最新人教版高一数学必修一-第一章-知识点与习题讲解名师资料汇编
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
最新人教版高一数学必修一各章知识点总结名师优秀教案

人教版高一数学必修一各章知识点总结一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征: 确定性,互异性,无序性。
(2)集合与元素的关系用符号=表示。
(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集、实数集。
(4)集合的表示法: 列举法,描述法,韦恩图。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函数一、映射与函数:(1)映射的概念: (2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:?对应法则 ;?定义域 (两点必须同时具备)(1)函数解析式的求法:?定义法(拼凑):?换元法:?待定系数法:?赋值法:(2)函数定义域的求法:?含参问题的定义域要分类讨论;?对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:?配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;?逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如: ;?换元法:通过变量代换转化为能求值域的函数,化归思想;?三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ?基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ?单调性法:函数为单调函数,可根据函数的单调性求值域。
?数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。
f(x) ,f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =,f(-x) f(x)为奇函数。
人教版高中数学必修1-第一章知识点知识点归纳[最新版]
![人教版高中数学必修1-第一章知识点知识点归纳[最新版]](https://img.taocdn.com/s3/m/dd7313645acfa1c7aa00cc5c.png)
知识点总结归纳【最新版】适用于老师、学生、家长一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性3、集合的表示:{ …} 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R3.关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a∉A•列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
•描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}•4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:二、集合间的基本关系• 1.“包含”关系—子集注意:有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ⊆B或B ⊇A•2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A= B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①子集:任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且B⊄A那就说集合A是集合B的真子集,记作A⊈B(或B⊉A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修一-第一章-知识点与习题讲解

必修1第一章集合与函数基础知识点整理 第1讲 §1.1.1 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉; 由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合. 解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况:⑴方程有等根且不是 △=0,得94a =-,此时的解为12x =,合.,而另一解不是x 代入得a =1x =⑶方程有一解为:将x =a =1x =,合.综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.A BBA AB A BA .B .C .D . 第2讲 §1.1.2 集合间的基本关系¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0};∅ {0}; N {0}. 解:(1), ;(2)=, ∈, ,. 【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ). 解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =. 若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-. 点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-. 经检验,此时A =B 成立. 综上所述12x =-. 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的B (读作“B (读作“解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤,(){|1,9}U C AB x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A B C ð.解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0A C BC =------.∴ ()A A C BC {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}AB =,则(){1,2,3,4,6,7,9}UC A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U C A C B =,()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()U U U C A C B C AB =,()()()U U U C A C B C A B =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()U U U C A C B C A B =与()()()U U U C A C B C AB = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,求实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9AB =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意.所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , AB .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}AB =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =; 当4a =时,{3,4}A =,则{1,3,4}A B =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值. 