2017年春季新版北师大版九年级数学下学期1.6、利用三角函数测高同步练习1

合集下载

九年级数学下册第一章1.利用三角函数测高同步练习新版北师大版109

九年级数学下册第一章1.利用三角函数测高同步练习新版北师大版109

课时作业(七)[第一章 6 利用三角函数测高]一、选择题1.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图K-7-1,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( )链接听课例1归纳总结图K-7-1A.11-sinα米 B.11+sinα米C.11-cosα米 D.11+cosα米2.如图K-7-2,为了测量电视塔的高度AB,在D处用高为1米的测角仪CD测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB为链接听课例2归纳总结( )图K-7-2A.50 3米 B.51米C.(50 3+1)米 D.101米3.如图K-7-3,斜坡AB的坡度为1∶2.4,长度为52米,在坡顶B所在的平台上有一座高楼FH,已知在A处测得楼顶F的仰角为60°,在B处测得楼顶F的仰角为77°,则高楼FH的高度是(结果精确到1米,参考数据:sin77°≈0.97,tan77°≈4.33,3≈1.73)( )A.125米 B.105米C.85米 D.65米4.2017·深圳如图K-7-4,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°.已知斜坡CD的长度为20 m,DE的长度为10 m,则树AB的高度是( )A.20 3 m B.30 mC.30 3 m D.40 m图K-7-45.如图K-7-5,在两建筑物之间有一旗杆GE,高15米,从点A经过旗杆顶端恰好看到矮建筑物的墙脚点C,且俯角α为60°,又从点A测得点D的俯角β为30°,若旗杆底G为BC的中点,则矮建筑物的高CD为()图K-7-5A.20米 B.10 3米C.15 3米 D.5 6米二、填空题6.如图K-7-6,小亮在太阳光线与地面成35°角时,测得树AB在地面上的影长BC =18 m,则树高AB约为________m.(结果精确到0.1 m)图K-7-67.如图K-7-7(示意图),某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20 m的点B处,用高为0.8 m 的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为________m.(结果精确到0.1 m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)链接听课例1归纳总结8.如图K-7-8,两建筑物的水平距离BC为18 m,从点A测得点D的俯角α为30°,测得点C的俯角β为60°.则建筑物CD的高度为________m(结果不作近似计算).图K-7-8三、解答题9.2017·黄冈在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图K -7-9所示),已知标语牌的高AB=5 m,在地面的点E处,测得标语牌上点A的仰角为30°,在地面的点F处,测得标语牌上点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)图K-7-910.2017·莱芜如图K-7-10,某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31 m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲、乙两楼之间的距离.(结果均精确到0.01 m,cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)链接听课例2归纳总结图K-7-1011.学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:(1)如图K-7-11,在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C,D与B在同一直线上,且C,D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得C,D之间的距离为288米.已知红军亭的高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB(3取1.732,结果保留整数).图K-7-11如图K-7-12,A,B是两幢地平面高度相等、隔岸相望的建筑物.由于建筑物密集,在A的周围没有开阔地带,为了测量B楼的高度只能利用A楼的空间,A的各层楼都可到达,且能看见B.现有的测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线间的夹角).(1)请你设计一个测量B楼高度的方法,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量图形;(2)用你测量的数据(用字母表示)写出计算B楼高度的表达式.图K-7-12详解详析【课时作业】 [课堂达标] 1.[答案] A2.[解析] C 设AG =x 米,在Rt △AEG 中, ∵tan ∠AEG =AG EG,∴EG =AG3=33x 米. 在Rt △ACG 中,∵tan ∠ACG =AG CG ,∴CG =x tan30°=3x 米,∴3x -33x =100,解得x =50 3,则AB =(50 3+1)米,故选C.3.[解析] B 如图,延长FH 交AC 于点.由题意知BG ⊥AC ,BH ⊥FH ,FE ⊥AC ,∴四边形BGEH 是矩形,∴BH =GE ,BG =HE .∵BG ∶AG =1∶2.4,∴设BG =x 米,AG =2.4x 米(x >0).在Rt △ABG 中,∵AB =52米,由勾股定理可得BG 2+AG 2=AB 2,即x 2+(2.4x )2=522,解得x =20,则BG =20米,AG =48米.在Rt △BHF 中,∵∠HBF =77°,∴tan77°=FH BH,∴FH =BH tan77°. 在Rt △AEF 中,∵∠EAF =60°,∴EF =3AE ,∴3(48+BH )=20+BH tan77°, 解得BH ≈24.25,∴FH =BH tan77°≈105米.故选B.4.[解析] B 先根据CD =20 m ,DE =10 m 得出∠DCE =30°,故可得出∠DCB =90°,再由∠BDF =30°可知∠DBF =60°,由DF ∥AE 可得出∠BGF =∠BCA =60°,故∠GBF =30°,所以∠DBC =30°,再由锐角三角函数的定义即可得出结论.5.[解析] A 如图,延长CD 交点A 所在的水平线于点F ,如图.由题意,知GE ∥AB∥CD ,BC =2GC ,GE =15米,∴AB =2GE =30米.∵AF =BC =AB tan ∠ACB =303=10 3(米),DF =AF ·tan30°=10 3×33=10(米),∴CD =AB -DF =30-10=20(米). 6.[答案] 12.6 7.[答案] 40.0[解析] 过点A 作AE ⊥CD 于点E . ∵AB ⊥BD ,CD ⊥BD , ∴四边形ABDE 是矩形,∴AE =BD =20 m ,DE =AB =0.8 m. 在Rt △ACE 中,∠CAE =63°,∴CE =AE ·tan63°≈20×1.96=39.2(m), ∴CD =CE +DE ≈39.2+0.8=40.0(m), 即筒仓CD 的高约为40.0 m.8.[答案] 12 3[解析] 过点D 作DE ⊥AB 于点E ,则四边形BCDE 是矩形.根据题意,得∠ACB =β=60°,∠ADE =α=30°,BC =18 m ,∴DE =BC =18 m ,CD =BE .在Rt △ABC 中,AB =BC ·tan∠ACB =18×tan60°=18 3(m). 在Rt △ADE 中,AE =DE ·tan∠ADE =18×tan30°=6 3(m),∴CD =BE =AB -AE =18 3-6 3=12 3(m).9.[解析] 如图,过点F 作FH ⊥AE 于点H .由题意可知∠HAF =∠HFA =45°,推出AH =HF .设AH =HF =x m ,则EF =2x m ,EH =3x m ,在Rt △AEB 中,由∠E =30°,AB =5 m ,推出AE =2AB =10 m ,可得x +3x =10,解方程即可.解:如图,过点F 作FH ⊥AE 于点H .由题意可知∠HAF =∠HFA =45°,∴AH =HF .设AH =HF =x m ,则EF =2x m ,EH =3x m. 在Rt △AEB 中,∵∠E =30°,AB =5 m , ∴AE =2AB =10 m ,∴x +3x =10,解得x =5 3-5,∴EF =2x =10 3-10≈7.3(m). 答:点E 与点F 之间的距离约为7.3 m.10.解:(1)在Rt △ABE 中,BE =AB ·tan31°=31×tan31°≈31×0.60=18.60(m),AE =ABcos31°=31cos31°≈310.86≈36.05(m),故甲楼的高度约为18.60 m ,彩旗的长度约为36.05 m. (2)过点F 作FM ⊥GD ,交GD 于点M , 在Rt △GMF 中,GM =FM ·tan19°. 在Rt △GDC 中,GD =CD ·tan40°.设甲、乙两楼之间的距离为x m ,则FM =CD =x m. 根据题意,得x tan40°-x tan19°=18.60,解得x =37.20.乙楼的高度GD =CD tan40°≈37.20×0.84≈31.25(m),故乙楼的高度约为31.25 m ,甲、乙两楼之间的距离约为37.20 m.11.解:设AH =x 米,在Rt △中, ∵∠EGH =45°,∴GH =EH =AE +AH =(x +12)米. ∵GF =CD =288米,∴HF =GH +GF =x +12+288=(x +300)米. 在Rt △AHF 中,∵∠AFH =30°, ∴AH =HF ·tan∠AFH ,即x =(x +300)·33, 解得x =150(3+1).∴AB =AH +BH =150(3+1)+1.5≈409.8+1.5≈411(米). 答:凤凰山与中心广场的相对高度AB 大约是411米. [素养提升][解析] 本题是一道开放性试题,解题方法很多,表达式也是多种多样的.测角器可以测得仰角和俯角,皮尺可以测得A 楼的高度,通过解直角三角形可得B 楼的高度.解:(1)答案不唯一.如图,设AC 表示A 楼,BD 表示B 楼.测量步骤如下:①用测角器在A 楼的顶端点A 测量B 楼楼底的俯角α; ②用测角器在点A 测量B 楼楼顶的仰角β;③用皮尺从A 楼楼顶放下,测量点A 到地面的高度为a . (2)在Rt △ACD 中,CD =atan ∠ADC =atan α.在Rt △AEB 中,BE =AE ·tan β. ∵AE =CD ,∴BE =a tan βtan α,∴B 楼的高度BD =BE +ED =BE +AC =a tan βtan α+a =a ⎝ ⎛⎭⎪⎫1+tan βtan α.。

