Synthesis of Maleic Anhydride Grafted Polyethylene and

合集下载

酸碱滴定法测定马来酸酐接枝聚丙烯中的酸酐含量

酸碱滴定法测定马来酸酐接枝聚丙烯中的酸酐含量

称取约 2 g已精制的接枝物 ,置于 250 mL 蒸馏
瓶中 ,加入约 80 mL 二甲苯 ,加热回流约 20 m in至
接枝物溶解 。冷却后加入过量的 0. 1 mol/L KOH 乙醇标准溶液 ,再加热回流 6 h,冷却后以酚酞作为 指示剂 ,用 0. 1 mol/L HC l - 异丙醇标准溶液反滴过 量的 KOH - 乙醇标准溶液 ,记录过量所消耗的碱量 和中和的酸量 ,并按 (3)式计算接枝率 :
G总 ———用没 经 精 制 的 接 枝 物 测 得 的 接 枝
率, %;
G精 ———用已精制的接枝物测得的接枝率 , % 。
2 结果与讨论
为了使测试结果更加准确 ,更能具体反映有多
少 MAH 接枝到 PP分子链上 ,对同一种样品进行多
次试验 ,并对取样量 、KOH - 乙醇标准溶液浓度 、滴
定温度等因素进行研究 ,得到优化的试验方法 。
GMAH = 9. 806 (V1 C1 - C2 V2 ) /2m
(3)
式中 : GMAH ———1 g PP 接 枝 物 上 的Βιβλιοθήκη MAH 质 量 分数 , %;
C1 ———KOH - 乙醇标准溶液浓度 , mol/L;
C2 ———HC l - 异丙醇标准溶液浓度 , mol/L;
V1 ———加入过 量 KOH —乙醇 标 准 溶 液 的 体
司。 1. 2 主要仪器及设备
挤出机 : TE - 75 型 ,南京瑞亚高聚物装备有限 公司 ;
切粒机 : LQ - 500型 ,江苏泰州鑫力橡塑机械有 限公司 ;
加热套 : 250 mL ,龙口市先科仪器公司 ; 加热套 : 500 mL ,山东鄄城华鲁仪器公司 ; 万用可调电炉 : 1 500 W ,黄骅市综合电器厂 ; 电子天平 : FA2004型 ,上海精科天平仪器厂 ; 真空烘箱 : ZK072型 ,上海市实验仪器总厂 ; 蒸馏瓶 : 250 mL ,盐城市龙冈镇玻璃仪器厂 ; 冷凝管 : 250 mL ,北京玻璃仪器厂 ; 滴定管 : 50 mL ,江苏建湖长城仪器制造有限公 司。 1. 3 试样制备 制备 PP2g2MAH 接枝物在双螺杆挤出机上进 行 ,其制备工艺流程如图 1所示 。

苯乙烯存在下马来酸酐熔融接枝聚丙烯的研究_张才亮

苯乙烯存在下马来酸酐熔融接枝聚丙烯的研究_张才亮

第19卷第5期高校化学工程学报No.5 V ol.19 2005 年10月 Journal of Chemical Engineering of Chinese Universities Oct. 2005文章编号:1003-9015(2005)05-0648-06苯乙烯存在下马来酸酐熔融接枝聚丙烯的研究张才亮, 许忠斌, 冯连芳, 王嘉骏, 顾雪萍(浙江大学化学工程与生物工程学系化学工程联合国家重点实验室, 浙江杭州 310027)摘要:分别在哈克流变仪(Haake)和双螺杆挤出机(TSE)中,研究了苯乙烯(St) 存在下马来酸酐(MAH)熔融接枝聚丙烯(PP)的过程。

讨论了过氧化二异丙苯(DCP)用量、St用量、MAH用量、反应时间、反应温度、螺杆转速以及反应器型式对接枝反应的影响。

实验发现:随DCP用量的增加,MAH的接枝率先增加后减小,熔体流动速率(MFR)一直增加;保持MAH用量不变增加St用量时,MAH的接枝率在MAH与St的摩尔比为1:1时达到最大, MFR却一直减小;保持St用量不变增加MAH用量,MAH的接枝率先增加后略有减小,MFR却存在极大值;随反应时间的增加,MAH的接枝率与MFR都先增加后减小;温度过高,MAH的接枝率降低,PP热降解较严重;螺杆转速较低时,MAH的接枝率较低,螺杆转速较高时,PP降解增加;在TSE中的MAH接枝率比Haake中的低,但降解比Haake中的小得多。

关键词:聚丙烯;马来酸酐;苯乙烯;熔融接枝中图分类号:TQ316.343;TQ325.14文献标识码:AStudy on Melt-Grafting of Maleic Anhydride onto Polypropylene in the Presence of StyreneZHANG Cai-liang , XU Zhong-bin, FENG Lian-fang, WANG Jia-jun, GU Xue-ping(State Key Laboratory of Chemical Engineering Polymer Reaction Engineering Division, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China)Abstract: In the presence of styrene (St), the melting-grafting of maleic anhydride (MAH) onto polypropylene was conducted in Haake torque rheometer and twins screw extruder (TSE) respectively. In experiments the dicumyl peroxide (DCP) concentration, St concentration, MAH concentration, reaction time, reaction temperature and screw speed were varied respectively. Results show that with the DCP concentration increasing, both the grating degree of MAH and melt flow index (MFR) of the grafted product increase at first and then deerease. When maintaining MAH concentration and increasing St concentration, the grafting degree of MAH reaches maximum at St:MAH=1mol⋅mol−1 and MFR always keeps decreasing. When maintaining St concentration and increasing MAH concentration, the grafting degree of MAH increases at first and then slightly decreases, and during which the MFR has a maximum point. With the reactive time increasing, both the grating degree of MAH and MFR of the grafted product increase at first and then decrease. When temperature is too high, the grafting degree of MAH decreases and the scission of the grafted product increases. When screw speed is low, the grating degree of MAH is low too, and when screw speed is high, the scission of the grafted product increases. The grafting of MAH in TSE is lower than that in Haake torque rheometer, while MFR of the grafted product in TSE is much lower than that in Haake torque rheometer. Based on the mechanism of melt-grafting, the above experimental results were discussed and explained.Key words: polypropylene; maleic anhydride; styrene; melt-grafting1 前言反应挤出技术不仅可用于单体的连续聚合、聚合物共混,而且可用于聚合物的功能改性[1,2]。

