5.二叉树上机题

合集下载

二叉树练习题及答案

二叉树练习题及答案

二叉树练习题及答案一、选择题1.关于二叉树的下列说法正确的是(B )A.二叉树的度为2 B.二叉树的度可以小于2C.每一个结点的度都为2 D .至少有一个结点的度为2 2.在树中,若结点A有4个兄弟,而且B是A的双亲,则B的度为(C )A.3 B.4C.5 D .63.若一棵完全二叉树中某结点无左孩子,则该结点一定是(D )A.度为1的结点B.度为2的结点C.分支结点 D .叶子结点4.深度为k的完全二叉树至多有(C )个结点,至少有( B )个结点。

A.2k-1-1 B.2k-1C.2k-1 D .2k5.在具有200个结点的完全二叉树中,设根结点的层次编号为1,则层次编号为60的结点,其左孩子结点的层次编号为(C 2i ),右孩子结点的层次编号为( D 2i+1),双亲结点的层次编号为(60/2=30 A )。

A.30 B.60C.120 D .1216.一棵具有124个叶子结点的完全二叉树,最多有(B )个结点。

A.247 B.248C.249 D .250二、填空题1.树中任意结点允许有零个或多个孩子结点,除根结点外,其余结点有且仅有一个双亲结点。

2.若一棵树的广义表表示法为A(B(E,F),C(G(H,I,J,K),L),D(M (N))),则该树的度为 4 ,树的深度为 4 ,树中叶子结点的个数为8 。

3.若树T中度为1、2、3、4的结点个数分别为4、3、2、2,则T中叶子结点的个数为14 。

n=n0+n1+n2+n3+n4=n0+4+3+2+2=n0+11n=1+孩子=1+4+6+6+8+25n0+11=25n0=144.一棵具有n个结点的二叉树,若它有m个叶子结点,则该二叉树中度为1的结点个数是n-2m+1 。

5.深度为k(k>0)的二叉树至多有2k -1 个结点,第i层上至多有2i-1个结点。

6.已知二叉树有52个叶子结点,度为1的结点个数为30,则总结点个数为133 。

数据结构树和二叉树习题

数据结构树和二叉树习题

数据结构树和二叉树习题一、树的基本概念1.请简要描述树的基本概念及其特点。

答:树是由n(n≥0)个节点组成的有限集合。

其中:-若n=0,则为空树。

-若n>0,则树有且仅有一个称为根的节点,其他节点可以分为多个互不相交的有限集合,每个集合本身又是一棵树,称之为根的子树。

树的特点包括:-每个节点存放的数据可以是同种或不同种的数据类型。

-每个节点最多有一个父节点和多个子节点。

2.请列举树的应用场景。

答:树的应用场景包括但不限于以下几个方面:-文件系统:操作系统中的文件系统通常使用树来组织文件和目录。

-数据库:数据库中的索引通常使用树来存储和组织数据。

-编译原理:编译器使用语法树来解析源代码。

-社交网络:社交网络中的关注和粉丝关系可以表示为树。

二、二叉树3.请定义二叉树。

答:二叉树是一种特殊的树结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。

4.请画出以下二叉树的结构图:A/\BC/\/\DEFG答:以下是该二叉树的结构图:A/\BC/\/\DEFG5.请写出以下二叉树的前序遍历、中序遍历和后序遍历结果:/\23/\45答:-前序遍历结果:1,2,4,5,3-中序遍历结果:4,2,5,1,3-后序遍历结果:4,5,2,3,1三、二叉树的操作6.请实现二叉树的插入操作。

答:以下是二叉树的插入操作的示例代码:```class Node:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef insert(root, value):if root is None:root = Node(value)else:if value < root.value:if root.left is None:root.left = Node(value)else:insert(root.left, value)else:if root.right is None:root.right = Node(value)else:insert(root.right, value)```7.请实现二叉树的查找操作。

二叉树习题及答案

二叉树习题及答案

1.设一棵完全二叉树共有699 个结点,则在该二叉树中的叶子结点数?1根据二叉树的第i层至多有2A(i - 1)个结点;深度为k的二叉树至多有2A k - 1 个结点(根结点的深度为1)”这个性质:因为2A9-1 < 699 < 2A10-1 , 所以这个完全二叉树的深度是10,前9 层是一个满二叉树,这样的话,前九层的结点就有2A9-1=511 个;而第九层的结点数是2A(9-1)=256 所以第十层的叶子结点数是699-511=188 个;现在来算第九层的叶子结点个数。

由于第十层的叶子结点是从第九层延伸的,所以应该去掉第九层中还有子树的结点。

因为第十层有188 个,所以应该去掉第九层中的188/2=94 个;所以,第九层的叶子结点个数是256-94=162,加上第十层有188 个,最后结果是350 个2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点 (叶结点) 都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。

比如图:完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699 是奇数,叶结点层以上的所有结点数为保证是奇数,则叶结点数必是偶数,这样我们可以立即选出答案为B!如果完全二叉树的叶结点都排满了,则是满二叉树,易得满二叉树的叶结点数是其以上所有层结点数+1 比如图:此题的其实是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。