利用三角函数测高 课后专题练习(无答案)北师大版九年级数学下册

利用三角函数测高  课后专题练习(无答案)北师大版九年级数学下册

1.6利用直角函数测高课后专题练习一、单选题1、如图,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离CE=8m ,测得旗杆的顶部A 的仰角∠ECA=30°,旗杆底部B 的俯角∠ECB=45°,那么,旗杆AB 的高度是( )A .mB .(8+mC .⎛⎝⎭m D .8⎛ ⎝⎭m 2、一架长5m 的梯子斜靠在墙上,测得它与地面的夹角是65︒,则梯子顶端到地面的距离为( )A .5sin65m ︒B .5cos65m ︒C .5tan65m ︒D .5cos65m ︒3、如图,从一栋二层楼的楼顶点A 处看对面的教学楼,探测器显示,看到教学楼底部点C 处的俯角为45°,看到楼顶部点D 处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD 是( )A .(6+米 B .(6+米 C .(6+米 D .12米4、如图,某渔船正在海上P 处捕鱼,先向北偏东30°的方向航行10km 到A 处.然后右转40°再航行到B 处,在点A 的正南方向,点P 的正东方向的C 处有一条船,也计划驶往B 处,那么它的航向是( )A.北偏东20°B.北偏东30°C.北偏东35°D.北偏东40°5、兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为()A.B.C.D.6、如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A、B相距200m,则景点B、C相距的路程为()B.200 C.100 D.A.7、如图,小敏同学想测量一棵大树的高度,她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°.已知小敏同学身高(AB)为1.6m,则这棵树的高度为(结果精确到0.1m,1.73)( )A.3.5m B.3.6m C.4.3m D.5.1m8、如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B离水平面的高度BC的长为()A.40米B.米C.米D.10米9、某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为C.6米D.(A.9米B.10、一辆汽车沿倾斜角α的斜坡前进800米,则它上升的高度是()A.800•sinα米B.米C.800•cosα米D.米二、填空题1、如图,为了测量某风景区内一座古塔CD的高度,某校数学兴趣小组的同学分别在古塔对面的高楼AB的底部B和顶部A处分别测得古塔项部C的仰角分别为45°和30°,已知高楼AB的高为24m,则古塔CD的高度为是______m1.732 1.414,结果保留一位小数).2、如图,某公园入口处原有三级台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=1:5,则AC的长度是_____cm.3、全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B 处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为________米(参考数据:tan78°12′≈4.8).4、已知在ABC中,AB= AC=5,BC=6,则tan B的值为_____.5、如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31cm,则楼BC的高度约为_______m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)6、在等腰直角△ABC中,∠C=90°,AC=6,D为AC上一点,若1tan3DBC∠=,则AD=______.7、如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为100m,那么该建筑物的高度BC约为__m.8、A.已知圆锥的底面半径长为5,圆锥侧面展开后得到一个半圆,则该圆锥的母线长为______.B.(用计算器)若某人沿坡角为23°的斜坡前进168cm,则他上升的高度是_____(精确到0.01m)三、解答题1、如图1所示的是一种置于桌面上的简易台灯,将其结构简化成图2,灯杆AB与CD交于点O(点O固定),灯罩连杆CE始终保持与AB平行,灯罩下方FG处于水平位置,测得OC=20cm,∠COB=70°,∠F=40°,EF=EG,点G到OB的距离为12cm.(1)求∠CEG的度数.(2)求灯罩的宽度(FG的长;结果精确到0.1cm,可用科学计算器).(参考数据:sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)2、在△ABC中,AB=4,BC=8,则△ABC的高AD和CE之比是多少?3、如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部M的仰角为30°.两人相距30米且位于旗杆两侧(点B,N,D在同一条直线上).求旗杆MN的高度.(参考≈,结果保留整数)≈ 1.71.44、如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF 为旗杆,气球从A 处起飞,几分钟后便飞达C 处,此时,在AF 延长线上的点B 处测得气球和旗杆EF 的顶点E 在同一直线上.(1)已知旗杆高为12米,若在点B 处测得旗杆顶点E 的仰角为30°,A 处测得点E 的仰角为45°,试求AB 的长(结果保留根号);(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC 的长(结果保留根号)?5、为了测量某段河面的宽度,秋实同学设计了如图所示的测量方案;先在河的北岸选定一点A ,再在河的南岸选定相距a m 的两点B ,C ,分别测得ABC α∠=,ACB β∠=.请你根据秋实同学测得的数据,计算出河宽AD .(结果用含a 和α,β的三角函数表示)6、如图,一架飞机以每小时900千米的速度水平飞行,某个时刻,从地面控制塔O(塔高300m)观测到飞机在A处的仰角为30︒,5分钟后测得飞机在B处的仰角为45︒,试确定飞机的飞行高度. 1.732=,结果精确到1km)。