相转移催化法合成RAFT试剂

相转移催化法合成RAFT试剂

相转移催化法合成RAFT试剂王申竹;王平华;刘春华;唐龙祥;袁钤亚【摘要】以苯为有机相,季铵盐为相转移催化剂,二硫代苯甲酸溴化镁分别与溴化苄、2-溴丁酸-2′-羟基乙酯及α-溴乙基苯反应,合成了三种不同结构的RAFT试剂——二硫代苯甲酸酯(3a~3c),收率82.7%~85.5%,其结构经1H NMR和IR确证.%Three RAFT agents, dithiobenzoates(3a ~3c in yields of 82. 7% -85.5% ) , were synthesized using quaternary ammonium salt as the phase transfer catalyst in benzene by the reaction of dithiobenzoate magnesium bromide with benzyl bromide, 2-hydroxylethyl-2'-bromobutyrate and α-bro-moethyl benzene, respectively. The structures were confirmed by 1H NMR and IR.【期刊名称】《合成化学》【年(卷),期】2012(020)003【总页数】3页(P372-374)【关键词】RAFT链转移剂;相转移催化;二硫代苯甲酸酯;合成【作者】王申竹;王平华;刘春华;唐龙祥;袁钤亚【作者单位】合肥工业大学化工学院高分子材料与工程系,安徽合肥230009;合肥工业大学化工学院高分子材料与工程系,安徽合肥230009;合肥工业大学化工学院高分子材料与工程系,安徽合肥230009;合肥工业大学化工学院高分子材料与工程系,安徽合肥230009;合肥工业大学化工学院高分子材料与工程系,安徽合肥230009【正文语种】中文【中图分类】O625.7可逆加成-裂解-链转移(RAFT)聚合是近十几年来发展起来的可控自由基聚合方法。

界面处理对PPnano-SiO_(2)共混体系动态流变行为影响

界面处理对PPnano-SiO_(2)共混体系动态流变行为影响

界面处理对PP/nan—SiO?共混体系动态流变行为影响李清江蒋莉刘世爽冯文颖马明明(遵义职业技术学院机电与信息工程系,贵州遵义,563000)摘要:采用熔融共混方法制备聚丙烯(PP)、纳米二氧化硅(nano-SiO2).马来酸肝接枝PP(PP-g-MAH).硅烷偶联剂(KH560)共混体系,利用旋转式流变仪、场发射打描电子显微镜(SEM)研究了PP/nano-SiO2共混体系动态流变行为和界面微观结构。

结果表明:KH560和PP-g-M A H协同作用增强了nano-SiS粒子与基体PP的界面相容性,改善了nano-SiO2粒子在基体PP中的分散性;在nano-SiO2粒子含量相同的PP/nano-SiO2共混体系中,动态储能模量(G‘)和动态损耗模量(G")均在高频时数值较大,随着频率降低,数值也逐渐降低;PP基体中填充nano-SiO2粒子后,共混体系复数黏度(7*)下降;随着角频率(⑺)增加,力学损耗因子(tan5)逐渐高于PP•最后趋于接近;Han曲线在高频区基本呈线性关系,而在低频区,Han 曲线明显偏离了线性关系,岀现末端区效应;建立了PP/nano-SiO2共混体系熔体界面相互作用物理模型。

关键词:聚丙烯/纳米二氧化硅共混体系马来酸酹接枝聚丙烯硅烷偶联剂动态流变行为界面相容性DOI:10.19690/j.issn1004-3055.20200147Effect of Interfacial Treatment on DynamicRheological Behavior of PP/nano-SiO2BlendsLi Qingjiang Jiang Li Liu Shishuang Feng Wenying Ma Mingming (Department of Electromechanical and Information Engineering,Zunyi College ofVocational Technology,Zunyi,Guizhou,563000)Abstract:A blending system of polypropylene(PP),nano-silica(nano-SiO2),maleic anhydride grafted PP(PP-g-MAH),and silane coupling agent(KH56O)was prepared byusing the melt blending method,the dynamic rheological behavior and interface microstructureof the PP/nano-SiO2blend system were studied by the rotary rheometer and SEM.The resultsshow that synergistic effect of the silane coupling agent(KH560)and the PP-g-MAH enhancesthe interfacial compatibility between the nano-SiO2particles and the matrix PP,and improvesthe dispersion of the nano-SiO2particles in the matrix PP.In the PP/nano-SiO2blend systemwith the same nano-silica particle content,dynamic storage modulus(G')and dynamic loss modulus(G,f)are both larger al high frequency,and the value gradually decreases with thedecreasing of frequency.The complex viscosity(y*)of the system decreases after filling the PP matrix with nano-SiO2particles.As the angular&equency(a»)increases,the mechanical loss factor(tan5)of the blending system gradually becomes higher than that of PP,and finally approaches.The Han curve is basically linear in the high frequency range,and in low frequencyregion,the Han curve deviates significantly from the linear relationship,and a terminal regioneffect appears.A physical model of the melt at the interface interaction of the PP/nano-SiO2blend system is established.Key words:polypropylene/nano-silica blends;maleic anhydride grafted polypropylene;silane coupling agent;dynamic rheological behavior;interfacial compatibility聚丙烯(PP)具有良好的力学性能、较高的软化点、优异的电性能与突出的化学稳定性等优点,广泛用于工业、农业、医疗等领域。