解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-. (i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B =由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U AC B .第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-.(2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1xf x x-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+. (1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f(x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞,∴ f .又 ∵,∴ f3-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §1.3.1 函数的单调性¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设任意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122b x x a <≤-时,有120x x -<,12bx x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a -∞-上单调递增. 同理可得()f x 在[,)2ba-+∞上单调递减.【例3】求下列函数的单调区间:(1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例4】已知31()2x f x x +=+,指出()f x 的单调区间. 解:∵ 3(2)55()322x f x x x +--==+++, ∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.第8讲 §1.3.1 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244acb a -;当0a <时,函数取最大值244acba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为(8)[10010(10)]y x x =---.即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元. 【例3】求函数2y x =+.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 22y =+,函数的最小值为2.点评:形如y ax b =+±的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.t ,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-. 画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-.所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §1.3.2 函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系. ¤例题精讲:【例1】判别下列函数的奇偶性: (1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x=-.解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有 3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数. (2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|f x x x x x f x -=--+-+=-++=,所以为偶函数. (3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数. 【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数, ∴ ()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩.两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2). ∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.作出0x <时的图象,其顶点为(1,2)-,且与右侧形状一致, ∴ 0x <时,22()2(1)224f x x x x =-++=--.点评:此题中的函数实质就是224||y x x =-+. 注意两抛物线形状一致,则二次项系数a 的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-, 所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减. 又 ∵ ()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.∵ 22(33)(32)f a a f a a +-<-, ∴ 223332a a a a +->-,解得1a >.点评:定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求) 1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减. 2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )MNAMNNMMNA.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( ) A .a ≥5 B .a ≥3 C .a ≤3 D .a ≤-59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U 11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y = D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上) 13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB 二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3).所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称, ∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-. .。
最新人教版高一数学必修一各章知识点总结优秀名师资料

人教版高一数学必修一各章知识点总结人版高一必修一各章知识点识识教数学识识识识全套+第一章集合函念与数概一、集合有识念概1.集合的含识2.集合的中元素的三特性,个(1)元素的定性如,世界上最高的山确(2)元素的互性如,由异HAPPY的字母识成的集合{H,A,P,Y}(3)元素的无序性: 如,{a,b,c}和{a,c,b}是表示同一集合个3.集合的表示,{ … } 如,{我校的识球识识}~{太平洋,大西洋,印度洋,北洋冰}(1)用拉丁字母表示集合,A={我校的识球识识},B={1,2,3,4,5}(2)集合的表示方法,列识法描述法。