北师大版初中数学九年级下学期《1.6 利用三角函数测高》同步练习卷

北师大版初中数学九年级下学期《1.6 利用三角函数测高》同步练习卷

北师大新版九年级下学期《1.6 利用三角函数测高》同步练习卷一.选择题(共7小题)1.如图,一艘海轮位于灯塔P的东北方向距离灯塔30海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB的值为()A.30(+1)海里B.30(+)海里C.30(+1)海里D.60海里2.如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A.15海里B.30海里C.45海里D.30海里3.如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.3004.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60nmile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60nmile B.60nmile C.30nmile D.30nmile 5.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.406.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A.34.14米B.34.1米C.35.7米D.35.74米7.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米二.填空题(共9小题)8.如图,从楼AB的A处测得对面楼CD的顶部C的仰角为37°,底部D的俯角为45°,两楼的水平距离BD为24m,那么楼CD的高度约为m.(结果精确到1m,参考数据:sin37°≈0.6;cos37°≈0.8;tan37°≈0.75)9.一艘货轮由西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在它的东北方向,若灯塔P正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为海里(结果保留根号).10.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)11.如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东30°方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西60°方向上,则点A到河岸BC的距离为.12.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.13.如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)14.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).16.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是km.三.解答题(共34小题)17.如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).18.为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB =∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)19.如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)20.如图为某区域部分交通线路图,其中直线l1∥l2∥l3,直线l与直线l1、l2、l3都垂直,垂足分别为点A、点B和点C,(高速路右侧边缘),l2上的点M位于点A的北偏东30°方向上,且BM=千米,l3上的点N位于点M的北偏东α方向上,且cosα=,MN=2千米,点A和点N是城际线L上的两个相邻的站点.(1)求l2和l3之间的距离;(2)若城际火车平均时速为150千米/小时,求市民小强乘坐城际火车从站点A 到站点N需要多少小时?(结果用分数表示)21.一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?22.某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O 位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈23.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60.24.如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,sinα=,在顶端E 点测得A的仰角为45°,求发射塔AB的高度.25.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P 在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)26.随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)27.在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)28.如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).29.如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10m到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,≈1.73).30.某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)31.知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)32.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)33.如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18米,从D,E两处测得路灯B的仰角分别为α和β,且tanα=6,tanβ=,求灯杆AB的长度.34.如图,两座建筑物的水平距离BC为60m,从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°,求两座建筑物的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈).35.“五•一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示.根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)36.为了维护国家主权和海洋权利,我国海监部门对中国海域实现常态化管理.某日,我国海监船在某海岛附近的海域执行巡逻任务.如图,此时海监船位于海岛P的北偏东30°方向,距离海岛100海里的A处,它沿正南方向航行一段时间后,到达位于海岛P的南偏东45°方向的B处,求海监船航行了多少海里(结果保留根号)?37.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75m,请求出热气球离地面的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈).38.如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1:的斜坡向上走到点F时,DF正好与水平线CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.0l).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)39.如图,建筑物C在观测点A的北偏东65°方向上,从观测点A出发向南偏东40°方向走了130m到达观测点B,此时测得建筑物C在观测点B的北偏东20°方向上,求观测点B与建筑物C之间的距离.(结果精确到0.1m.参考数据:≈1.73)40.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0)tan(α﹣β)=(1+tanαtanβ≠0)利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.如:tan105°=tan(45°+60°)=根据上面的知识,你可以选择适当的公式解决下面问题:如图,两座建筑物AB和DC的水平距离BC为24米,从点A测得点D的俯角α=15°,测得点C的俯角β=75°,求建筑物CD的高度.41.如图,AB是某景区内高10m的观景台,CD是与AB底部相平的一座雕像(含底座),在观景台顶A处测得雕像顶C点的仰角为30°,从观景台底部B处向雕像方向水平前进6m到达点E,在E处测得雕像顶C点的仰角为60°,已知雕像底座DF高8m,求雕像CF的高.(结果保留根号)42.某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)43.如图,两座建筑物AD与BC,其地面距离CD为60m,从AD的顶点A测得BC顶部B的仰角α=30°,测得其底部C的俯角β=45°,求建筑物BC 的高(结果保留根号)44.数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)45.如图,小明在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)46.超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN上,小型车限速为每小时120千米,设置在公路旁的超速监测点C,现测得一辆小型车在监测点C的南偏西30°方向的A处,7秒后,测得其在监测点C的南偏东45°方向的B处,已知BC=200米,B在A的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据:≈1.41,≈1.73)47.如图,码头A、B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A、B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数据:≈1.4,≈1.7)48.今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B 点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)49.热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为45°,看这栋楼底部C的俯角β为60°,热气球与楼的水平距离为100m,求这栋楼的高度(结果保留根号).50.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m)参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.北师大新版九年级下学期《1.6 利用三角函数测高》同步练习卷参考答案与试题解析一.选择题(共7小题)1.如图,一艘海轮位于灯塔P的东北方向距离灯塔30海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB的值为()A.30(+1)海里B.30(+)海里C.30(+1)海里D.60海里【分析】根据方向角的概念可知∠APC=45°,由锐角三角函数的定义求出AC 的值,在Rt△PBC中根据∠B=30°求出BC的值,由AB=AC+BC即可得出结论.【解答】解:由题意得,∠APC=45°,P A=30,∵sin∠APC=,∴AC=P A•sin45°=30•=30,∵∠B=30°,PC=AC=40,tan B=,∴BC==30,∴AB=AC+BC=30+30=30(1+)(海里)故选:C.【点评】本题考查的是方向角的概念、直角三角形的性质及锐角三角函数的定义,熟知方向角的概念是解答此题的关键.2.如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A.15海里B.30海里C.45海里D.30海里【分析】作CD⊥AB,垂足为D.构建直角三角形后,根据30°的角对的直角边是斜边的一半,求出BP.【解答】解:作BD⊥AP,垂足为D.根据题意,得∠BAD=30°,BD=15海里,∴∠PBD=60°,则∠DPB=30°,BP=15×2=30(海里),故选:B.【点评】本题考查了解直角三角形,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.3.如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.300【分析】作BD⊥AC于点D,在Rt△ABD中利用三角函数求得AD的长,在Rt△BCD中,利用三角函数求得CD的长,则AC即可求得,进而求得速度.【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.【点评】此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.4.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60nmile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60nmile B.60nmile C.30nmile D.30nmile 【分析】如图作PE⊥AB于E.在Rt△P AE中,求出PE,在Rt△PBE中,根据PB=2PE即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△P AE中,∵∠P AE=45°,P A=60nmile,∴PE=AE=×60=30nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=60nmile,故选:B.【点评】本题考查方向角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.5.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.40【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选:B.方法二:可以证明△DGC≌△BGF,所以BF=DC=20,所以AB=20+10=30,故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.6.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A.34.14米B.34.1米C.35.7米D.35.74米【分析】过B作BF⊥CD于F,作B′E⊥BD,解直角三角形即可得到结论.【解答】解:过B作BF⊥CD于F,作B′E⊥BD,∵∠BDB'=∠B'DC=22.5°,∴EB'=B'F,∵∠BEB′=90°,∴EB′=B′F=10,∴DF=20+10,∴DC=DF+FC=20+10+1.6≈35.74=35.7.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.7.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ 可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.二.填空题(共9小题)8.如图,从楼AB的A处测得对面楼CD的顶部C的仰角为37°,底部D的俯角为45°,两楼的水平距离BD为24m,那么楼CD的高度约为42m.(结果精确到1m,参考数据:sin37°≈0.6;cos37°≈0.8;tan37°≈0.75)【分析】在Rt△ACE中,根据正切函数求得EC=AE•tan∠CAE,在Rt△AED中,求得ED=AE,再根据CD=DE+CE,代入数据计算即可.【解答】解:在Rt△ACE中,∵AE=24,∠CAE=37°,∴CE=AE•tan37°≈24×0.75=18,在Rt△AED中,∵∠EAD=45°,∴AE=ED=24,∴DC=CE+DE=18+24≈42.故楼DC的高度大约为42m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.9.一艘货轮由西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在它的东北方向,若灯塔P正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为(4﹣4)海里(结果保留根号).【分析】根据题意得:PC=4海里,∠PBC=45°,∠P AC=30°,在直角三角形APC中,由勾股定理得出AC=PC=4(海里),在直角三角形BPC 中,得出BC=PC=4海里,即可得出答案.【解答】解:根据题意得:PC=4海里,∠PBC=90°﹣45°=45°,∠P AC=90°﹣60°=30°,在直角三角形APC中,∵∠P AC=30°,∠C=90°,∴AC=PC=4(海里),在直角三角形BPC中,∵∠PBC=45°,∠C=90°,∴BC=PC=4海里,∴AB=AC=BC=(4﹣4)海里;故答案为:(4﹣4).【点评】本题考查了解直角三角形的应用、勾股定理的应用;求出AC和BC的长度是解决问题的关键.10.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为102n mile.(结果取整数,参考数据:≈1.7,≈1.4)【分析】根据题意得出∠MP A=∠P AD=60°,从而知PD=AP•sin∠P AD=43,由∠BPD=∠PBD=45°根据BP=,即可求出即可.【解答】解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86nmile的A处,∴∠MP A=∠P AD=60°,∴PD=AP•sin∠P AD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP===43×≈102(nmile).故答案为:102.【点评】此题主要考查了方向角含义,勾股定理的运用,正确记忆三角函数的定义得出相关角度是解决本题的关键.11.如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东30°方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西60°方向上,则点A到河岸BC的距离为20米.【分析】方法1、作AD⊥BC于点D,设出AD=x米,在Rt△ACD中,得出CD =x,在Rt△ABD中,得出BD=x,最后用CD+BD=80建立方程即可得出结论;方法2、先判断出△ABC是直角三角形,利用含30°的直角三角形的性质得出AB,AC,再利用同一个直角三角形,两直角边的积的一半和斜边乘以斜边上的高的一半建立方程求解即可.【解答】解:方法1、过点A作AD⊥BC于点D.根据题意,∠ABC=90°﹣30°=60°,∠ACD=30°,设AD=x米,在Rt△ACD中,tan∠ACD=,∴CD===x,在Rt△ABD中,tan∠ABC=,∴BD===x,∴BC=CD+BD=x+x=80∴x=20答:该河段的宽度为20米.故答案是:20米.方法2、过点A作AD⊥BC于点D.根据题意,∠ABC=90°﹣30°=60°,∠ACD=30°,∴∠BAC=180°﹣∠ABC﹣∠ACB=90°,在Rt△ABC中,BC=80m,∠ACB=30°,∴AB=40m,AC=40m,∴S=AB×AC=×40×40=800,△ABC=BC×AD=×80×AD=40AD=800,∵S△ABC∴AD=20米答:该河段的宽度为20米.故答案是:20米.【点评】此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.12.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.13.如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为137米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)。