马来酸酐接枝EPDM、POE改性尼龙的性能研究 - 副本

马来酸酐接枝EPDM、POE改性尼龙的性能研究 - 副本

马来酸酐接枝EPDM、POE改性尼龙的性能研究王庭慰(南京化工大学高分子系,江苏南京210009)摘 要:研究了用马来酸酐接枝EPDM和POE等聚烯烃增韧尼龙的方法,通过改变聚烯烃与尼龙的用量找出较佳的配比范围及实验方案。

从两相界面、橡胶含量、交联度和接枝率等方面讨论了增韧效果的变化原因。

关 键 词:增韧尼龙;马来酸酐;接枝改性中图分类号:TQ32316 文献标识码:B 文章编号:1001Ο9278(2001)09Ο0029Ο03 超韧尼龙,即高抗冲尼龙,具有一般尼龙6或尼龙66的力学强度和耐热性,耐化学药品性,最突出的优点是抗冲击韧性大大地提高,为纯尼龙的几倍乃至几十倍。

低温性能也很突出,甚至在-40℃时其缺口冲击强度也可达到纯尼龙的4-6倍。

高韧性尼龙因保持尼龙树脂固有的特性,抗冲击强度显著提高,应用范围不断扩大。

1976年DuPont公司的超韧尼龙Zytel ST的开发成功,把橡胶组分分散在尼龙中,实现了预期的高抗冲性[1,2]。

本文研究的是聚酰胺/聚烯烃合金,聚酰胺与聚烯烃共混,主要是为了提高聚酰胺在常态和低温下的冲击强度,增加韧性。

然而,聚酰胺带有极性较强的酰胺基团,与非极性的聚烯烃类弹性体共混时,两相之间的相容性较差,相分离现象严重,导致合金冲击强度下降,所以需改进尼龙与聚烯烃增韧剂之间的相容性。

目前常用的方法是将尼龙与马来酸酐接枝改性的弹性体熔融共混挤出[1,2]。

1 实验111 原材料尼龙6,B100,南京立汉化学有限公司;三元乙丙橡胶(EPDM),512,DSM公司;聚丙烯,045-2,金陵石化塑料厂;POE弹性体,辛烯含量915%,熔体流动速率分别为214g/10min和313g/10min;马来酸酐,化学纯,上海试剂三厂;过氧化二异丙苯(DCP),工业品,上海高桥化工厂;交联剂D,自制。

112 实验仪器及设备双螺杆挤出机,SHJ-30,上海化工机械四厂;收稿日期:2001Ο06Ο28注塑机,XS-XY-125,浙江塑料机械厂;冲击实验机,XG J-500,承德材料实验机厂;材料万能实验机,DL Y-6,长春材料实验机厂;熔体流动速率仪,XNR-400A,长春第二实验机厂。

《火工品》期刊再次入选《中文核心期刊要目总览》

《火工品》期刊再次入选《中文核心期刊要目总览》

362021年第2期(3)微米铝粉中加入10%左右的纳米铝粉,可以获得最大爆炸压力和压力上升速率,分析认为主要原因是高反应活性的纳米铝粉对爆炸体系进行了敏化,提高了粉尘的爆炸剧烈程度。

参考文献:[1]李庆钊,王可,梅晓凝,等.微米级铝粉的爆炸特性及其反应机理研究[J].工程热物理学报,2017,38(1):219-225.[2]K Balakrishnan.,A L Kuhl.,J B Bell.,V E Beckner.Anempirical model for the ignition of explosively dispersed aluminum particle clouds[J].Shock Waves,2012(22):591-603.[3]KWON Y S,GROMO A A,ILYIN A P,et al..Themechanism of combustion of superfine aluminum powders[J].Combustion and Flame,2003,133(4):385-391.[4]GROMOV A,VERESHCHAGIN V.Study of aluminumnitride formation combustion by superfine aluminum powder combustion in air[J].Journal of the European Ceramic Soeiety, 2004,24(9):287-288.[5]ZHOU Jing,AN Jing,et al..Thermal behaviors of the maincomponents in nana-based fuel air explosive[J].Chinese Journal of Explosives&Propellants,2017,40(3):31-35. [6]尉存娟,谭迎新.铝粉-空气混合物爆炸压力影响因素研究[J].火工品,2009(2):31-34.[7]周卫军,王少龙,等.铝粉对FAE爆轰性能影响的研究[J].战术导弹技术,2008(1):14-16.[8]陈晓坤,张自军,等.20L近球形容器中微米级铝粉的爆炸特性[J].爆炸与冲击,2018,38(5):1130-1136.[9]Supri A.G.,Ismail H.,Shuhadah S.Effect of polyethylene-grafted maleic anhydride(PE-g-MAH)on properties of low density polyethylene/eggshell powder(LDPE/ESP)composites [J].Journal of Macromolecular Science:Part D-Reviews in Polymer Processing,2010,49(4):347-353.[10]Tan S.J.,Supri A.G.,Teh P.L..Effect of PE-g-MAH ascompatibilizer on properties of ldpe/nr/whf composites[J].Applied Mechanics and Materials,2013(284-287):87-93. [11]Yang J N,Nie S B.Effects of calcium sulfate whisker on themechanical property,morphological structure and thermal degradation of poly(lactic acid)composites[J].Polymer Degradation and Stability,2017(144):270-280.[12]陈雄胜.导爆管性能测试研究[J].爆破器材,2015,44(3):48-50.[13]Kissinger HE.Reaction kinetics in differential thermal analysis[J].Anal Chem,1957,29(11):1702-1706.[14]Carrasco F,Pagès P,Gámez-Pérez J,et al..Kinetics of thethermal decomposition of processed poly(lactic acid)[J].Polym Degrad Stab,2010,95(12):2508-2514.《火工品》期刊再次入选《中文核心期刊要目总览》据《中文核心期刊要目总览》2020版编委会通知:《火工品》期刊入选《中文核心期刊要目总览》2020年版(第9版)之武器工业类核心期刊。