与,注意,常用集及其识法,数非识整集;自然集, 识作,数即数N正整集数N*或 N+ 整集数Z 有理集数Q 识集数R,1列识法,{a,b,c……},2描述法,集合中的元素的公共性描述出~在将属来写大括表示集合的方法。
号内{xR| x-3>2} ,{x| x-3>2}?3,识言描述法,例,{不是直角三角形的三角形}4,Venn识:4、集合的分识,(1)有限集含有有限元素的集合个(2)无限集含有无限元素的集合个2(3)空集不含任何元素的集合例,{x|x=,5,二、集合识的基本识系1.“包含”识系子集—A?B注意,有识可能;两1,A是B的一部分~~;2,A与B是同一集合。
??//反之: 集合A不包含于集合B,或集合B不包含集合A,识作AB或BA2,“相等”识系,A=B (5?5~且5?5~识5=5)2识例,识 A={x|x-1=0} B={-1,1} “元素相同识集合两相等”即个它,? 任何一集合是本身的子集。
AA??子集真:如果AB,且A B那就识集合A是集合B的??真子集~识作AB(或BA)?如果 AB, BC ,那识 AC???? 如果AB 同识 BA 那识A=B??3. 不含任何元素的集合叫做空集~识识Φ识定: 空集是任何集合的子集~空集是任何非空集合的真子集。
精选高一数学必修一第一章知识点与习题讲解.docx

必修 1 第一章集合与函数基础知识点整理第 1 讲 §1.1.1 集合的含义与表示¤学习目标 :通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用 数集及其记法、集合元素的三个特征 .¤知识要点 :1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ } ”括起来,基本形式为 { a 1, a 2 , a 3 , ,a n } ,适用于有限集或元素间存在规律的无限集 . 描述法, 即用集合所含元素的共同特征来表示,基本形式为 { xA | P( x)} ,既要关注代表元素 x ,也要把握其属性 P(x) ,适用于无限集 .3. 通常用大写拉丁字母A, B, C,表示集合 .要记住一些常见数集的表示,如自然数集N ,正整数集N * 或N ,整数集 Z ,有理数集 Q ,实数集 R .4. 元素与集合之间的关系是属于 ( belong to )与不属于 ( not belong to ),分别用符号 、 表示,例如 3N ,2 N .¤例题精讲 :【例 1】试分别用列举法和描述法表示下列集合:( 1)由方程 x(x 2 2 x 3) 0 的所有实数根组成的集合;( 2)大于 2 且小于 7 的整数 .解:( 1)用描述法表示为: { x R | x( x 22x 3) 0} ;用列举法表示为 {0, 1,3} .(2)用描述法表示为:{ x Z | 2 x 7} ;用列举法表示为 {3,4,5,6} .【例 2】用适当的符号填空:已知A{ x | x 3k2,k Z } , B{ x | x 6m1, m Z} ,则有:17A ;- 5A ;17B.解:由 3k 2 17,解得 k5 Z ,所以 17A ;由 3k27Z ,所以5 A ;5,解得 k3由 6m 1 17 ,解得 m 3 Z ,所以 17 B . 【例 3】试选择适当的方法表示下列集合: (教材 P 6 练习题 2,13P A 组题 4)(1)一次函数 y x 3 与 y 2x 6 的图象的交点组成的集合;(2)二次函数 y x 2 4 的函数值组成的集合;(3)反比例函数y 2的自变量的值组成的集合 .xy x 3} {(1,4)} .解:( 1) {( x, y) |2 xy6(2) { y | y x 2 4} { y | y 4} .(3) { x | y2} { x | x 0} .x{1,4} ,也注意对比 ( 2)点评 :以上代表元素, 分别是点、 函数值、 自变量 . 在解题中不能把点的坐标混淆为与( 3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.* 【例 4】已知集合 A{ a | x a 1有唯一实数解 } ,试用列举法表示集合A .22x解:化方程x a为: x 2x ( a 2)0 .应分以下三种情况:21x2⑴方程有等根且不是2 :由 △ =0,得 a9,此时的解为 x1,合.42⑵方程有一解为 2 ,而另一解不是 2 :将 x 2 代入得 a 2 ,此时另一解 x 1 2 ,合.⑶方程有一解为2 ,而另一解不是 2 :将 x 2 代入得 a 2 ,此时另一解为 x2 1 ,合. 综上可知, A { 9 2, 2} .,4. 注意分式方程易造成增根的现象.点评 :运用分类讨论思想方法, 研究出根的情况, 从而列举法表示第 2 讲 §1.1.2 集合间的基本关系¤学习目标 :理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用 Venn 图表达集合间的关系 .¤知识要点 :1. 一般地,对于两个集合 A 、B ,如果集合 A 中的任意一个元素都是集合 B 中的元素, 则说两个集合有 包含关系,其中集合 A 是集合 B 的子集( subset ),记作 A B (或 BA ),读作“ A 含于B ”(或 “B 包含 A ”) . 2. 如果集合 A 是集合 B 的子集( AB ),且集合 B 是集合 A 的子集( B A ),即集合 A 与集合 B 的元素是一样的,因此集合A 与集合B 相等,记作 AB .3. 如果集合 A B ,但存在元素 xB ,且 x A ,则称集合 A 是集合 B 的真子集( proper subset ),记作 AB(或 BA ) .4. 不含任何元素的集合叫作空集( empty set ),记作 ,并规定空集是任何集合的子集.5. 性质: A A ;若 A B , BC ,则 AC ;若 A BA ,则 AB ;若 A B A ,则 B A .¤例题精讲 :【例 1】用适当的符号填空:(1) { 菱形 } { 平行四边形 } ;{ 等腰三角形 }{ 等边三角形 }.(2){ xR | 22 0;} 0{0} ;{0} ;N{0}.x解:( 1) , ; (2) =, ∈, , .【例 2】设集合A{ x | xn, n Z} , B{ x | x n 1 , n Z } ,则下列图形能表示 A 与 B 关系的是().22A BB AAB ABA .B .3 C . 1 3D .1 1 3解:简单列举两个集合的一些元素,A {, 1, 1 } , B{ ,32 ,0, ,1, ,, ,,, } ,易知 BA ,故答案选 A .2 2 222 2 2另解 :由B2n 1Z } ,易知 BA ,故答案选 A .{ x | x2,n【例 3】若集合 M x | x 2x 6 0 , Nx | ax 1 0 ,且 NM ,求实数 a 的值 .解:由 x 2 x 6 0x2或3 ,因此, M2, 3 .( i )若 a0 时,得 N,此时, NM ;( ii )若 a 0 时,得 N{ 1 } . 若 N M ,满足12或13 ,解得 a1或 a1 . 或1a 1aa23故所求实数 a 的值为 0 或 .23” ,因为 A点评 :在考察“ A B ”这一关系时,不要忘记“ 时存在 A B . 从而需要分情况讨论 .题中讨论的主线是依据待定的元素进行.【例 4】已知集合 A={ a,a+b,a+2b} , B={ a,ax,ax 2}. 若 A=B ,求实数 x 的值 .a b ax22解:若2b ax 2a+ax -2ax=0, 所以 a(x-1) =0,即 a=0 或 x=1.a 当 a=0 时,集合 B 中的元素均为0,故舍去;2当 x=1 时,集合 B 中的元素均相同,故舍去 .若ab ax 2 2ax 2 -ax-a=0.a 2b ax因为 a ≠ 0,所以 2x 2-x-1=0, 即 (x-1)(2 x+1)=0.又 x ≠ 1,所以只有 x1 . 12.经检验,此时 A= B 成立 . 综上所述 x2. 融入方程组思想,结合元素的互异性确定集合.