新九年级数学下册第一章直角三角形的边角关系1-6利用三角函数测高同步练习新版北师大版

新九年级数学下册第一章直角三角形的边角关系1-6利用三角函数测高同步练习新版北师大版

新九年级数学下册第一章直角三角形的边角关系1-6利用三角函数测高同步练习新版北师大版(七)[第一章 6 利用三角函数测高]一、选择题1.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图K-7-1,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( )链接听课例1归纳总结图K-7-1A.11-sinα米 B.11+sinα米C.11-cosα米 D.11+cosα米2.如图K-7-2,为了测量电视塔的高度AB,在D处用高为1米的测角仪CD测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB为链接听课例2归纳总结( )图K-7-2A.50 3米 B.51米C.(50 3+1)米 D.101米3.如图K-7-3,斜坡AB的坡度为1∶2.4,长度为52米,在坡顶B所在的平台上有一座高楼FH,已知在A处测得楼顶F的仰角为60°,在B处测得楼顶F的仰角为77°,则高楼FH的高度是(结果精确到1米,参考数据:sin77°≈0.97,tan77°≈4.33,3≈1.73)( )图K-7-3A.125米 B.105米C.85米 D.65米4.2017·深圳如图K-7-4,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°.已知斜坡CD的长度为20 m,DE的长度为10 m,则树AB的高度是( )A.20 3 m B.30 mC.30 3 m D.40 m图K-7-45.如图K-7-5,在两建筑物之间有一旗杆GE,高15米,从点A经过旗杆顶端恰好看到矮建筑物的墙脚点C,且俯角α为60°,又从点A测得点D的俯角β为30°,若旗杆底G为BC的中点,则矮建筑物的高CD为()图K-7-5A.20米 B.10 3米C.15 3米 D.5 6米二、填空题6.如图K-7-6,小亮在太阳光线与地面成35°角时,测得树AB在地面上的影长BC=18 m,则树高AB约为________m.(结果精确到0.1 m)图K-7-67.如图K-7-7(示意图),某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20 m的点B处,用高为0.8 m 的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为________m.(结果精确到0.1 m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)链接听课例1归纳总结图K-7-78.如图K-7-8,两建筑物的水平距离BC为18 m,从点A测得点D的俯角α为30°,测得点C的俯角β为60°.则建筑物CD的高度为________m(结果不作近似计算).图K-7-8三、解答题9.2017·黄冈在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图K -7-9所示),已知标语牌的高AB=5 m,在地面的点E处,测得标语牌上点A的仰角为30°,在地面的点F处,测得标语牌上点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)图K-7-910.2017·莱芜如图K-7-10,某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31 m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲、乙两楼之间的距离.(结果均精确到0.01 m,cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)链接听课例2归纳总结11.学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:(1)如图K-7-11,在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C,D与B在同一直线上,且C,D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得C,D之间的距离为288米.已知红军亭的高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB(3取1.732,结果保留整数).图K-7-11如图K-7-12,A,B是两幢地平面高度相等、隔岸相望的建筑物.由于建筑物密集,在A的周围没有开阔地带,为了测量B楼的高度只能利用A楼的空间,A的各层楼都可到达,且能看见B.现有的测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线间的夹角).(1)请你设计一个测量B楼高度的方法,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量图形;(2)用你测量的数据(用字母表示)写出计算B楼高度的表达式.图K-7-12详解详析【课时作业】 [课堂达标] 1.[答案] A2.[解析] C 设AG =x 米,在Rt △AEG 中, ∵tan ∠AEG =AG EG,∴EG =AG3=33x 米. 在Rt △ACG 中,∵tan ∠ACG =AG CG ,∴CG =x tan30°=3x 米,∴3x -33x =100,解得x =50 3,则AB =(50 3+1)米,故选C.3.[解析] B 如图,延长FH 交AC 于点.由题意知BG ⊥AC ,BH ⊥FH ,FE ⊥AC ,∴四边形BGEH 是矩形,∴BH =GE ,BG =HE .∵BG ∶AG =1∶2.4,∴设BG =x 米,AG =2.4x 米(x >0).在Rt △ABG 中,∵AB =52米,由勾股定理可得BG 2+AG 2=AB 2,即x 2+(2.4x )2=522,解得x =20,则BG =20米,AG =48米.在Rt △BHF 中,∵∠HBF =77°,∴tan77°=FH BH,∴FH =BH tan77°. 在Rt △AEF 中,∵∠EAF =60°,∴EF =3AE ,∴3(48+BH )=20+BH tan77°, 解得BH ≈24.25,∴FH =BH tan77°≈105米.故选B.4.[解析] B 先根据CD =20 m ,DE =10 m 得出∠DCE =30°,故可得出∠DCB =90°,再由∠BDF =30°可知∠DBF =60°,由DF ∥AE 可得出∠BGF =∠BCA =60°,故∠GBF =30°,所以∠DBC =30°,再由锐角三角函数的定义即可得出结论.5.[解析] A 如图,延长CD 交点A 所在的水平线于点F ,如图.由题意,知GE ∥AB∥CD ,BC =2GC ,GE =15米,∴AB =2GE =30米.∵AF =BC =AB tan ∠ACB =303=10 3(米),DF =AF ·tan30°=10 3×33=10(米),∴CD =AB -DF =30-10=20(米). 6.[答案] 12.6 7.[答案] 40.0[解析] 过点A 作AE ⊥CD 于点E . ∵AB ⊥BD ,CD ⊥BD , ∴四边形ABDE 是矩形,∴AE =BD =20 m ,DE =AB =0.8 m. 在Rt △ACE 中,∠CAE =63°,∴CE =AE ·tan63°≈20×1.96=39.2(m), ∴CD =CE +DE ≈39.2+0.8=40.0(m), 即筒仓CD 的高约为40.0 m.8.[答案] 12 3[解析] 过点D 作DE ⊥AB 于点E ,则四边形BCDE 是矩形.根据题意,得∠ACB =β=60°,∠ADE =α=30°,BC =18 m ,∴DE =BC =18 m ,CD =BE .在Rt △ABC 中,AB =BC ·tan∠ACB =18×tan60°=18 3(m). 在Rt △ADE 中,AE =DE ·tan∠ADE =18×tan30°=6 3(m),∴CD =BE =AB -AE =18 3-6 3=12 3(m).9.[解析] 如图,过点F 作FH ⊥AE 于点H .由题意可知∠HAF =∠HFA =45°,推出AH =HF .设AH =HF =x m ,则EF =2x m ,EH =3x m ,在Rt △AEB 中,由∠E =30°,AB =5 m ,推出AE =2AB =10 m ,可得x +3x =10,解方程即可.解:如图,过点F 作FH ⊥AE 于点H .由题意可知∠HAF =∠HFA =45°,∴AH =HF .设AH =HF =x m ,则EF =2x m ,EH =3x m. 在Rt △AEB 中,∵∠E =30°,AB =5 m , ∴AE =2AB =10 m ,∴x +3x =10,解得x =5 3-5,∴EF =2x =10 3-10≈7.3(m). 答:点E 与点F 之间的距离约为7.3 m.10.解:(1)在Rt △ABE 中,BE =AB ·tan31°=31×tan31°≈31×0.60=18.60(m),AE =ABcos31°=31cos31°≈310.86≈36.05(m),故甲楼的高度约为18.60 m ,彩旗的长度约为36.05 m. (2)过点F 作FM ⊥GD ,交GD 于点M , 在Rt △GMF 中,GM =FM ·tan19°. 