3完全二叉树中,只存在度为2 的结点和度为0 的结点,而二叉树的性质中有一条是:nO=n2+1 ; nO指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349 ;n0=3502.在一棵二叉树上第 5 层的结点数最多是多少一棵二叉树,如果每个结点都是是满的,那么会满足2A(k-1)1 。

数据结构上机考试题目及要求

数据结构上机考试题目及要求

数据结构上机实验考试标准一、评分标准:1.根据考试完成情况,参考平时上机情况评定优、良、中、及格、不及格5个档。

2.成绩分布比例近似为:优15%、良30%、中30%、及格20%、不及格<10%二、评分原则:1.充分参考平时实验完成情况,结合如下原则给出成绩;2.只完成第一题,成绩为良以下成绩(中、及格),若平时上机情况很好,可以考虑良好;3.两道题都完成,成绩为良及以上(优、良),根据完成质量和完成时间给成绩;4.如未完成任何程序,则不及格(根据平时成绩将不及格率控制在10%以下);三、监考要求:1.考试前,要求学生检查电脑是否工作正常,如果不正常及时解决,待所有考生均可正常考试后再发布试题。

2.平时上机完成的程序可以在考试过程直接调用,在考试开始前复制到硬盘当中,考试过程中可以看教材。

3.考试开始后向学生分发考题的电子文档,同时宣读试题,学生可以通过网络或磁盘拷贝试题。

4.考试开始十五分钟之后把网络断开,学生不得再使用任何形式的磁盘。

5.程序检查时,记录其完成时间和完成情况。

除检查执行情况外,还要求学生对代码进行简要讲解,核实其对代码的理解情况和设计思想,两项均合格方视为试题完成。

6.完成考试的学生须关闭电脑立刻离开考场,考试成绩由教务办统一公布,负责教师不在考试现场公布成绩。

数据结构上机实验考试题目(2011年12月23日)题目1.设C={a1,b1,a2,b2,…,a n,b n}为一线性表,采用带头结点的单链表hc(hc为C链表的头指针)存放,设计一个算法,将其拆分为两个线性表(它们都用带头结点的单链表存放),使得:A={a1,a2,…,a n},B={b n,b n-1,…,b1}。

[例] C链表为:C={1,2,3,4,5,6,7,8,9,10}拆分后的A、B链表如下:A={1,3,5,7,9},B={10,8,6,4,2}。

要求:算法的空间复杂度为O(1)。

即利用C链表原来的空间。

数据结构实验五(二叉树的建立及遍历)题目和源程序

数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。

2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。

二、实验要求1.认真阅读和掌握和本实验相关的教材内容。

2.编写完整程序完成下面的实验内容并上机运行。

3.整理并上交实验报告。

三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。

2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。

四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编10

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编10

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编10(总分:68.00,做题时间:90分钟)一、单项选择题(总题数:15,分数:30.00)1.先序序列为a,b,c,d的不同二叉树的个数是( )。

【2015年全国试题2(2分)】(分数:2.00)A.13B.14C.15 √D.16解析:解析:先序序列为1,2,3,…,n的不同的二叉树的数目是1/(n+1)((2n)!/(n!*n!))。

2.下列选项给出的是从根分别到达两个叶结点路径上的权值序列,能属于同一棵哈夫曼树的是( )。

【201 5年全国试题3(2分)】(分数:2.00)A.24,10,5和24,10,7B.24,10,5和24,12,7C.24,10,10和24,14,11D.24,10,5和24,14,6 √解析:解析:A的错误在于若路径上有两个10,叶子5应和另一个权值5组成左右子女,7和3组成左右子女,显然不符合哈夫曼的构造规则(应该3和5组成左右子女构造双亲结点);若路径上只有一个10,5和7并非其左右子女。

B的错误在于双亲10和双亲12不可能构造双亲24。

C的错误是路径上不可能有相同权值10的结点。

D是正确的,双亲10的另一个子女是5,双亲14的另一个子女是8,而双亲10和双亲14恰是双亲24的左右子女。

3.树是一种逻辑关系,表示数据元素之间存在的关系为( )。

【北京交通大学2007(2分)】(分数:2.00)A.集合关系B.一对一关系C.一对多关系√D.多对多关系解析:4.下列判断,( )是正确的。

【华南理工大学2005一、1(2分)】(分数:2.00)A.二叉树就是度为2的树B.二叉树中不存在度大于2的结点√C.二叉树是有序树D.二叉树的每个结点的度都为2解析:解析:二叉树与树是两个不同的概念。

相同点是二者都是树形结构,不同点有三:一是二叉树的度至多是2,树无此限制;二是二叉树的子树有左右子树之分,只有一棵子树时,也必须区分是左子树还是右子树,树不必这样;三是二叉树允许为空,树不准为空,但是多数教科书认为树可以为空,否则空二叉树无法转换成空树,本题第一问有二义性。