点评 :抓住集合相等的定义,分情况进行讨论第 3 讲 §1.1.3 集合的基本运算(一)¤学习目标 :理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用 Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .¤知识要点 :集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到 掌握的层次 . 下面以表格的形式归纳三种基本运算如下 .并集 交集 补集由所有属于集合 A 或属于集 由属于集合 A 且属于集合 B 对于集合 A,由全集 U 中不属于概念合 B 的元素所组成的集合, 的元素所组成的集合,称为 集合 A 的所有元素组成的集称 为 集 合 A 与 B 的 并 集 集 合 A 与 B 的 交 集 合,称为集合A 相对于全集 U( union set )( intersection set )的补集( complementary set )记号 A B (读作“ A 并 B ”) AB (读作“ A 交 B ”) e U A (读作“ A 的补集”)符号A B { x | x A,或 x B}A B { x | x A, 且 x B}e U A { x | x , 且x }U A图形U表示A¤例题精讲 :【例 1】设集合 U R, A { x | 1x 5}, B{ x | 3 x 9}, 求 AB,e U ( AB) .解:在数轴上表示出集合 A 、 B ,如右图所示:BA B { x | 3 x 5} , AC U ( A B ) { x | x 1,或 x9} ,-1 35 9x【例 2】设 A { x Z | | x | 6} , B 1,2,3 , C 3,4,5,6 ,求:(1) A (B C ) ; ( 2) A e A ( B C ) .解:A6,5, 4, 3, 2, 1,0,1,2,3,4,5,6 .(1)又 B C 3 ,∴ A (B C) 3 ;(2)又BC1,2,3,4,5,6,得 C A ( B C ) 6, 5, 4, 3, 2, 1,0 .∴ A C A (B C )6, 5, 4,3, 2, 1,0 .【例 3】已知集合 A { x | 2 x 4} , B { x | x m} ,且 A BA ,求实数 m 的取值范围 .解:由 AB A ,可得 AB .在数轴上表示集合 A 与集合 B ,如右图所示:BA由图形可知, m 4 .-2 4 mx 点评 :研究不等式所表示的集合问题,常常由集合之间的关系,得 到各端点之间的关系,特别要注意是否含端点的问题 .【例 4】已知全集 U{ x | x 10,且 x N * } , A {2,4,5,8} , B{1,3,5,8} ,求 C U (AB) , C U ( A B) ,(C U A) (C U B) , (C U A) (C U B) ,并比较它们的关系 .解:由 A B { 1,2,3,4,5,8},则 C U ( A B){6,7,9} .由 A B {5,8},则 C U ( A B){1,2,3,4,6,7,9}由 C U A{1,3,6,7,9} , C U B{2,4,6,7,9},则 (C U A)(C U B){6,7,9},(C U A)(C U B){1,2,3,4,6,7,9} .由计算结果可以知道,(C U)()(A B) ,A C U B C U(C U A)(C U B)C U ( A B) .另解:作出 Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用 Venn 图研究( C U A)(C U B)C U (A B) 与 (C U A)(C U B) C U ( A B) ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第 4 讲§1.1.3集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法 .¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:C U ( A B) (C U A)( C U B), C U (A B)(C U A)(C U B).2.集合元素个数公式:n( A B)n( A) n( B) n( A B) .3.在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤例题精讲:【例 1】设集合A4,2a 1,a2, B9,a5,1 a,若 A B 9 ,求实数 a 的值.解:由于 A4,2a1,a2 , B9,a5,1 a ,且 A B9,则有:当 2 a 1=9时,解得a=5,此时A={ - 4, 9, 25} , B={9, 0, -4},不合题意,故舍去;当a 2=9 时,解得 a=3或- 3 .a=3时,A={ -4,5,9} ,B={9, -2,-2} ,不合题意,故舍去;a=- 3, A={ -4, -7,9} , B={9, -8, 4} ,合题意.所以, a=-3 .【例 2】设集合 A { x | ( x 3)( x a) 0,a R} , B{ x | ( x 4)( x 1) 0} ,求 A B , A B .(教材P14B 组题 2)解: B {1,4} .当 a 3 时,A{3} ,则 A B{1,3,4} , A B;当 a1时,A{1,3} ,则 A B{1,3,4} , A B{1} ;当 a 4 时,A{3,4} ,则 A B{1,3,4} , A B{4} ;当 a 3 且 a 1且 a 4 时,A{3, a} ,则 A B{1,3,4, a} , A B.点评:集合 A 含有参数 a,需要对参数 a 进行分情况讨论. 罗列参数 a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例 3】设集合 A ={x | x2 4 x0 },B ={ x | x22( a1)x a210 ,a R},若A B=B,求实数 a 的值.解:先化简集合A= {4,0} .由A B=B,则 B A,可知集合 B 可为,或为 {0} ,或 { - 4} ,或{ 4,0} .(i )若 B=,则4(a1)24( a 21)0 ,解得 a < 1 ;(ii )若0 B ,代入得a2 1 =0 a =1或 a =1,当 a =1时,B= A,符合题意;当 a =1时, B={0}A,也符合题意.(iii )若- 4 B,代入得a 270 a =7或 a =1,8a当a =1时,已经讨论,符合题意;当a =7时,B={-12,-4},不符合题意.综上可得, a =1或 a ≤1.4点评 :此题考查分类讨论的思想,以及集合间的关系的应用 . 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了 A=B 和 B= 的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题 .【 例 4 】 对 集 合 A 与 B , 若 定 义 A B{ x | x A,且 x B} , 当 集 合 A { x | x 8,x N * } , 集 合B { x | x(x 2)( x 5)( x 6) 0} 时,有 A B = . (由教材 P 12 补集定义“集合A 相对于全集 U 的补集为 C U A { x | x , } ”而拓展)且x A解:根据题意可知, A {1,2,3,4,5,6,7,8} , B {0,2,5,6}由定义 A B { x| x A, 且 x B} ,则A B{1,3,4,7,8} .点评 :运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素 . 如果再给定全集U ,则 A B 也相当于 A (C U B) .第 5 讲 §1.2.1 函数的概念¤学习目标 :通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域 .¤知识要点 :1. 