氯化聚丙烯的生产及改性技术研究进展

氯化聚丙烯的生产及改性技术研究进展
d Modification of Chlorinated Polypropylene
FAN Xiao - jun,LIU Xiao - xuan ( Guangdong University of Technology,Guangdong Guangzhou 510006 ,China) Abstract: Modification of chlorinated polypropylene with expanding fields of application and professional and sophisticated varieties required,was got more and more attention. The market conditions,production method,grafting techniques ,and the application scope of chlorinated polypropylene were reviewed,focusing on the newest research progress in production of chlorinated polypropylene and grafting of maleic anhydride,acrylic acid on chlorinated polypropylene in domestic and abroad. Finally,the status of the domestic production of chlorinated polypropylene was analyzed and development orientation for the future was proposed. Key words: chlorinated polypropylene; synthetic methods; grafted modification; application

马来酸酐接枝PP_PE共混物及其木塑复合材料_图文.

马来酸酐接枝PP_PE共混物及其木塑复合材料_图文.
114木塑复合材料的制备
11411木纤维预处理 利用30目的标准筛去除粗大的木纤维,然后再用50目的标准筛对木纤维进行过筛处理,除去较短的木纤维,以保证木纤维的均匀性。将筛选好的木纤维放入电热恒温干燥箱中干燥4h,保证木纤维的终含水率在2%~3%。
11412物料混合 将木纤维(60份、PP/PE共混接枝物(40份和聚乙烯蜡(1份按比例称好,放入SHR2A型高速混合机中进行混合,使各组分均匀分散。
1材料与方法
111材料
聚丙烯(PP,型号T30S,中国石油大庆石化公司生产;高密度聚乙烯(HDPE,型号2200J,中国石油大庆石化公司生产;废旧塑料混合物(经FTI R分析,其主要成分为PP和PE,市购;马来酸酐(MAH,分析纯,天津市博迪化工有限公司生产;过氧化二异丙苯(DCP,分析纯,天津市博迪化工有限公司生产;杨木纤维,由课题组木塑复合材料原料基地提供;聚乙烯蜡,市购。
为了实现利用混合废旧塑料制备高性能木塑复合材料,首先必须解决废旧塑料的再生改性问题,包括不同塑料组分之间的相容性差、不同塑料组分因熔融温度相差大而难以在适当的温度下共熔、因降
林业科学46卷
解而性能劣化的废旧塑料如何增强等问题。此外,在木纤维填充量较高(≥50%的情况下,非极性的塑料基体与极性的木纤维之间的相容性很差,氢键的作用也导致木纤维之间的作用力增强,从而影响木纤维在聚合物基体中的分散,所制得的木塑复合材料性能较差(Oks man et al.,1998;洪浩群等, 2007。因此,改善塑料基体与木纤维之间的界面相容性也是制备性能优异的木塑复合材料的关键。
M a le i c Anhydr i de Grafted PP /PE Blend and The i r Co m posites w ith W ood F i ber
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synthesis of Maleic Anhydride Grafted Polyethylene and Polypropylene,with Controlled Molecular StructuresBING LU,T.C.CHUNGDepartment of Materials Science and Engineering,The Pennsylvania State University,University Park,Pennsylvania16802Received4October1999;accepted27January2000ABSTRACT:This article discusses a new chemical route to prepare maleic anhydride(MA)grafted polyethylene and polypropylene polymers with controlled molecular struc-ture,that is,MA grafted content and polymer molecular weight and compositiondistributions.The chemistry involves a free radical graft reaction of maleic anhydridewith poly(ethylene-co-p-methylstyrene)and poly(propylene-co-p-methylstyrene)copoly-mers.Under a suspension reaction condition,the grafting reaction takes place selec-tively on the p-methylstyrene units in the copolymer,due to high reactivity of p-methylgroup and favorable mixing between p-methylstyrene units and chemical reagents inthe swollen amorphous phases.The resulting polymer shows no detectable molecularweight change during the reaction,and the MA grafted content increases with theincrease of initiator and p-methylstyrene concentrations.©2000John Wiley&Sons,Inc.J Polym Sci A:Polym Chem38:1337–1343,2000Keywords:maleated PE;maleated PP;functional polyolefin;polyethylene copoly-mer;polypropylene copolymerINTRODUCTIONMaleic anhydride(MA)modified polyolefins,in-cluding PE,PP,and EPDM,have been one of the most important class of functional polyolefins in industry,because of low cost of maleic anhydride and high activity of the anhydride group.1MA modified polyolefin considerably improve adhe-sion and hydrophilicity of the polymer,and com-patibility with polar polymers.As a results,MA modified polyolefins are used in many commercial applications,such as glassfiber reinforced poly-olefins,2anticorrosive coatings for metal pipes and containers,3multilayer sheets of paper for chemical and food packaging,4and polymer blends with polyamides and polyesters.5–7 MA modified polyolefin is normally prepared by free radical grafting reaction of maleic anhy-dride with the corresponding polyolefin in the presence of organic peroxide initiator either in solution,8–12or in melt.12–23Equation1illus-trates the reaction mechanism of MA graftingpolypropylene.It is generally believed that the grafting reaction starts with hydrogen abstraction by alkoxyl rad-ical,upon the thermal decomposition of peroxideCorrespondence to:T. C.Chung(E-mail:chung@ems.)Journal of Polymer Science:Part A:Polymer Chemistry,Vol.38,1337–1343(2000)©2000John Wiley&Sons,Inc.1337initiator.The