数据结构二叉树习题含答案

数据结构二叉树习题含答案

第6章树与二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树得形态就是().A。

唯一得B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子(2)由3个结点可以构造出多少种不同得二叉树?()A。

2B.3 C。

4D。

5(3)一棵完全二叉树上有1001个结点,其中叶子结点得个数就是()。

A。

250 B.500 C.254 D.501(4)一个具有1025个结点得二叉树得高h为( ).A。

11 B。

10 C.11至1025之间 D。

10至1024之间(5)深度为h得满m叉树得第k层有( )个结点。

(1=〈k=<h)A。

m k-1 B。

mk-1 C.m h-1 D。

m h—1(6)利用二叉链表存储树,则根结点得右指针就是()。

A.指向最左孩子 B.指向最右孩子 C。

空D.非空(7)对二叉树得结点从1开始进行连续编号,要求每个结点得编号大于其左、右孩子得编号,同一结点得左右孩子中,其左孩子得编号小于其右孩子得编号,可采用( )遍历实现编号。

A。

先序B、中序 C、后序D、从根开始按层次遍历(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树得位置,利用()遍历方法最合适。

A.前序 B.中序 C。

后序 D。

按层次(9)在下列存储形式中,()不就是树得存储形式?A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法(10)一棵非空得二叉树得先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足( )。

A.所有得结点均无左孩子B.所有得结点均无右孩子C.只有一个叶子结点 D.就是任意一棵二叉树(11)某二叉树得前序序列与后序序列正好相反,则该二叉树一定就是( )得二叉树。

A。

空或只有一个结点 B.任一结点无左子树C.高度等于其结点数 D.任一结点无右子树(12)若X就是二叉中序线索树中一个有左孩子得结点,且X不为根,则X得前驱为( )。

A.X得双亲 B。

各类型二叉树例题说明

各类型二叉树例题说明

各类型二叉树例题说明5.1树的概念树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树1.树的度——也即是宽度,简单地说,就是结点的分支数。

以组成该树各结点中最大的度作为该树的度,如上图的树,其度为3;树中度为零的结点称为叶结点或终端结点。

树中度不为零的结点称为分枝结点或非终端结点。

除根结点外的分枝结点统称为内部结点。

2.树的深度——组成该树各结点的最大层次,如上图,其深度为4;3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。

5.树的表示树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。

如上图可写成如下形式: (A(B(E(K,L),F),C(G),D(H(M),I,J)))5. 2 二叉树1.二叉树的基本形态:二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:(1)空二叉树——(a);(2)只有一个根结点的二叉树——(b);(3)右子树为空的二叉树——(c);(4)左子树为空的二叉树——(d);(5)完全二叉树——(e)注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。

2.两个重要的概念:(1)完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树;(2)满二叉树——除了叶结点外每一个结点都有左右子女且叶结点都处在最底层的二叉树,。

如下图:完全二叉树1页满二叉树3.二叉树的性质(1) 在二叉树中,第i层的结点总数不超过2^(i-1);(2) 深度为h的二叉树最多有2h-1个结点(h>=1),最少有h个结点;(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;(4) 具有n个结点的完全二叉树的深度为int(log2n)+1(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:若I为结点编号则如果I<>1,则其父结点的编号为I/2;如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树实验题
实验内容
1. 编写一个程序,实现二叉树的下列运算:
1)输入一个二叉树的先序序列,生成二叉树的二叉链表;
2)显示其先序、中序和后序遍历结果
3)计算二叉树的叶子结点数。

4)求二叉树的深度
2.编程实现二叉树的层次遍历
3.哈夫曼编码
【实验内容】
设某编码系统共有n个字符,使用频率分别为{w1,w2,…,wn},设计一个不等长的编码方案,输出每个字符对应的编码。

【实验要求】
(1)字符个数和相应的权值从终端输入;
(2)具体的输入和输出格式不限。

实验提示
1.二叉链表定义如下:
typedef char ElemType;
typedef struct bitnode{ //定义二叉树节点结构
ElemType data; //数据域
struct bitnode *lchild,*rchild; //左右孩子指针域
}BiTNode,*BiTree;
如右图:(在空子树处添加*
*
*
2. 层次遍历的程序实现参考:
1、根结点进队列
2、结点出队列,被访问
3、结点的左、右孩子(非空)进队列
4、反复执行 2、3 ,至队列空为止。

void LevelOrderTraverse(BiTree T)
{// 层次遍历T(利用队列)
if(T) // T不空
{ InitQueue(q); // 初始化队列q
EnQueue(q, T); // 根指针入队
while(!QueueEmpty(q)) // 队列不空
{ DeQueue(q, a); // 出队元素(指针),赋给a
printf(a->data); // 访问a所指结点
if(a->lchild!=NULL) // a有左孩子
EnQueue(q, a->lchild); // 入队a的左孩子
if(a->rchild!=NULL) // a有右孩子
EnQueue(q, a->rchild); // 入队a的右孩子}
}
}。

相关文档
最新文档