设 A 、 B 是非空的数集,如果按某个确定的对应关系f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应, 那么就称 f :A → B 为从集合 A 到集合 B 的一个函数 ( function ),记作 y = f ( x) , xA .其中, x 叫自变量, x 的取值范围 A 叫作定义域( domain ),与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域( range ).2. 设 a 、 b 是两个实数,且 a< b ,则: { x|a ≤ x ≤ b} = [a,b] 叫闭区间; { x|a< x<b} = (a,b) 叫开区间;{ x|a ≤ x< b} = [ a,b) , { x|a<x ≤ b} = (a,b] ,都叫半开半闭区间 .符号:“∞”读“无穷大” ;“-∞”读“负无穷大” ;“ + ∞”读“正无穷大” . 则{ x | x a} (a, ) , { x | x a} [a, ) , { x | x b}( ,b) , { x | x b}( , b] , R( , ) .3. 决定函数的三个要素是定义域、值域和对应法则 .当且仅当函数定义域、对应法则分别相同时,函数才是同一函数 .¤例题精讲 :【例 1】求下列函数的定义域:( 1) y1x 3.2;( 2) y1x1 3x2解:( 1)由 x 2 1 0 ,解得 x 1且 x 3 ,所以原函数定义域为 (, 3)( 3, 1) ( 1,) .x 3 0,解得 x 3 且 x 9 ,(2)由3x 1 2 0所以原函数定义域为 [3,9)(9,) .【例 2】求下列函数的定义域与值域:( 1) y3x 2; ( 2) yx 2x 2 .5 4 x解:( 1)要使函数有意义,则 5 4x 0 ,解得 x 55 . 所以原函数的定义域是{ x | x} .4 43x 2 1 12x 8 1 3(4 x 5) 23 3 23 y5 4 x4 5 4 x5 4x 4 5 4x 4(2) yx2x2( x 1 ) 2 9 . 所以原函数的定义域是2 4 【例 3】已知函数1 x x .求:( 1) f (2) 的值; ( 2) f ( )1 x 解:( 1)由1x2 ,解得 x1,所以 f (2)1 .1 x333 3,所以值域为 { y | y3 04 } .44R ,值域是 ( , 9 ] .4f (x) 的表达式(2)设1x t ,解得 x1 t ,所以 f (t ) 1 t,即f ( x)1 x .1x1 t 1t1 x点评 :此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例 4】已知函数f ( x)x 22 , x R .1 x(1)求 f (x)f ( 1f (2)f (3)f (4) f (1 1 1) .) 的值;( 2)计算: f (1)) f ( )f ( x12342221 x2x11解:( 1)由 f ( x)xx1.f ( )1 x2121 212x11xxxx2(2)原式 f (1) ( f (2)f ( 1)) ( f (3) f (1))( f (4) f ( 1)) 137234 2 2点评 :对规律的发现,能使我们实施巧算 . 正确探索出前一问的结论,是解答后一问的关键 .第 6 讲 §1.2.2 函数的表示法¤学习目标 :在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念 .¤知识要点 :1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势) ;列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值) .2. 分段函数的表示法与意义(一个函数,不同范围的 x ,对应法则不同) .3. 一般地,设 A 、B 是两个非空的集合,如果按某一个确定的对应法则 f ,使对于集合 A 中的任意一个元素x ,在集合 B 中都有唯一确定的元素 y 与之对应,那么就称对应f : AB 为从集合 A 到集合 B 的一个映射( mapping ).记作“ f : A B ” .判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f.¤例题精讲 :【例 1】如图,有一块边长为 a 的正方形铁皮,将其四个角各截去一个边长为 x 的小正方形,然后折成一个无盖的盒子,写出体积V 以 x 为自变量的函数式是 _____,这个函数的 定义域为 _______ .解:盒子的高为 x ,长、宽为 a -2x ,所以体积为 V = x(a -2x) 2.又由 a -2xa0 ,解得 x .2a} .所以,体积 V 以 x 为自变量的函数式是V x(a -2x)2 ,定义域为 { x | 0 x2332x( , 1 )【例 2】已知 f (x)=x2 xx 3 x 3,求 f[ f(0)] 的值 .x ( 1 ,)解:∵ 0 (,1) ,∴ f(0)= 32 .又 ∵ 3 2 >1,∴ f( 32 )=(32)3+( 3 2 )-3=2+1 = 5,即 f[ f(0)]= 5.【例 3】画出下列函数的图象: 2 22(1) y | x2 | ; (教材 P 26 练习题 3)(2) y | x 1| | 2x 4 | .解:( 1)由绝对值的概念,有y | xx 2, x 2 2 |x, x.22所以,函数 y | x 2 | 的图象如右图所示 .63x 3, x 1(2)y | x 1| | 2x 4 |x 5, 2 x 1 ,3x 3, x2所以,函数y | x1|| 2 x 4 | 的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例 4】函数 f ( x)[ x] 的函数值表示不超过x 的最大整数,例如[ 3.5]4,[2.1] 2 ,当 x( 2.5,3] 时,写出 f ( x) 的解析式,并作出函数的图象.3, 2.5x22,2x11,1x 0解: f ( x)0,0x1. 函数图象如右:1, 1x22,2x33,x3点评:解题关键是理解符号m 的概念,抓住分段函数的对应函数式.第 7 讲§1.3.1 函数的单调性¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数 y=f(x) 的定义域为 I,如果对于定义域I 内的某个区间 D 内的任意两个自变量x1,x2,当 x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在区间 D 上是增函数( increasing function ) . 仿照增函数的定义可定义减函数 .2.如果函数 f(x)在某个区间 D 上是增函数或减函数,就说 f (x)在这一区间上具有(严格的)单调性,区间 D 叫 f(x)的单调区间 . 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2) . 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、 x 2∈给定区间,且x 1 < x 2;→计算 f (x 1 )- f(x 2 ) →判断符号→下结论 .¤例题精讲:【例 1】试用函数单调性的定义判断函数 f ( x)2 x在区间( 0, 1)上的单调性 . x 1解:任取 x , x∈ (0,1) ,且x x. 则f (x1 ) f ( x2 )2x12x21212x1 1x2 1由于 0 x1x2 1 , x110 , x2 1 0 , x2 x10 ,故 f ( x1 )所以,函数 f ( x) 2 x在( 0,1)上是减函数 .x 1【例 2】求二次函数 f ( x) ax2bx c (a0) 的单调区间及单调性解:设任意 x1 , x2R ,且 x1x2.则2( x2x1 ).