在Rt △GDC 中,GD =CD ·tan40°.设甲、乙两楼之间的距离为x m ,则FM =CD =x m. 根据题意,得x tan40°-x tan19°=18.60,解得x =37.20.乙楼的高度GD =CD tan40°≈37.20×0.84≈31.25(m),故乙楼的高度约为31.25 m ,甲、乙两楼之间的距离约为37.20 m.11.解:设AH =x 米,在∵∠EGH =45°,∴GH =EH =AE +AH =(x +12)米. ∵GF =CD =288米,∴HF =GH +GF =x +12+288=(x +300)米. 在Rt △AHF 中,∵∠AFH =30°, ∴AH =HF ·tan∠AFH ,即x =(x +300)·33, 解得x =150(3+1).∴AB =AH +BH =150(3+1)+1.5≈409.8+1.5≈411(米). 答:凤凰山与中心广场的相对高度AB 大约是411米. [素养提升][解析] 本题是一道开放性试题,解题方法很多,表达式也是多种多样的.测角器可以测得仰角和俯角,皮尺可以测得A 楼的高度,通过解直角三角形可得B 楼的高度.解:(1)答案不唯一.如图,设AC 表示A 楼,BD 表示B 楼.测量步骤如下:①用测角器在A 楼的顶端点A 测量B 楼楼底的俯角α; ②用测角器在点A 测量B 楼楼顶的仰角β;③用皮尺从A 楼楼顶放下,测量点A 到地面的高度为a . (2)在Rt △ACD 中,CD =atan ∠ADC =atan α.在Rt △AEB 中,BE =AE ·tan β. ∵AE =CD ,∴BE =a tan βtan α,∴B 楼的高度BD =BE +ED =BE +AC =a tan βtan α+a =a ⎝ ⎛⎭⎪⎫1+tan βtan α.。

北师大版九年级下《1.6利用三角函数测高》同步练习含答案

北师大版九年级下《1.6利用三角函数测高》同步练习含答案

1.6 利用三角函数测高同步练习一、单选题1、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米.A、B、3C、D、以上的答案都不对2、如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底总G为BC的中点,则矮建筑物的高CD为( )A、20米B、米C、米D、米3、如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的一端E到路灯A的仰角为45º,已知小颖的身高为1.5米,那么路灯A的高度AB为( )A、3米B、4.5米C、6米D、8米4、如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长为10米,斜坡AB的坡度i=1:,则河堤高BE等于( )米A、B、C、4D、55、.某铁路路基的横断面是一个等腰梯形(如图),若腰的坡比为2:3,路基顶宽3米,高4米,则路基的下底宽为()A、7mB、9mC、12mD、15m6、某地区准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC 的夹角∠ACB的余弦值为,则坡面AC的长度为()A、8B、9C、10D、127、如图,修建抽水站时,沿着倾斜角为30度的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B离水平面的高度BC的长为()A、米B、C、40米D、10米8、如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A、5cosaB、C、5sinaD、9、如图, 山坡AC与水平面AB成30°的角,沿山坡AC每往上爬100米,则竖直高度上升()米A、50B、50C、50D、3010、如图所示,河堤横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),堤高BC=5m,则坡面AB的长度是()A、10mB、10mC、15mD、5m11、在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,=,则飞机距疑似目标B的水平距离BC为()A、2400米B、2400米C、2500米D、2500米12、如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC 为()米.A、7tanαB、C、7sinαD、7cosα13、如图,C.D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C的北偏东30°方向上,则AB的长为()A、2kmB、3kmC、kmD、3km14、如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A、55mB、60mC、65mD、70m15、济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A、47mB、51mC、53mD、54m二、填空题16、如图,点G是Rt△ABC的重心,过点G作矩形GECF,当GF:GE=1:2时,则∠ B的正切值为________.17、如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为________ 海里.(结果保留根号)18、如图,机器人从A点出发,沿着西南方向行了4m到达B点,在点B处观察到原点O在它的南偏东60°的方向上,则OA=________ m(结果保留根号).19、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD的高度为________ m .(≈1.7)20、活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为________三、解答题21、水坝的横断面为梯形ABCD,迎水坡BC的坡角B为30°,背水坡AD坡比为1:1.5,坝顶宽DC=2米,坝高4米,求:(1)坝底AB的长;(2)迎水坡BC的坡比.22、小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E ,此时的仰角为60°,求旗杆的高度.23、如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB ,坡面AC 的倾斜角为45° .为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i= :3 .若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)24、如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)25、在升旗结束后,小铭想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好至C处且与地面成60°角,小铭从绳子末端C处拿起绳子后退至E点,求旗杆AB的高度和小铭后退的距离.(单位:米,参考数据:≈1.41,≈1.73,结果保留一位小数)答案部分一、单选题1、【答案】B2、【答案】A3、【答案】B4、【答案】A5、【答案】D6、【答案】C7、【答案】C8、【答案】B9、【答案】C10、【答案】A11、【答案】D 12、【答案】A 13、【答案】B 14、【答案】C 15、【答案】B二、填空题16、【答案】17、【答案】4018、【答案】(4+ )19、【答案】32.4 20、【答案】三、解答题21、【答案】解:(1)如图,作CF⊥AB,DE⊥AD,垂足分别为点F,E. ∴四边形CDEF是矩形.∴CF=DE=4,EF=CD=2.∴BF=CFcot30°=,AE=1.5DE=6.∴AB=BF+EF+AE=+2+6=+8(2)∵CF=4,BF=,∴迎水坡BC的坡比为:CF/BF=.22、【答案】解:如图,∵∠ADG=30°,AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10× =5 ,∴AB=1.5+5 .答:旗杆AB的高度为(1.5+5 )米.23、【答案】解:需要拆除,理由为:∵CB⊥AB ,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=10米,在Rt△BCD中,新坡面DC的坡度为i= :3,即∠CDB=30°,∴DC=2BC=20米,BD= 米,∴AD=B D-AB=(10 -10)米≈7.32米,∵3+7.32=10.32>10,∴需要拆除.24、【答案】解:设AC的长为x,那么BC的长就为2x.x2+(2x)2=AB2,x2+(2x)2=(4)2,x=4.答:河床面的宽减少了4米.25、【答案】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图所示:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•sin60°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x×cos60°=10×﹣10×≈2.1(m);答:旗杆AB的高度为8.7m,小铭后退的距离为2.1m.。

