b8学九年级(上)第一次月考数学试卷
2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册21.1-22.1。
6.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
人教版九年级(上)数学第一次月考试卷(5)

人教版九年级(上)数学第一次月考试卷(5)一、选择题1.下列函数中,是二次函数的有()①y=3(x﹣1)2+1;②y=x+;③y=8x2+1;④y=3x3+2x2.A.1个B.2个C.3个D.4个2.对于二次函数y=3(x+4)2,其图象的顶点坐标为()A.(0,4)B.(0,﹣4)C.(4,0)D.(﹣4,0)3.将抛物线y=﹣(x﹣2)2向右平移1个单位,再向下平移2个单位后,得到的抛物线解析式为()A.y=﹣(x﹣1)2+2B.y=﹣(x﹣1)2﹣2C.y=﹣(x﹣3)2+2D.y=﹣(x﹣3)2﹣24.如图,二次函数y=ax2+bx+c的图象与x轴交于A(﹣4,0)和原点,且顶点在第二象限.下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而减小C.b2﹣4ac<0D.函数值有最小值4a﹣2b+c5.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,则当水面宽8米时,水面下降了()A.米B.2米C.米D.米6.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A.y=﹣x2+10x+1200(0<x<60)B.y=﹣x2﹣10x+1250(0<x<60)C.y=﹣x2+10x+1250(0<x<60)D.y=﹣x2+10x+1250(x≤60)7.已知抛物线y=﹣x2+2x+c,若点(0,y1)(1,y2)(3,y3)都在该抛物线上,则y1、y2、y3的大小关系是()A.y3>y1>y2B.y3<y2<y1C.y3>y2>y1D.y3<y1<y2 8.二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b,c的值分别是()A.2,4B.2,﹣4C.﹣2,4D.﹣2,﹣49.如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为y,AE为x,则y关于x的函数图象大致是()A.B.C.D.10.二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≥0时,x<0或x>4;③函数表达式为y=﹣x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题4分,共24分)11.二次函数y=a(x﹣m)2的图象如图,已知a=,OA=OC,则该抛物线的解析式为.(用顶点式表示)12.点P(a,9)在函数y=4x2﹣3的图象上,则代数式的值等于.13.已知y关于x的二次函数y=﹣x2+(m﹣1)x+m,无论m取何值,函数图象恒过定点A,则点A的坐标为.14.在同一直角坐标系中,已知函数,y2=kx+2(k为不等于零的常数).若函数y2的图象经过y1的图象的顶点,则k,c之间的数量关系为.15.如图所示的是卡塔尔世界杯足球比赛中某一时刻的鹰眼系统预测画面(图1)和截面示意图(图2),足球的飞行轨迹可看成抛物线,足球离地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系的部分数据如表:则该运动员踢出的足球在第s落地.t/s0123…h/m0…16.如图,在平面直角坐标系中,二次函数y=x2+2x﹣3的图象与坐标轴相交于A,B,C 三点,连接AC,BC.已知点E坐标为,点D在线段AC上,且.则四边形BCDE面积的大小为.三、解答题17.计算:(1);(2)x(x+6)=8(x+3).18.如图1是某公园人工湖上的一座拱桥的示意图,其截面形状可以看作是抛物线的一部分.经测量拱桥的跨度AB为12米,拱桥顶面最高处到水面的距离CD为4米.(1)在边长为1的正方形网格中建立适当的平面直角坐标系,根据已知数据描出点A,B,C,并用平滑曲线连接;(2)结合(1)中所画图象,求出该抛物线的表达式;(3)现有一游船(截面为矩形)宽度为4米,顶棚到水面的高度为2.8米.