formed macroradical1,20–22in poly-olefin subsequently reacts with maleic anhydride monomer.Many experimental results show that the incorporated MA unit is predominately a sin-gle succinic anhydride group,22,23due to poor ho-mopolymerization capability of MA monomer.As expected,many side reactions also take place dur-ing this free radical grafting reaction.In PP case, most of tertiary macroradicals formed involve fast intramolecular␤-scission reaction and degrade the PP chains,as illustrated in eq1.On the other hand,some of the secondary macroradicals18,19 formed in polyethylene chain couple each other to produce the crosslinked product.Many works have been done in optimizing the reaction condi-tions and extruder parameters to promote the desired reactions while suppressing the unde-sired ones.8–20However,because of the inherent complexity of free radical reactions,it is very dif-ficult to incorporate the desired MA content with-out extensive side reactions.Thefinal product is usually a complicated mixture.Unfortunately, the performance of MA modified polyolefin is very much dependent on its molecular structure,as well as the MA content.It is therefore very important to develop the new method that can prepare MA modified polyolefin with controllable molecular structure.In our previous article,24we have showed a synthetic route for the preparation of maleic an-hydride terminated PP polymers with single or multiple MA units located at the polymer chain end.The chemistry involves the borane-termi-nated PP and a free radical graft from reaction of maleic anhydride.In this article,we will discuss a new chemical route for preparing maleic anhy-dride grafted PE and PP polymers,having the MA units pending along the polymer chain.The reac-tion allows good control of MA grafted copolymers with desirable molecular structure,that is,MA content and molecular weight and composition distributions.RESULTS AND DISCUSSIONThe chemistry is based on the“reactive”polyole-fin copolymers containing p-methylstyrene(p-MS)units that provide the selective reaction sites for free radical modification reaction.Equation2 illustrates the main differences between this ap-proach and the current commercialroutes.Both poly(ethylene-co-p-methylstyrene)(PE-p-MS)25,26and poly(propylene-co-p-methylstyrene)(PP-p-MS)copolymers,27with a broad range ofcopolymer compositions and well-controlled mo-lecular structures,are available in our laboratory.Ideally,only the highly reactive benzylic protons(␾-CH3)in p-MS unit involve the hydrogen ab-straction by alkoxyl radical.The formed relativelystable benzylic radical then reacts with facile ma-leic anhydride monomer.The overall processavoids any side reaction in the polymer backbone,therefore,backbone degradation and crosslinkingcan be largely prevented.In the early experiments,we carried out theMA graft reactions of PE-p-MS and PP-p-MS co-polymers in the homogeneous solution conditionsat elevated temperatures.Both PE-p-MS and PP-p-MS copolymers showed much higher MA incor-poration than the corresponding PE and PP ho-mopolymers,under the same reaction conditions.However,a certain degree of side reactions didtake place,that result in the change of polymermolecular weight.A small portion of hydrogenabstractions may take place at the secondary CH2or tertiary CH units in the polymer backbone,other than the p-MS side groups.Despite thereactivity difference,p-CH3Ͼbenzylic CH(back-bone)ӷCH(backbone)ϾCH2(backbone),theproton concentrations of CH2(backbone)and CH(backbone)are much higher than that of p-CH3inthe PE-p-MS and PP-p-MS copolymers,contain-ing only few mol%of p-MS units.To enhance the selectivity on p-MS units,theMA grafting reactions were usually carried out inthe suspension(heterogeneous)reaction condi-tions at lower reaction temperature.The startingsemicrystalline PE-p-MS and PP-p-MS copoly-1338LU AND CHUNGmers,in afine powder form,were suspended in solution,containing solvent,initiator and MA. Since the p-MS side groups only located in the amorphous phase,the swollen amorphous do-mains provide the physical contacts between p-MS groups,initiator,and MA reagent.On the other hand,the secondary CH2(backbone)or ter-tiary CH(backbone)units in the crystalline do-mains are largely intact.Therefore,the suspen-sion reaction condition physically enhances the grafting reaction on p-MS units.Table