北师大版初三数学9年级下册 第1章 1.6 利用三角函数测高 同步练习题(含答案)

北师大版初三数学9年级下册 第1章 1.6 利用三角函数测高 同步练习题(含答案)

北师大版九年级数学下册《1.6利用三角函数测高》同步练习题(附答案)1.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( )A.50B.51C.50+1D.1012.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A 处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )A.100m B.50m C.50m D.m3.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B 处与灯塔P的距离为( )A.40海里B.40海里C.80海里D.40海里4.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为( )A.20米B.米C.米D.米5.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C 地,此时王英同学离A地( )A.m B.100m C.150m D.m6.如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为( )A.82米B.163米C.52米D.30米7.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 m(结果保留根号).8.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为 米.9.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为 m(结果不作近似计算).10.小兰想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m 至B处,测得仰角为60°,那么塔高约为 m.(小兰身高忽略不计,取)11.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为 米.12.如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)13.如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船c的求救信号.已知A、B两船相距100(+3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)14.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)15.军方派出搜救船在失事海域搜寻飞机残骸和黑匣子(如图).在海面A处搜救船测得俯角为30°正前方的海底有黑匣子信号发出,继续直线航行2千米后再次在B处测得俯角为45°正前方的海底有黑匣子信号发出,求海底C处距离海面的深度?(参考数据:)16.如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).(1)用含α、β和m的式子表示h;(2)当α=45°,β=60°,m=50米时,求h的值.(精确到0.1m,≈1.41,≈1.73)17.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2021米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)18.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).19.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A 点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.20.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m)21.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A处,情况危急!救援队伍在B处测得A在B的北偏东60°的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A处救人,同时第二组从陆地往正东方向奔跑120米到达C处,再从C处下水游向A 处救人,已知A在C的北偏东30°的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A处?请说明理由.(参考数据=1.732)22.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.23.某中学初三(2)班数学活动小组利用周日开展课外实践活动,他们要在湖面上测量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45°,沿直线CD 向塔AB方向前进18米到达点D,测得塔顶A的仰角为60度.已知湖面低于地平面1米,请你帮他们计算出塔AB的高度.(结果保留根号)24.如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°,已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)25.如图,要测量A点到河岸BC的距离,在B点测得A点在B点的北偏东30°方向上,在C点测得A点在C点的北偏西45°方向上,又测得BC=150m.求A点到河岸BC的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)参考答案1.解:设AG=x米,在Rt△AEG中,∵tan∠AEG=,∴EG==x(m),在Rt△ACG中,∵tan∠ACG=,∴CG==x(m),∴x﹣x=100,解得:x=50.则AB=(50+1)米.故选:C.2.解:根据题意得:∠ABC=30°,AC⊥BC,AC=100m,在Rt△ABC中,BC===100(m).故选:A.3.解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.4.解:∵点G是BC中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30米,在Rt△ABC中,∠CAB=30°,则BC=AB tan∠BAC=30×=10米.如图,过点D作DF⊥AF于点F.在Rt△AFD中,AF=BC=10米,则FD=AF•tanβ=10×=10米,综上可得:CD=AB﹣FD=30﹣10=20米.故选:A.5.解:AD=AB•sin60°=50;BD=AB•cos60°=50,∴CD=150.∴AC==100.故选:D.6.解:设楼高AB为x.在Rt△ADB中有:DB==x,在Rt△ACB中有:BC==x.而CD=BD﹣BC=(﹣1)x=60,解得x≈82.故选:A.7.解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故答案为:10.8.解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故答案为:750.9.解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.10.解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=50m.∴DC=BD•sin60°=50×=43.3.故答案为:43.3.11.解:过点D作DE⊥AB,垂足为E,由题意可知,四边形ACDE为矩形,则AE=CD=6米,AC=DE.设BE=x米.在Rt△BDE中,∵∠BED=90°,∠BDE=30°,∴DE=BE=x米,∴AC=DE=x米.在Rt△ABC中,∵∠BAC=90°,∠ACB=60°,∴AB=AC=×x=3x米,∵AB﹣BE=AE,∴3x﹣x=6,∴x=3,AB=3×3=9(米).即旗杆AB的高度为9米.故答案为9.12.解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.13.解:(1)作CE⊥AB于点E,则∠ABC=45°,∠BAC=60°,设AE=x海里,∵在Rt△AEC中,CE=AE•tan60°=x,在Rt△BCE中,BE=CE=x,∴AE+BE=x+x=100(3+),解得x=100,∴AC=2x=200.在△ACD中,∵∠DAC=60°,∠ADC=75°,∴∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得y=100(3﹣),∴AD=2y=200(3﹣).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(3﹣)海里;(2)∵由(1)可知,DF=AF=×100(3﹣)≈219.∵219>200,∴巡逻船A沿直线AC去营救船C,在去营救的途中无触暗礁危险.14.解:在Rt△CDA中,∠ACD=30°,CD=3000米,∴AD=CD tan∠ACD=1000米,在Rt△CDB中,∠BCD=60°,∴BD=CD tan∠BCD=3000米,∴AB=BD﹣AD=2000米.答:此时渔政船和渔船相距2000米.15.解:过C作CD垂直AB于D点,设CD为x,在Rt△ACD与Rt△BCD中,∠CAD=30°,∠CBD=45°,AC=CD=2x,AD =AB+CD=2+x,∴在Rt△ACD中有:(2+x)2+x2=(2x)2,∴(舍去).答:海底C处距海面2.732千米.16.解:(1)在Rt△ABC中,有BC=AB÷tanα=;同理:在Rt△ABD中,有BD=AB÷tanβ=;且CD=BC﹣BD=m;即﹣=m;故h=,(2)将α=45°,β=60°,m=50米,代入(1)中关系式可得h=,=,=75米+25米,≈118.3米.17.解:设CF=x米,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x米,=tan30°,即AC=x米,∵AC﹣BC=1200米,∴x﹣x=1200,解得:x=600(+1),则DF=h﹣x=2021﹣600(+1)≈382(米).答:钓鱼岛的最高海拔高度约382米.18.解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD约为:415m.19.解:根据题意得:∠CAB=90°﹣60°=30°,∠CBD=90°﹣30°=60°,AB=200米,CD⊥AB,则∠ACB=∠CBD﹣∠CAB=60°﹣30°=30°,则BC=AB=200米,在Rt△CBD中,CD=BC•sin60°=200×=100(米).答:河宽CD为100米.20.解:设CE=xm,则由题意可知BE=xm,AE=(x+100)m.在Rt△AEC中,tan∠CAE=,即tan30°=,∴,3x=(x+100),解得x=50+50=136.6,∴CD=CE+ED=136.6+1.5=138.1≈138(m).答:该建筑物的高度约为138m.21.解:过A作AD⊥BC,交BC的延长线于点D,∵A在B北偏东60°方向上,∴∠ABD=30°,又∵A在C北偏东30°方向上,∴∠ACD=60°又∵∠ABC=30°,所以∠BAC=30°,∴∠ABD=∠BAC,所以AC=BC∵BC=120,所以AC=120在Rt△ACD中,∠ACD=60°,AC=120,∴CD=60,AD=在Rt△ABD中,∵∠ABD=30°,∴AB=第一组时间:第二组时间:因为207.84>150所以第二组先到达A处.答:第二组先到.22.解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.23.解:如图,延长CD,交AB的延长线于点E,则∠AEC=90°,∠ACE=45°,∠ADE=60°,CD=18,设线段AE的长为x米,在Rt△ACE中,∵∠ACE=45°,∴CE=x,在Rt△ADE中,∵tan∠ADE=tan60°=,∴DE=x,∵CD=18,且CE﹣DE=CD,∴x﹣x=18,解得:x=27+9,∵BE=1米,∴AB=AE﹣BE=(26+9)(米).答:塔AB的高度是(26+9)米.24.解:设AF=x;在Rt△AGF中,有GF==x,同理在Rt△AEF中,有EF==x.结合图形可得:GE=CD=EF﹣GF=30即x﹣x=30,解可得:x=15;故AB=15+答:塔高AB为15+米.25.解:过点A作AD⊥BC于点D,设AD=xm.在Rt△ABD中,∵∠ADB=90°,∠BAD=30°,∴BD=AD•tan30°=x.在Rt△ACD中,∵∠ADC=90°,∠CAD=45°,∴CD=AD=x.∵BD+CD=BC,∴x+x=150,∴x=75(3﹣)≈95.即A点到河岸BC的距离约为95m.。