(x1 1)(x2 1)f (x2 )0 ,即 f (x1 ) f ( x2 ) . .f ( x1 ) f (x2 )(ax12c)(ax22bx2c)2x22x2 )(x1x2 )[ a (x1 x2 )b] .bx1a( x1) b(x1若 a0 ,当x1x2b时,有 x1x20 , x1x2b,即 a(x1x2 )b0 ,从而 f ( x1 ) f (x2 ) 0 ,2a a即 f ( x ) f ( x ) ,所以 f (x) 在( ,b]上单调递增 . 同理可得f ( x) 在[b)上单调递减 .122a【例 3】求下列函数的单调区间:2a (1)y | x 1|| 2x 4 | ;(2) y x2 2 | x | 3 .3x3,x1解:( 1)y | x1|| 2 x4|x 5,2x 1 ,其图象如右.3x3, x2由图可知,函数在[2, ) 上是增函数,在(,2] 上是减函数.2,其图象如右 .(2) yx 2 2 | x |3x 2x 3, xx 22x 3, x 0由图可知,函数在 (, 1] 、 [0,1] 上是增函数,在 [ 1,0] 、 [1,) 上是减函数 .点评 :函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第 2 小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到f (| x |) 的图象 . 由图象研究单调性,关键在于正确作出函数图象.【例 4】已知 f ( x)3x 1,指出 f (x) 的单调区间 .x 2解:∵f ( x) 3( x 2) 5 3 5 ,x 2 x 2∴ 把g (x)5的图象沿 x 轴方向向左平移2 个单位,再沿 y 轴向上平移3 个单位,x得到 f ( x) 的图象,如图所示 .由图象得f ( x) 在 ( , 2) 单调递增,在 ( 2, ) 上单调递增 .点评 :变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知 f (x a) b 平移变换规律 .第 8 讲 §1.3.1 函数最大(小)值¤学习目标 :通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质 . 能利用单调性求函数的最大(小)值 .¤知识要点 :1. 定义最大值:设函数y f (x) 的定义域为 I ,如果存在实数 M 满足:对于任意的x ∈ I ,都有 f ( x) ≤ M ;存在 x 0∈ I ,使得 f (x 0 ) = M. 那么,称 M 是函数 y f ( x) 的最大值( Maximum Value ) . 仿照最大值定义,可以给出最小值( Minimum Value)的定义 .b )22. 配方法:研究二次函数y ax 2bx c (a0) 的最大(小)值,先配方成y a (x24ac b 后,b 24ac b 22a4a当 a0 时,函数取最小值为 4ac ;当 a0 时,函数取最大值 .4a4a3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值 .4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.¤例题精讲 :【例 1】求函数 y26的最大值 .xx 1解:配方为 y 6,由 ( x1 )2 33 ,得 06 8 .13 1( x 22 44( x23)4)422所以函数的最大值为 8.【例 2】某商人如果将进货单价为8 元的商品按每件 10 元售出时,每天可售出 100 件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1 元,其销售量就要减少 10 件,问他将售出价定为 多少元时,才能使每天所赚得的利润最大?并求出最大利润 .解:设他将售出价定为 x 元,则提高了 ( x 10) 元,减少了 10 (x 10) 件,所赚得的利润为y (x 8) [100 10 ( x10)] .即 y 10x 2 280x 1600 10( x 14)2 360 . 当 x 14时, y max 360 .所以,他将售出价定为 14 元时,才能使每天所赚得的利润最大 , 最大利润为 360 元 .【例 3】求函数 y2 xx 1 的最小值 .解:此函数的定义域为1,,且函数在定义域上是增函数,所以当 x 1时, y min 2 1 1 2 ,函数的最小值为 2.8点评 :形如 y ax bcxd 的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究 .【另解】令 x 1t ,则 t 0 , xt 2 1 ,所以 y 2t 2 t22(t 1 )2 15 ,在 t0 时是增函数,当 t 0 时, y min2 ,故函数的最小值为4 82.【例 4】求下列函数的最大值和最小值:2[ 5 , 3] ; ( 2) y | x 1| | x 2 | .( 1)y 3 2x x , x2 2 解:( 1)二次函数 y 32x x 2的对称轴为 xb,即 x1 .2a画出函数的图象,由图可知,当x1时, y max 4 ; 当 x3时, y min9 .24所以函数 y2x [5 , 3 ] 的最大值为 4,最小值为9 .3 2x x ,2 2 4( 2) y | x 1| | x 2 |3 ( x 2) 2x 1 ( 1 x 2) .3 ( x 1)作出函数的图象,由图可知, y[ 3,3] . 所以函数的最大值为3, 最小值为 -3.点评 :二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第 9 讲§1.3.2 函数的奇偶性. 理解奇函数、¤学习目标 :结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点 :1. 定义:一般地,对于函数f (x) 定义域内的任意一个 x ,都有 f ( x) f (x) ,那么函数 f (x) 叫偶函数( evenfunction ). 如果对于函数定义域内的任意一个 x ,都有 f ( x)f ( x) ),那么函数 f ( x) 叫奇函数( odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称 .3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别f ( x) 与 f ( x) 的关系 .¤例题精讲 :【例 1】判别下列函数的奇偶性:(1) f (x) x 3 1 ; ( 2) f ( x) | x 1| | x 1| ;( 3) f ( x) x 2x 3 .x { x | x0} ,对于定义域的每一个解:( 1)原函数定义域为 x ,都有f ( x)( x) 31 (x 31 ) f (x) , 所以为奇函数 .xx(2)原函数定义域为 R ,对于定义域的每一个x ,都有f ( x) | x 1 | | x 1 | x| 1 |x | 1f ,|x 所以为偶函数 .(3)由于 f ( x)x 2x 3f (x) ,所以原函数为非奇非偶函数.【例 2】已知 f ( x) 是奇函数, g ( x) 是偶函数,且 f ( x) g( x)1 ,求 f (x) 、 g( x) .解:∵ f (x) 是奇函数, g (x) 是偶函数,x1∴ f ( x)f ( x) ,g ( x)g ( x) .f (x)g ( x)1f (x)g ( x)1x 11则,即x .11f ( x)g( x)f ( x)g( x)x 1x 1两式相减,解得f ( x)x;两式相加,解得g (x)1x2.1x2 1【例 3】已知 f ( x)是偶函数,x 0时, f ( x) 2 x2 4 x,求x0 时f ( x)的解析式.解:作出函数 y 2 x24x2( x1)22, x0 的图象,其顶点为(1,2) .∵ f ( x) 是偶函数,∴其图象关于y轴对称.作出 x0 时的图象,其顶点为( 1,2) ,且与右侧形状一致,∴ x 0 时, f ( x)2( x 1)22 2 x24x .点评:此题中的函数实质就是y 2 x2 4 | x | .注意两抛物线形状一致,则二次项系数 a 的绝对值相同 . 