I summarizes the results of MA grafting reactions of three PE-p-MS copolymers,containing 2,5,10mol%p-MS units,in a suspension condition at75°C.Benzene and benzoyl peroxide(BPO)were used as solvent and initiator,respectively.Three commercial PE(HDPE,LDPE,and LLDPE)samples and a poly(ethylene-co-styrene) (PE-S)copolymer were also modified under the same reaction conditions and used as control re-actions to study the role of p-MS in the modifica-tion reaction.It is clearly shown that the MA modified PE-p-MS copolymers(PE-p-MS-g-MA) had higher MA graft contents than the MA mod-ified PE(HDPE,LDPE,and LLDPE)and PE-S polymers.In addition,each PE-p-MS-g-MA copoly-mer shows similar intrinsic viscosity as the cor-responding PE-p-MS copolymer,strongly indicat-ing that there is no detectable crosslinking in the MA modified PE-p-MS copolymer.With the in-crease of the initiator concentration or p-MS units in the copolymer,the MA graft content increases (compared PE-p-MS-1,2and3series).The MA graft content was determined by IR spectrum. Figure1compares the IR spectra of two PE-p-MS-g-MA copolymers and the starting PE-p-MS.The new absorbances at1860and1780cmϪ1,corre-sponding to the symmetric and asymmetric stretchings of the two carbonyl groups in succinic anhydride,were used in determining the incorpo-rated MA content in the copolymer(see the Ex-perimental section).Table I.A Summary of MA Modification a of PE Homo-and CopolymersSample[Comonomer](mol%)BPO(wt%)MA Modified PE PolymersMA(wt%)Mv(ϫ104g/mol)Tm(°C)HDPE0——14.2135 HDPE-g-MA-100.2014.3135 HDPE-g-MA-200.5014.2135 LDPE——— 4.38115 LDPE-g-MA-1—0.20.4 4.52115 LDPE-g-MA-2—0.5 1.1Crosslinking b—LLDPE———11.4125 LLDPE-g-MA-1—0.20.312.4125 LLDPE-g-MA-2—0.50.8Crosslinking b—PE-S-1[S]ϭ5—— 3.54122 PE-S-1-g-MA-1[S]ϭ50.2 1.0 3.61122 PE-S-1-g-MA-2[S]ϭ50.5 1.6Crosslinking b—PE-S-1-g-MA-3[S]ϭ5 1.0 2.3Crosslinking b—PE-p-MS-1[p-MS]ϭ2—— 6.10130 PE-p-MS-g-MA-1[p-MS]ϭ20.2 1.5 6.23129 PE-p-MS-g-MA-2[p-MS]ϭ20.5 2.4 6.40128 PE-p-MS-g-MA-3[p-MS]ϭ2 1.0 3.2 6.41128 PE-p-MS-2[p-MS]ϭ5—— 3.83117 PE-p-MS-2-g-MA-1[p-MS]ϭ50.2 2.9 3.94117 PE-p-MS-2-g-MA-2[p-MS]ϭ50.5 3.7 4.06116 PE-p-MS-2-g-MA-3[p-MS]ϭ5 1.0 6.4 4.07117 PE-p-MS-3[p-MS]ϭ10—— 3.1897 PE-p-MS-3-g-MA-1[p-MS]ϭ100.2 5.6 3.2396 PE-p-MS-3-g-MA-2[p-MS]ϭ100.57.9 3.3597 PE-p-MS-3-g-MA-3[p-MS]ϭ10 1.08.8 3.6397a Reaction condition:5-g polymer,2-g MA,50-mL benzene,75°C,3hr.b Crosslinking is indicated by the poor solubility of polymer in decalin at135°C.MALEIC ANHYDRIDE GRAFTED POLYETHYLENE1339The HDPE sample showed almost no graft re-action under the same reaction condition,possibly due to its high crystallinity and thus less swelling at 75°C.The LDPE and LLDPE samples showed some graft reactions at a low initiator concentra-tion,but had extensive crosslinking side reactions at a high initiator concentration.It is very inter-esting to compare the modification of PE-p -MS copolymers with PE-S copolymers.In Table I,un-der the identical reaction conditions and comono-mer contents,the MA modified PE-p-MS-2co-polymers consistently have higher MA grafted contents than the modified PE-S-1copolymers.In addition,the MA modified PE-p-MS-2copolymers show no crosslinking in all the reactions,but the modified PE-S-1has crosslinking at high initiator concentrations.This strongly indicates the ad-vantage of p-methylstyrene units.Because of the steric effect,the backbone tertiary benzylic pro-ton has less reactivity than the pendant p-methyl group.This reactivity difference of two types of protons was also observed in free radical bro-mination of poly(p-methylstyrene),28where the dominated bromination occurs on the p-methyl group.In general,the melting point of PE-p-MS-g -MA copolymer is similar with that of the starting PE-p -MS copolymer,indicating that the crystal-line phase did not change significantly during the modification.This may be attributed to the sus-pension process,which keeps the crystalline phase untouched during the reaction.Table II summarizes the MA modification of PP-p -MS copolymers,containing 0.8and 1.5mol %p -MS units,in suspension condition at 125°C.Biphenyl and dicumyl peroxide (DCP)were used as solvent and initiator,respectively.A commercial PP polymer was also modified under the same reaction conditions and used as the control reactions.The MA modified PP-p -MS copolymers (PP-p-MS-g -MA)also show much higher MA graft