:∵a+b=7,ab=10,∴a2b+ab2=ab<a+b)=70.点评:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.15.<2分)<2018•西宁)如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为.考点:几何概率.分析:先求出黑色方砖在整个地板面积中所占面积的比值,根据此比值即可解答.解答:解:∵黑色方砖的面积为5,所有方砖的面积为20,∴键子恰落在黑色方砖上的概率为P<A)==.故答案为;.点评:此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出黑色方砖在整个地板面积中所占面积的比值,.16.<2分)<2018•西宁)若扇形的圆心角为60°,弧长为2π,则扇形的半径为6 .考点:弧长的计算.专题:计算题.分析:利用扇形的弧长公式表示出扇形的弧长,将已知的圆心角及弧长代入,即可求出扇形的半径.解解:∵扇形的圆心角为60°,弧长为2π,答:∴l=,即2π=,则扇形的半径R=6.故答案为:6点评:此题考查了弧长的计算公式,扇形的弧长公式为l=<n为扇形的圆心角度数,R为扇形的半径),熟练掌握弧长公式是解本题的关键.17.<2分)<2018•西宁)如图,已知直角梯形ABCD的一条对角线把梯形分为一个直角三角形和一个以BC为底的等腰三角形.若梯形上底为5,则连接△DBC两腰中点的线段的长为 5 .dvzfvkwMI1考点:直角梯形;等腰三角形的性质;三角形中位线定理.分析:利用直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质和三角形中位线性质进而得出四边形AEFD是平行四边形,进而求出EF的长.解答:解:连接△DBC两腰中点的线段EF,AE,由题意可得出:AD∥BC,∵EF是△DBC的中位线,∴EF BC∴AD∥BC,∵BD=CD,∴∠DBC=∠DCB,则∠DEF=∠DFE,∵AD∥EF,∴∠ADE=∠DEF,∵BE=DE,∠BAD=90°,∴AE=DE=BE,∴∠EAD=∠ADE,∴∠AED=∠FDE,∴AE∥DF,∴四边形AEFD是平行四边形,∴AD=EF=5.故答案为:5.点评:此题主要考查了直角梯形以及等腰三角形和三角形中位线定理等知识,得出四边形AEFD是平行四边形是解题关键.18.<2分)<2018•西宁)⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为 4 .rqyn14ZNXI考点:直线与圆的位置关系;根的判别式.分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.解答:解:∵d、R是方程x2﹣4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16﹣4m=0,解得,m=4,故答案为:4.点评:本题考查的是切线的性质及一元二次方程根的判别式,熟知以上知识是解答此题的关键.19.<2分)<2018•西宁)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A<10,0),C<0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标<3,4),请你写出其余所有符合这个条件的P点坐标<2,4)或<8,4).EmxvxOtOco考点:矩形的性质;坐标与图形性质;等腰三角形的判定.分析:根据点A、C的坐标求出OA、OC,再根据线段中点的定义求出OD=5,过点P作PE⊥x轴于E,根据已知点P<3,4)判断出OP=OD,再根据PD=OD利用勾股定理列式求出DE的长,然后分点E在点D的左边与右边两种情况求出OE,然后写出点P的坐标即可.解答:解:∵A<10,0),C<0,4),∴OA=10,OC=4,∵点D是OA的中点,∴OD=OA=×10=5,过点P作PE⊥x轴于E,则PE=OC=4,∵P<3,4),∴OP==5,∴此时,OP=OD,当PD=OD时,由勾股定理得,DE===3,若点E在点D的左边,OE=5﹣3=2,此时,点P的坐标为<2,4),若点E在点D的右边,则OE=5+3=8,此时,点P的组别为<8,4),综上所述,其余的点P的坐标为<2,4)或<8,4).故答案为:<2,4)或<8,4).点评:本题考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理,难点在于要分两种情况写出点P的坐标.20.<2分)<2018•西宁)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.SixE2yXPq5考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:首先连接BD交AC于O,由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.解答:解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD<SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.点评:此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.