北师大版九年级数学下册1.6利用三角函数测高同步练习

北师大版九年级数学下册1.6利用三角函数测高同步练习

6利用三角函数测高知识点1测量底部可以到达的物体的高度图1-6-11.如图1-6-1,为测量一棵与地面垂直的树OA的高度,在距离树的底端30 m的B 处测得树顶点A的仰角∠ABO为∠α,则树OA的高度为()A.30tanαm B.30sinαmC.30tanαm D.30cosαm2.湖南路大桥为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50 m的C处,测得桥塔顶部A的仰角为41.5°(如图1-6-2).已知测量仪器CD的高度为1 m,则桥塔AB的高度约为(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)()图1-6-2A.34 m B.38 mC.45 m D.50 m3.某校数学兴趣小组要测量贵阳某电视塔的高度.如图1-6-3,他们在点A处测得电视塔最高点C的仰角为45°,再往电视塔方向前进至点B处测得最高点C的仰角为56°,AB=62 m,根据这个兴趣小组测得的数据,则电视塔的高度CD约为________m.(sin56°≈0.83,tan56°≈1.49,结果保留整数)图1-6-3知识点2测量底部不可以到达的物体的高度4.[2021·重庆]某数学兴趣小组的同学进行测量大树CD高度的综合实践活动,如图1-6-4,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一平面的斜坡AB行走13 m至坡顶B处,然后再沿水平方向行走6 m至大树脚底点D处,斜坡AB的坡度(或坡比)i=1∶2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A .8.1 mB .17.2 mC .19.7 mD .25.5 m图1-6-4图1-6-55.如图1-6-5,在高度是21 m 的小山A 处测得建筑物CD 顶部C 处的仰角为30°,底部D 处的俯角为45°,则这个建筑物的高度CD =________m (结果保留根号).6.2021·贵阳模拟贵阳是一座美丽的生态文明城市,某中学依山而建,校门A 处有一斜坡AB ,长度为13米,在坡顶B 处看教学楼CF 的楼顶C 的仰角∠CBF =53°,离B 点4米远的E 处有一花台,在E 处仰望C 的仰角∠CEF =63.4°,CF 的延长线交校门处的水平面于D 点,FD =5米.(1)求斜坡AB 的坡度i ;(2)求DC 的长.(参考数据:tan 53°≈43,tan 63.4°≈2) 图1-6-67.如图1-6-7,小明想测量河对岸的一幢高楼AB 的高度,小明在河边C 处测得楼顶A 的仰角是60°,距C 处60 m 的E 处有一幢楼房,小明从该楼房中距地面20 m 的D 处测得楼顶A 的仰角是30°(点B ,C ,E 在同一直线上,且AB ,DE 均与地面BE 垂直),求楼AB 的高度.图1-6-7图1-6-88.[2021·深圳] 如图1-6-8,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 处测得树顶B 的仰角为30°,已知斜坡CD 的长度为20 m ,DE 的长为10 m ,则树AB 的高度是( )A.20 3 m B.30 m C.30 3 m D.40 m9.如图1-6-9,放置在水平桌面上的台灯的灯臂AB长为42 cm,灯罩BC长为32 cm,底座厚度为2 cm,灯臂与底座构成的角∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少?(结果精确到0.1 cm,参考数据:3≈1.732)图1-6-910.[2021·菏泽]如图1-6-10,某小区1号楼与11号楼隔河相望,李明家住在1号楼,他很想知道11号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮李明计算11号楼的高度CD.图1-6-1011.九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1-6-11①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数;(2)如图②,第二小组用皮尺量得EF的长为16 m(点E为护墙上的端点),EF的中点距地面FB的高度为1.9 m,请你求出点E离地面FB的高度;(3)如图③,第三小组利用第一、二小组的结果来测量护墙上旗杆的高度.在点P处测得旗杆顶端A的仰角为45°,向前走4 m到达点Q,测得A的仰角为60°,求旗杆AE的高度(精确到0.1 m,参考数据:3≈1.732,2≈1.414).图1-6-11详解1.C2.C[解析] 过点D作DE⊥AB于点E,∴DE=BC=50 m.在Rt△ADE中,AE=DE·tan41.5°≈50×0.885=44.25(m).∵CD=1 m,∴BE=1 m,∴AB=AE+BE=44.25+1≈45(m),∴桥塔AB的高度约为45 m.故选C.3.189[解析] 根据题意得:∠CAD=45°,∠CBD=56°,AB=62 m,在Rt △ACD 中,∠ACD =∠CAD =45°,∴AD =CD .∵AD =AB +BD ,∴AB =AD -BD =CD -BD .∵在Rt △BCD 中,tan ∠CBD =CD BD, ∴BD =CD tan56°, ∴AB =CD -CD tan56°=62, ∴CD ≈189(m).故答案为189.4.A [解析] 如图,作BF ⊥AE 于点F ,则FE =BD =6 m ,DE =BF .∵斜坡AB 的坡度i =1∶2.4,∴AF =2.4BF ,设BF =x m ,则AF =2.4x m.在Rt △ABF 中,由勾股定理,得x 2+(2.4x )2=132,解得x =5,∴DE =BF =5 m ,AF =12 m ,∴AE =AF +FE =18 m.在Rt △ACE 中,CE =AE ·tan36°≈18×0.73=13.14(m),∴CD =CE -DE =13.14-5≈8.1(m).故选A.5.(7 3+21)6.