contents than the corresponding MA modified PP homopolymers.In addition,the PP-p-MS-g -MA copolymer exhibits similar intrin-sic viscosity with the corresponding starting PP-p -MS copolymer,indicating no detectable side re-action,whereas,the MA modified PPhomopoly-Figure 1.IR spectrum of (a)the starting PE-p -MS copolymer with 10mol %of p -MS and two resulting PE-p-MS-g -MA containing (b)5.6,and (c)8.8wt %MA.Table II.A Summary of MA Modification a of PP Homo-and CopolymersSample [p -MS](mol%)Initiator (wt %)MA Modified PP PolymersM v (ϫ10Ϫ5g/mol)MA (wt %)T m (°C)PP0— 2.14—162PP-g -MA-10 1.0 1.320.7161PP-g -MA-20 2.00.61 1.1158PP-p -MS-10.8— 1.60—157PP-p -MS-1-g -MA-10.8 1.0 1.57 1.6156PP-p -MS-1-g -MA-20.8 2.0 1.53 2.2155PP-p -MS-21.5— 1.31—153PP-p -MS-2-g -MA-1 1.5 1.0 1.302.1152PP-p -MS-2-g -MA-21.52.01.262.8152aReaction conditions:125°C,polymer 5g,MA 2g,biphenyl 50g,DCP initiator.1340LU AND CHUNGmer shows severe degradation,especially at a high initiator paring PP-p-MS-1and PP-p-MS-2sets,higher p -MS and ini-tiator concentrations also result in higher MA graft content.To identify the grafting point,the MA modified copolymers were analyzed by 1H NMR spectra.The Figures 2and 3compare the 1H NMR spectra of PE-p-MS-g -MA and PP-p-MS-g -MA copolymers with the corresponding PE-p -MS and PP-p -MS copolymers,respectively.There are three new chemical shifts at 2.7,3.5,and 3.7ppm in both MA modified samples.The peak at 2.7ppm corresponds to methylene pro-tons of ␾-CH 2-MA,and two new peaks at 3.5and 3.7ppm are assigned to the methylene and me-thine protons of succinic anhydride,respectively.Overall,NMR results clearly indicate that the MA grafting reaction takes place on p-methyl groups of the copolymers.It is known that it is difficult to observe the resonance of protons of MA on the commercial MA grafted polymers,possibly due to the dipolar broadening of resonance near the graft points that have restricted mobil-ity.22,29,30In fact,we did not observe the same proton peaks at 3.5and 3.7ppm in our MA mod-ified PE,PP,and PE-S polymers.Thus,the obser-vation of MA protons in both PE-p-MS-g -MA and PP-p-MS-g -MA copolymers may be attributed to the fact that they are on the flexible pendant p-methyl groups and have high mobility.It is very interesting to note that some short chain MA oligomers may also form in both PE-p-MS-g -MA and PP-p-MS-g -MA par-ing the integrated peak intensities between 2.3(␾-CH 3)and 2.7ppm (␾-CH 2-MA)in Figure 3(b)with the corresponding protons,about 60%(0.5mol %)of p -MS units were involved in the free radical grafting reaction.However, 2.2wt %(ϳ1.0mol %)of MA units were observed in PP-p-MS-g -MA,in average about 2MA units per p -MS activated site.The low grafting tempera-tures (75and 125°C for PE-p -MS and PP-p-MS,respectively)may offer the favorable reaction con-dition for the oligomerization 22,31of MA monomers.EXPERIMENTALMaleic anhydride,benzene,biphenyl,benzoyl peroxide,and dicumyl peroxide were purchased from Aldrich Chemical Company and used with-out further purification.Poly(ethylene -co-p-meth-ylstyrene)and poly(ethylene-co -styrene)copoly-mers were prepared by [Me 2Si(C 5Me 4)N(t -Bu)]-TiCl 2/Methylaluminoxane (MAO)catalysts.25,26Poly(propylene -co-p-methylstyrene)copolymers 27were prepared by TiCl 3-AA/AlEt 2Cl mercial HDPE (T m ϭ135°C),LDPE (T m ϭ115°C),LLDPE (5wt %1-hexene,T m ϭ125°C),and PP (T m ϭ162°C)from Aldrich Chemical Company were purified by dissolving polymer in xylene at the elevated temperature and then pre-cipitated out from solution at roomtemperature.Figure 3.1H NMR spectra of (a)the starting PP-p -MS copolymer with 0.8mol %of p -MS,and (b)the resulting PP-p-MS-g -MA containing 2.2wt %MA.Figure 2.1H NMR spectra of (a)the starting PE-p -MS copolymer with 5mol %of p -MS,and (b)the resulting PE-p-MS-g -MA containing 3.7wt %MA.MALEIC ANHYDRIDE GRAFTED POLYETHYLENE 1341In each MA modification reaction,about5-gpolymer powders were suspended in50-mL sol-vent at a certain temperature under nitrogen,then2g MA and a certain amount of initiatorwere added.For PE polymers,benzene was usedas the solvent,and BPO was the initiator,and thereaction temperature was at75°C.For PP poly-mers,biphenyl was used as the solvent,DCP wasthe initiator,and the reaction temperature was at125°C.The reaction was stirred for3h beforeprecipitating the reaction mixture into200mLacetone.The