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.【另解】当x0 时,x0 ,又由于 f ( x)是偶函数,则 f ( x) f ( x) ,所以,当 x0 时, f ( x) f ( x)2(x)24( x) 2 x24x.【例4】设函数 f ( x) 是定义在R 上的奇函数,且在区间(, 0) 上是减函数,实数 a 满足不等式f (3a2a3) f (3a 22a ) ,求实数a的取值范围.解:∵ f (x) 在区间 (,0) 上是减函数,∴ f (x) 的图象在y轴左侧递减.又∵ f ( x) 是奇函数,∴ f ( x) 的图象关于原点中心对称,则在y 轴右侧同样递减 .又 f (0) f (0) ,解得 f (0)0,所以 f (x) 的图象在R上递减.∵ f (3a2a3) f (3a 22a),∴ 3a 2a33a 22a ,解得a1.点评:定义在 R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.集合与函数基础测试一、选择题 (共 12 小题,每题 5 分,四个选项中只有一个符合要求)1.函数y==x2- 6x+ 10 在区间( 2, 4)上是()A .递减函数B.递增函数C.先递减再递增D.选递增再递减.x y22.方程组{ x y0的解构成的集合是()A .{( 1,1)}B .{1,1}C.( 1,1) D .{1}3.已知集合 A={ a, b, c}, 下列可以作为集合 A 的子集的是()A. aB. { a, c}C. { a, e}D.{ a, b, c, d}4.下列图形中,表示M N 的是()M NN M M N MNA B C D5.下列表述正确的是()A.{ 0}B.{0}C.{ 0}D.{ 0}6、设集合 A= {x|x参加自由泳的运动员} , B={x|x参加蛙泳的运动员} ,对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为()A.A ∩BB.A BC.A ∪ BD.A B7. 集合A={x x 2k, k Z } ,B={ x x 2k 1,k Z },C={ x x4k 1, k Z }又a A, b B, 则有()10A. ( a+b)AB. (a+b)BC.(a+b)CD. (a+b) A 、 B、 C 任一个8.函数f(x)=-x2+ 2(a- 1)x+ 2 在(-∞,4)上是增函数,则a的范围是()a a a aA .≥ 5B .≥ 3C.≤ 3D.≤- 59.满足条件 {1,2,3}M {1,2,3,4,5,6} 的集合 M 的个数是()A. 8 B .7 C. 6 D.510.全集 U = {1,2,3,4 ,5 ,6,7 ,8 }, A= {3,4,5 }, B= {1,3,6 },那么集合 { 2 ,7,8}是()A. A BB. A BC.C U A C U BD. C U A C U B11.下列函数中为偶函数的是()A .y xB .y x C.y x2D.y x3112. 如果集合 A={ x|ax 2+ 2x + 1=0}中只有一个元素,则 a 的值是()A .0B .0 或 1C. 1D.不能确定二、填空题 (共 4小题,每题x4 分,把答案填在题中横线上)f x)=2×2- 3||的单调减区间是 ___________.13.函数(14.函数y1的单调区间为 ___________.=x+1{ a,b,1} ,又可表示成 { a 2 , a15.含有三个实数的集合既可表示成b,0} ,则 a2003b2004.a16. 已知集合U{ x |3x 3}, M{ x | 1x 1}, C U N{ x | 0x2} 那么集合N, M (C U N ), M N.三、解答题 (共 4 小题,共44 分)17. 已知集合 A { x x240} ,集合 B{ x ax20} ,若B A ,求实数a的取值集合.18.设 f( x)是定义在R上的增函数, f(xy)= f( x)+ f( y),f(3)=1,求解不等式 f( x)+ f( x-2)> 1.19. 已知函数 f ( x)是奇函数,且当x>0时, f (x)= x3+2x2—1,求 f ( x)在R上的表达式.20. 已知二次函数 f (x)x 22(m 1)x2m m 2 的图象关于y 轴对称,写出函数的解析表达式,并求出函数 f ( x) 的单调递增区间 .必修 1 第一章集合测试集合测试参考答案:一、 1~5 CABCB6~10ABACC11~12cB二、 13[0, 3],(-∞,- 3)4414 (-∞,- 1 ),(- 1,+∞)15-116 N{ x |3 x 0 或 2 x3} ;M(C U N ) { x | 0 x 1} ;MN { x | 3 x 1或 2 x 3} .三、 17 .{0.-1,1} ;18.解: 由条件可得 f xf xf x xf(3).()+ ( - 2)= [ ( - 2)], 1=所以 f x xf( 3),又f xx xx> 3[ ( - 2)]> ( )是定义在 R 上的增函数,所以有( - 2)> 3,可解得12或 x<-1.答案: x>3或 x<-1.19..解析:本题主要是培养学生理解概念的能力.f ()=x3+ 2 2- 1.因f()为奇函数,∴f( 0)= -1 .x x x当x<0时,- x>0, f (- x)=(- x)3+2(- x)2-1=- x3+2x2-1,∴ f ( x)= x3-2x2+1.20.二次函数 f ( x)x22( m1) x 2m m 2的图象关于y 轴对称,∴ m1,则 f ( x)x21,函数 f ( x) 的单调递增区间为,0 ..。
数学高一必修一第一章知识点

数学高一必修一第一章知识点人教版高一数学必修一第一章知识点。
一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体正整数组成一个集合,每个正整数就是这个集合的元素。
- 集合中的元素具有确定性(给定一个元素和一个集合,能确定这个元素是否属于这个集合)、互异性(集合中的元素互不相同)、无序性(集合中元素的排列顺序不影响集合本身)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如,{1,2,3}表示由1、2、3这三个元素组成的集合。
- 描述法:用集合所含元素的共同特征表示集合。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述元素x特征的条件。
例如,{xx > 0,x∈ R}表示所有大于0的实数组成的集合。
- 区间表示法(主要用于表示数集):- 开区间(a,b)={xa < x < b};- 闭区间[a,b]={xa≤slant x≤slant b};- 半开半闭区间(a,b]={xa < x≤slant b},[a,b)={xa≤slant x < b};- 无穷区间(-∞,a)={xx < a},(-∞,a]={xx≤slant a},(a,+∞)={xx > a},[a,+∞)={xx≥slant a},(-∞,+∞)=R。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
规定:空集varnothing是任何集合的子集,即varnothing⊆ A。
- 真子集:如果A⊆ B,且存在元素x∈ B,但x∉ A,那么集合A称为集合B 的真子集,记作A⊂neqq B(或B⊃neqq A)。
空集是任何非空集合的真子集。
- 集合相等:如果A⊆ B且B⊆ A,那么A = B。
4. 集合的基本运算。
最新人教版高一数学上册必修1第一章知识点总结

主要知识点: 1、 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数 x,在集合B中都有惟一确定的数y和它对应,那么就称f:A—B,为集合A到集合B的一个函数, 记作:.y=f(x) , x A 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且 对应关系完全一致,则称这两个函数相等.