解:(1)如图,过点B 作BG ⊥AD 于点G ,则四边形BGDF 是矩形,∴BG =FD =5米.∵AB =13米,∴AG =AB 2-BG 2=12米,∴斜坡AB 的坡度i =BG AG=1∶2.4. (2)在Rt △BCF 中,BF =CF tan ∠CBF ≈CF 43, 在Rt △CEF 中,EF =CF tan ∠CEF ≈CF 2. ∵BE =4米,∴BF -EF ≈CF 43-CF 2=4, 解得CF =16(米).∴DC =CF +DF ≈16+5=21(米).7.解:过点D 作DF ⊥AB 于点F ,则四边形BFDE 为矩形.设AB 的长度为x m ,则AF =(x -20)m ,在Rt △ABC 中,∵∠ACB =60°,∴BC =x 3m. 在Rt △ADF 中,∵∠ADF =30°,∴DF =3(x -20)m.∵EB =DF ,CE =60 m ,∴3(x -20)-x 3=60, 解得x =30 3+30. 即楼AB 的高度为(30 3+30)m.8.B [解析] 先根据CD =20 m ,DE =10 m 得出∠DCE =30°,故可得出∠DCB =90°,再由∠BDF =30°可知∠DBF =60°,由DF ∥AE 可得出∠BGF =∠BCA =60°,故∠GBF =30°,所以∠DBC =30°,再由锐角三角函数的定义即可得出结论.在Rt △CDE 中,∵CD =20 m ,DE =10 m ,∴sin ∠DCE =1020=12,∴∠DCE =30°. ∵∠ACB =60°,DF ∥AE ,∴∠BGF =60°,∴∠ABC =30°,∠DCB =90°.∵∠BDF =30°,∴∠DBF =60°,∴∠DBC =30°,∴BC =CD tan30°=2033=20 3(m), ∴AB =BC ·sin60°=20 3×32=30(m). 9.解:如图,由题意得CD ⊥AD ,过点B 分别作BM ⊥CE 于点M ,BF ⊥AD 于点F . ∵灯罩BC 长为32 cm ,光线最佳时灯罩BC 与水平线所成的角为30°,∴在Rt △CMB 中,sin30°=CM BC =CM 32, ∴CM =16(cm).在Rt △ABF 中,sin60°=BF AB , ∴32=BF 42,解得BF =21 3(cm). ∵∠ADC =∠BMD =∠BFD =90°,∴四边形BFDM 为矩形,∴MD =BF ,∴CE =CM +MD +DE =CM +BF +DE =16+21 3+2≈54.4(cm).答:此时灯罩顶端C 到桌面的高度CE 约是54.4 cm.10.[解析] 过点A 作AE ⊥CD 于点E ,分别在Rt △BCD 和Rt △ACE 中,利用锐角三角函数用BD 表示CD ,CE 的长,然后根据CD -CE =AB ,即可求得CD 的长.解:过点A 作AE ⊥CD 于点E ,在Rt △BCD 中,tan ∠CBD =CD BD,∴CD =BD ·tan60°=3BD,在Rt△ACE中,tan∠CAE=CEAE=CEBD,∴CE=BD·tan30°=33BD.∵AB=CD-CE,∴3BD-33BD=42,2 33BD=42,解得BD=21 3,∴CD=BD·tan60°=3BD=63米.答:11号楼的高度CD为63米.11.解:(1)∠α=76°.(2)过点E作EG⊥FB,垂足为G.设EF的中点为O,过点O作OH⊥FB,垂足为H,如图①,可知OH是△EFG的中位线.∵OH=1.9 m,∴EG=2OH=3.8 m,∴点E离地面FB的高度为3.8 m.(3)延长AE交直线PB于点G,如图②,设AG=x m,在Rt△QAG中,tan∠AQG=AGQG,得QG=33x m.在Rt△P AG中,tan∠APG=AGPG,得PG=x m.∵PQ+QG=PG,∴4+33x=x,解得x≈9.46.由(2)知EG=3.8 m,∴AE≈5.7 m. ∴旗杆AE的高度约为5.7 m.。

九年级数学北师大版下册习题课件第一章1.6 利用三角函数测高

九年级数学北师大版下册习题课件第一章1.6 利用三角函数测高

1.(5分)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°(tan 27°≈0.
2为._(_5_分_解_)_如__图:__,__过小_ 明m点.在楼A顶作上的A点EA处⊥测C得D楼前交一棵C树DC的D的延顶端长C的线俯角于为6点0°,E又,知水则平距A离EB=D=B10Cm,=楼高78AB=m24,m,则树高CD 8C.D∴之(15间分C的)E(距聊=离城A中AC考为E)3如·5 图tma,,n后小站莹∠在在CM数点A学处E综测合=得实7居践8民活t楼动anC中D,的5利8顶用°端所D≈的学7仰的8角数×为学14知5.°识6,对0=居某民小1楼区2A居4B民.的8楼(顶mA端B)B的,的高仰度D角进E为行=5测5°量A,,E已先·知测t居a得民n居楼民C楼DA的B高与
51解1.):,(5过此分点时)在A旗“解作杆测A:在E量⊥水∵旗C平杆D在地交的面C高DR上度的t的”△ 延影的长子C数线的E学于长D课点度题E中为,学2则,习4Am中∠E,,=则C某B旗CE学=杆习D7的8小=m高组,度5测∴8约得°C为太E(=,阳A光tEa线·)tna与n ∠水∠C平AC面EE=的D7夹8t角=an为5CD82°7DE°≈7(t8,a×n 21∴7. °D≈0E. =tanC5D8°
解:过点 A 作 AH⊥CD 于点 H,设 CH=x m,在 Rt△ACH 中,∵∠CAH=
30°,∴BD=AH=tanC3H0° = 3 x (m),∴在 Rt△ECD 中,tan ∠CED=ECDD

x+10 3x-6

3
,解得 x=5+3
3 ,∴CD=(15+3
3 )(m),∴CF=CD-DF
解答题(共60分) 7.(14分)如图,AB是某景区内高10 m的观景台,CD是与AB底部相平的 一座雕像(含底座),在观景台顶A处测得雕像顶C点的仰角为30°,从观景台 底部B处向雕像方向水平前进6 m到达点E,在E处测得雕像顶C点的仰角为 60°,已知雕像底座DF高8 m,求雕像CF的高.(结果保留根号)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档