三、解答题<本大题共8小题,第21、22题每小题7分,第23、24、25题每小题7分,第26、27题每小题7分,第28题12分,共70分,解答时写出文字说明、证明过程或演算步骤)6ewMyirQFL21.<7分)<2018•西宁)计算:﹣12018+|﹣|﹣sin45°.考点:实数的运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣1+﹣=﹣1.点评:此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.22.<7分)<2018•西宁)<1)解关于m的分式方程=﹣1;<2)若<1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.考点:解分式方程;解一元一次不等式.专题:计算题.分析:<1)方程去分母转化为整式方程,求出整式方程的解得到m的值,检验即可;<2)将m的值代入不等式,即可求出解集.解答:解:<1)去分母得:﹣m+3=5,解得:m=﹣2,经检验m=﹣2是分式方程的解;<2)将m=﹣2代入不等式得:﹣2x+3>0,解得:x<1.5.点此题考查了解分式方程,以及解一元一次不等式,熟练掌握运评:算法则是解本题的关键.23.<8分)<2018•西宁)如图,已知▱ABCD水平放置在平面直角坐标系xOy 中,若点A,D的坐标分别为<﹣2,5),<0,1),点B<3,5)在反比例函数y=<x>0)图象上.kavU42VRUs<1)求反比例函数y=的解读式;<2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.考点:平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解读式;坐标与图形变化-平移.分析:<1)利用待定系数法把B<3,5)代入反比例函数解读式可得k 的值,进而得到函数解读式;<2)根据A、D、B三点坐标可得AB=5,AB∥x轴,根据平行四边形的性质可得AB∥CD∥x轴,再由C点坐标可得▱ABCD沿x 轴正方向平移10个单位后C点坐标为<15,1),根据反比例函数图象上点的坐标特点可得点C落在反比例函数y=的图象上.解答:解:<1)∵点B<3,5)在反比例函数y=<x>0)图象上,∴k=15,∴反比例函数的解读式为y=;<2)平移后的点C能落在y=的图象上;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点A,D的坐标分别为<﹣2,5),<0,1),点B<3,5),∴AB=5,AB∥x轴,∴DC∥x轴,∴点C的坐标为<5,1),∴▱ABCD沿x轴正方向平移10个单位后C点坐标为<15,1),∴平移后的点C能落在y=的图象上.点评:此题主要考查了平行四边形的性质,以及待定系数法求反比例函数和反比例函数图象上点的坐标特点,根据题意得到AB=5,AB∥x轴是解决问题的关键.24.<8分)<2018•西宁)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.<1)求证:△ADC≌△CEB;<2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小<每块砖的厚度相等).考点:全等三角形的应用;勾股定理的应用.分析:<1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∴∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.<2)由题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,根据勾股定理可得<4a)2+<3a)2=252,再解即可.解答:<1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB<AAS);<2)解:由题意得:AD=4a,BE=3a,由<1)得:△ADC≌△CEB,∴DC=BE=3a,在Rt△ACD中:AD2+CD2=AC2,∴<4a)2+<3a)2=252,∵a>0,解得a=5,答:砌墙砖块的厚度a为5cm.点评:此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是正确找出证明三角形全等的条件.25.<8分)<2018•西宁)2018年西宁市教育局建立了“西宁招考信息网”,实现了“网上二填报三公开三查询”,标志着西宁中考迈出网络化管理第一步,在全市第二次模拟考试实战演练后,通过网上查询,某校数学教师对本班数学成绩<成绩取整数,满分为120分)作了统计分析,绘制成频数分布步和频数分布直方图,请你根据图表提供的信息,解答下列问题:y6v3ALoS89频数分布表:分组频数频率60<20.04x≤7280.1672<≤8420a84<x≤96160.3296<x≤108b0.08108<x≤120合计501<1)频数分布表中a= 0.4 ,b= 4 ;<2)补全频数分布直方图;<3)为了激励学生,教师准备从超过108分的学生中选2人介绍学习经验,那么取得118分的小红和112分的小明同时被选上的概率是多少?请用列表法或画树形图加以说明,并列出所有可能的结果.M2ub6vSTnP。