polymer was isolated byfiltration,washed with acetone four times,and dried undervacuum at50°C for24h.1H NMR samples were prepared in d2-tetra-chlorethane solution(20wt%)at120°C andmeasured by a Bruker AM-300MHz NMR spec-trometer.IR was detected by a Bio-Rad FTIR-60spectrometer using a polymer thinfilm(about2to8␮m),which was prepared by compression-mold-ing polymer powders between PTFE coated alu-minum sheets at190°C and25000psi.The MAcontent was calculated from FTIR by the follow-ing equation:MA wt%ϭK(A1780/d),where A1780is the absorbance of carbonyl group at1780cmϪ1and d is the thickness(mm)of thefilm,K isconstant(ϭ0.25)and detected by calibration ofthe known MA content of MA grafted PP.Al-though,the correlation32between absorbance andMA content orfilm thickness may not be perfectlinear,especially for the samples with high MAcontents,the general trends of this free radicalMA grafting reaction are valid.The intrinsic vis-cosity of polymer was measured in decalin dilutesolution at135°C with a Cannon–Ubbelohde vis-cometer.The viscosity molecular weight was cal-culated by the Mark–Houwink equation:[␩]ϭKM␣,where for PP Kϭ1.05ϫ10Ϫ4dL/g and␣ϭ0.80;for PE Kϭ6.2ϫ10Ϫ4dL/g and␣ϭ0.70.33The melting point of the polymer was measured under nitrogen by a differential scan-ning calorimetry(Perkin–Elmer DSC-7)with arate of20°C/min.CONCLUSIONThe reactive p-MS comonomer units in both poly-(ethylene-co-p-methylstyrene)and poly(propylene-co-p-methylstyrene)copolymers facilitate the MAgrafting reaction.Under suspension condition,the MA grafting reaction selectively takes placeat the␾-CH3group,which avoids the backbone side reactions,such as crosslinking and degrada-tion.The resulting MA modified copolymers basi-cally keep the same molecular weight as the start-ing PE-p-MS and PP-p-MS copolymers,which can be easily controlled in the copolymerization reac-tion,especially using metallocene catalyst.With the increase of the concentration of p-MS in the copolymers,the MA graft content increases.The authors would like to thank the Petroleum Re-search Foundation for thefinancial support. REFERENCES AND NOTES1.Trivedi,B.C.;Culbertson,B.M.Maleic Anhydride;Plenum Press:New York,1982.2.Garagnai,E.;Marzola,R.;Moro,A.Mater PlastElastomeri1982,5,298.3.Johnson,A.F.;Simms,posites1986,17,321.4.Ashley,R.J.Adhesion1988,12,239.5.Felix,J.M.;Gatenholm,P.J Appl Polym Sci1991,42,609.6.Myers,G.E.J Polym Mater1991,15,21.7.Majumdar,B.;Keskkula,H.;Paul,D.R.Polymer1994,35,1386.8.Minoura,Y.;Ueda,M.;Mizunuma,S.;Oba,M.J Appl Polym Sci1969,13,1625.9.Ide,F.;Hasegawa,A.J Appl Polym Sci1972,18,963.10.Xanthos,M.Polym Eng Sci1988,28,1392.11.Priola, A.;Bongiovanni,R.;Gozzelina,G.EurPolym J1994,9,1047.12.Simonazzi,T.;Nicola,D.;Aglietto,M.;Ruggeri,G.Comprehensive Polymer Science,First Supple-ment;Allen,G.,Ed.;Pergamon Press:New York, 1982;p133.mbla,prehensive Polymer Science,FirstSupplement;Allen,G.,Ed.;Pergamon Press:New York,1982,p619.14.Simmons,A.;Baker,W.E.Polym Eng Sci1989,29,1117.15.Coutinho,F.M.B.;Ferfeira,M.I.Eur Polym J1994,30,911.16.Ostenbrink,A.J.;Gaymans,R.J.Polymer1992,33,3086.17.Ho,R.M.;Su,A.C.Polymer1993,34,3264.18.Gaylord,N.G.;Mehta,M.J Polym Sci Polym LettEd1982,20,481.19.Gaylord,N.G.;Mishra,M.K.J Polym Sci PolymLett Ed1983,21,23.20.De Roover,B.;Sclavons,M.;Carlier,V.;Devaux,J.;Legras,R.;Momtaz,A.J Polym Sci Part A:Polym Chem1995,33,829.21.Gloor,P.E.;Tang,Y.;Kostanska,A.E.;Hamielec,A.E.Polymer1995,35,1012.22.Heinen,W.;Rosenmoller,C.H.;Wenzel,C.B.;deGroot,H.J.M.;Lugtenburg,J.Macromolecules 1996,29,1151.1342LU AND CHUNG23.Russell,K.E.;Kelusky,E.C.J Polym Sci Part A:Polym Chem1988,26,2273.24.Lu,B.;Chung,T.C.Macromolecules1999,32,2525.25.Chung,T.C.;Lu,H.L.J Polym Sci Part A:PolymChem1997,35,575.26.Chung,T.C.;Lu,H.L.J Polym Sci Part A:PolymChem1998,36,1017.27.Lu,H.L.;Hong,S.;Chung,T.C.J Polym Sci PartA:Polym Chem1999,37,2795.28.Pini,D.;Settambolo,R.;Raffaelli,A.;Salvadori,P.Macromolecules1987,20,58.29.Rengarjan,R.;Oarameswaran,V.R.;Lee,S.;Rinaldi,P.L.Polymer1990,31,1703.30.Rojas,B.;Fatou,J.G.;Martinez,M.C.;Laguna,O.Eur Polym J1997,33,725.31.Russell,K.E.;Kelusky,E.C.J Polym Sci Part A:Polym Chem1995,33,555.32.Garcia-Martinez,J.M.;Laguna,O.;Areso,S.;Col-lar,E.P.J Appl Polym Sci1999,73,2837.33.Brandrup,J.;Immergut,E.H.Polymer Hand-book,3rd ed.;Wiley Interscience:New York,1989;VII-7.MALEIC ANHYDRIDE GRAFTED POLYETHYLENE1343。

相关文档
最新文档