3、集合的三要素中的互异性是个考点,经常跟函数、不等式联系 起来作为选择题或者填空题考查。
如: 已知A={1,2a,a+b},B={4,2a-3,3},且A=B,求a,b的值。
§1.1.2集合间的基本关系
教学目的: (1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
难点攻破
1、实例体会三种表示方法的的优点与缺点。
2、分段函数的画法,实例讲解。如
3、解析式的列出引导学生学会找等量关系,根据等的基本性质 教学目的: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及奇偶性及几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 主要知识点: 1、 函数单调性证明的一般格式。 2、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么就称 函数为偶函数.偶函数图象关于y轴对称. 3、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么就称 函数为奇函数.奇函数图象关于原点对称.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1第一章集合与函数基础知识点整理第1讲 §1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}na a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(notbelong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合: (1)由方程2(23)0x xx --=的所有实数根组成的集合;(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=;用列举法表示为{0,1,3}-. (2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17 A ; -5 A ; 17 B . 解:由3217k +=,解得5k Z =∈,所以17A ∈; 由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13A 组题4)(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x=-的函数值组成的集合;(3)反比例函数2y x=的自变量的值组成的集合.解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y xy y =-=≥-.(3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是由 △=0,得94a =-,此时的解为12x =,合.⑵方程有一解为,而另一解不是x =代入得a =时另一解1x =-⑶方程有一解为x =代入得a时另一解为1x =,合.综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲§1.1.2 集合间的基本关系¤知识要点:1. 一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset),记作A B⊆(或B A⊇),读作“A含于B”(或“B包含A”).2. 如果集合A是集合B的子集(A B⊆),且集合B是集合A的子集(B A⊇),即集合A与集合B的元素是一样的,因此集合A与集合B相等,记作A B=.3. 如果集合A B⊆,但存在元素x B∈,且x A∉,则称集合A是集合B 的真子集(proper subset),记作A≠⊂B(或B≠⊃A).4. 不含任何元素的集合叫作空集(empty set),记作∅,并规定空集是任何集合的子集.5. 性质:A A⊆;若A B⊆,B C⊆,则A C⊆;若A B A=,则A B⊆;若A B A=,则B A⊆.¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形};{等腰三角形} {等边三角形}.(2)∅2∈+=;0 {0};∅{0};Nx R x{|20}{0}.解:(1),;A BBA AB A BA .B .C .D . (2)=, ∈, ,.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023xx x +-=⇒=-或,因此,{}2,3M =-.(i )若0a =时,得N =∅,此时,N M ⊆;(ii )若0a ≠时,得1{}N a=. 若N M ⊆,满足1123aa==-或,解得1123a a ==-或.故所求实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0.因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-.经检验,此时A =B 成立. 综上所述12x =-.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.B B {|AB x ={|AB x =图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()UU R A x x B x x AB AB ==-≤≤=<<求.解:在数轴上表示出集合A 、B ,如右图所示: {|35}AB x x =<≤, (){|1,9}UC AB x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()AABC .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0AC BC =------.∴()A A C BC {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()UCAB ,UA-2 4 m xB AABB A()U C AB ,()()U UC A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}A B =,则(){1,2,3,4,6,7,9}U C AB =由{1,3,6,7,9}UC A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U CA CB =,()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()UU U CA CBC AB =,()()()U U U C A C B C AB =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()UU U CA CBC AB =与()()()U U U C A C B C AB = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §1.1.3 集合的基本运算(二)¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()UU U CAB C A C B =,()()()U U U C AB C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等.也常由新的定义考查创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9AB =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意.所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅; 当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =; 当4a =时,{3,4}A =,则{1,3,4}AB =,{4}AB =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}AB a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240xx +=}, B ={x |222(1)10xa x a +++-=,a R ∈},若A B =B ,求实数a 的值.解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-;(ii )若0∈B ,代入得2a1-=0⇒a =1或a =1-,当a =1时,B =A ,符合题意; 当a =1-时,B ={0}⊆A ,也符合题意. (iii )若-4∈B ,代入得2870aa -+=⇒a =7或a =1,当a =1时,已经讨论,符合题意; 当a =7时,B ={-12,-4},不符合题意.综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -=. (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}UC A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U AC B .第5讲 §1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间. 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y xx =-++.解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y xx x =-++=--+.所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式解:(1)由121x x-=+,解得13x =-,所以1(2)3f =-.(2)设11x t x-=+,解得11t x t-=+,所以1()1t f t t-=+,即1()1x f x x-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞,∴ f (0)=32.又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示. 点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12xx <.则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201xx <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >. 所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x axbx c a =++<的单调区间及单调性.解:设任意12,x xR ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122bxx a <≤-时,有120x x -<,12b x x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a-∞-上单调递增. 同理可得()f x 在[,)2b a-+∞上单调递减.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y xx =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.第8讲 §1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y axbx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.¤例题精讲: 【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为(8)[10010(10)]y x x =---.即2210280160010(14)360y xx x =-+-=--+. 当14x =时,max360y=.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数,所以当1x =时,min2112y =+-=,函数的最小值为2.点评:形如y ax b cx d=+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t-=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值: (1)25332,[,]22y x x x =--∈-;(2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2b x a=-,即1x =-.画出函数的图象,由图可知,当1x =-时,max4y =;当32x =时,min94y=-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §1.3.2 函数的奇偶性¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性: (1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x xx =-.解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数.(2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数.(3)由于23()()f x xx f x -=+≠±,所以原函数为非奇非偶函数.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .解:∵ ()f x 是奇函数,()g x 是偶函数,∴()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩. 两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.。