青海省西宁市九年级期末调研测试语文试卷

青海省西宁市九年级期末调研测试语文试卷姓名:________ 班级:________ 成绩:________一、语文知识积累与运用 (共4题;共35分)1. (8分) (2017七上·福建月考) 给划线的字注音或根据拼音写出汉字。
________________________________酝酿静谧贮蓄吝啬lìnìqídǎo________临________笑分________________告2. (10分) (2019七上·珠海期中) 根据课文默写古诗文。
(1)子曰:“________,思而不学则殆。
”(《论语为政》)(2)夕阳西下,________。
(马致远《天净沙·秋思》)(3)峨眉山月半轮秋,影入平羌江水流。
________,________。
(李白《峨眉山月歌》)(4)王湾《次北固山下》中蕴含新事物孕育于旧事物解体之时的晢理,突出万物更新之势,让人对未来充满希望的句子是 ________,________。
(5)默写李益的《夜上受降城闻笛》________, ________。
________ , ________。
3. (4分) (2020八下·台州期中) 解释加下划线的词语。
①屋舍俨然________②水尤清冽________③其船背稍夷________④不独亲其亲 ________4. (13分)为了让同学们更好地把握“课标”要求阅读的课外名著,学校开展了“话说名著风流人物”征答活动。
下面是本次活动中的三道题,相信你一定能完成。
(1)你最喜欢的名著中的风流人物是________,来自________。
作者是________。
(2)他(或她)的风流之处体现在什么地方?对你有何影响?(3)他或(她)做的哪些或哪件事最让你佩服?请简要说说。
(50字左右)二、现代文阅读 (共2题;共32分)5. (12分) (2016七上·茂名期中) 阅读下文,回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西宁市2017-2018学年第一学期第一次月考九年级数学试题
满分:100分
一、选择题(每小题3分,共30分)
1.在下列y 关于x 的函数中,一定是二次函数的是( )
A .21
y x x =+ B .22(1)y x x =-- C 、y=x 2 D .y=k 2x (k 为常数)
2.抛物线y=-2(x-3)2-1的顶点坐标是( )
A .(3,1)
B .(3,﹣1)
C .(﹣3,1)
D .(﹣3,﹣1)
3.抛物线y=﹣x 2-4x+4的对称轴是( )
A .x=4
B .x=2
C .x=﹣2
D .x=﹣4 4.抛物线2)1(22-+-=x y 可由抛物线22x y -=平移得到,则下列平移过程正确的是( )
A 、先向右平移1个单位,再向上平移2个单位
B 、先向右平移1个单位,再向下平移2个单位
C 、先向左平移1个单位,再向上平移2个单位
D 、先向左平移1个单位,再向下平移2个单位
5. 二次函数322-+=x x y 与x 轴的交点坐标是( )
A.(3,0)(-1,0) B.(-3,0)(1,0)
C.(0,3)(0,-1) D.(0,-3)(0,1)
6. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A.2y x = B.24y x =+ C.2325y x x =-+
D.2351y x x =+- 7.对于抛物线7442+-=x x y ,有下列说法:①抛物线的开口向上;②顶点坐标为(2,﹣3);③对称轴为直线2
1=x ;④点(﹣2,-17)在抛物线上.其中正确的有( ) A .0个 B .1个
C .2个
D .3个
8.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=(x-1)2
-3上的三点,则y 1,y 2,y 3的大小关系为( )
A .y 1>y 2>y 3
B .y 1>y 3>y 2
C .y 3>y 2>y 1
D .y 3>y 1>y 2
9.如图是二次函数y=ax 2+bx+c 的图象,则点(a , bc )在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
10.如图,二次函数y=ax2+bx+c(a≠0)的大致图象,关于该二次函数下列说法正确的是()
A.a>0,b<0,c>0
B.b2﹣4ac<0
C.当﹣1<x<2时,y>0
D.当x>2时,y随x的增大而增大
二、填空题(每空3分,共33分)
11.抛物线y=x2,y=﹣2x2,y=﹣x2中开口最大的抛物线是___________ .
12.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)
13.二次函数在x=时,有最小值,且函数的图象经过点(0,2),则此函数的解析式为.14.当x= 时,二次函数y=x2﹣2x+6有最小值.
15.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k= .
16.已知方程2x2﹣3x﹣5=0两根为,﹣1,则抛物线y=2x2﹣3x﹣5与x轴两个交点间距离为.
17.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= .。