当游船从拱桥正下方通过时,为保证安全,要求顶棚到拱桥顶面的距离应大于0.5米,请判断该游船能否安全通过此拱桥.19.供销社作为国家实施“乡村振兴”战略的中坚力量,可以帮助农民分配协调农产品,推动全国统一大市场尽快构建完成,给老百姓带来真正的实惠.某供销社指导农民生产和销售当地特产,对该特产的产量与市场需求,成本与售价进行了一系列分析,发现该特产产量y产量(单位:吨)是关于售价x(单位:元/千克)的一次函数,即y产量=200x﹣100;而市场需求量y需求(单位:吨)是关于售价x(单位:元/千克)的二次函数,部分对应值如表.…2345…售价x(元/千克)…10201020980900…需求量y需求(吨)同时还发现该特产售价x(单位:元/千克),成本z(单位:元/千克)随着时间t(月份)的变化而变化,其函数解析式分别为x=t+1,.(1)直接写出市场需求量y需求关于售价x的函数解析式(不要求写出自变量取值范围);(2)哪个月份出售这种特产每千克获利最大?最大值是多少?(3)供销社发挥职能作用,避免浪费,指导农民生产,若该特产的产量与市场需求量刚好相等,求此时出售全部特产获得的总利润.20.如图,抛物线y=﹣x2+2x+c与x轴交于A、B两点,若直线y=kx+b(k≠0)与抛物线交于A、C两点,已知A(﹣1,0),C(2,m).(1)求直线AC的函数表达式;(2)若将直线AC沿y轴的正方向向上平移n个单位长度后,与抛物线只有一个公共点,求此时n的值.21.[回归教材](1)已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两个实数解为x1,x2,则有x1+x2=﹣,x1•x2=.这个结论课本上称为一元二次方程根与系数的关系,因为是法国数学家韦达发现的,人们又称它为“韦达定理”.请你证明这个定理.[夯实基础](2)若一元二次方程3x2﹣9x﹣8=0的两个实数解为x1、x2,求3+9x2+5的值.[拓展应用](3)若关于x的一元二次方程x2﹣(2a+1)x+a2+1=0的两个实数解为x1、x2,求+的最小值.22.为研究某种化学试剂的挥发情况,某研究团队在两种不同的场景下做对比实验,收集了该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在直角坐标系中,如图所示.(1)从y=ax+21(a≠0),y=(k≠0),y=﹣0.04x2+bx+c中,选择适当的函数模型分别模拟两种场景下y随x变化的函数关系,并求出相应的函数表达式;(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克.在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?23.【阅读理解】:关于x的函数y=mx﹣2m﹣3(m为常数,且m≠0),经过某个定点,请求出定点的坐标.方法一:先将等式化为(x﹣2)m=y+3的形式,再根据0m=0时有m无数多个解,求得定点的坐标为(2,﹣3);方法二:当m=1时,y=x﹣5;当m=2时,y=2x﹣7;解方程组解得,∴求得定点的坐标为(2,﹣3)【模仿练习】关于x的二次函数y=mx2+(2m+1)x+1(为常数,且m≠0),是否经过定点,如果是,请选择一种方法求出定点的坐标;如果不是,请说明理由.【尝试应用】某“数学兴趣小组”根据学习函数的经验,对函数y=﹣(x﹣1)(|x|﹣3)的图象和性质进行了探究,探究过程如下,请补充完整:(1)计算x与y的几组对应值,其中m=;列表如下:x…﹣4﹣3﹣2﹣101234…y…50﹣3m﹣3010﹣3…(2)如图,在直角坐标系中用描点法画出了函数y=﹣(x﹣1)(|x|﹣3)这个图象;(3)若直线y=tx﹣2t+2与函数y=﹣(x﹣1)(|x|﹣3)(2<x≤4)的图象只有一个交点,请结合函数图象,求出t的取值范围.24.“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.。
九年级数学上册第一次月考试卷(附答案)

九年级数学上册第一次月考试卷(附答案)一.单选题。
(每小题4分,共48分)1.下列各组线段中,成比例线段的一组是()A.1,2,3,4B.2,3,4,6C.1,3,5,7D.2,4,6,82.反比例函数y=6x的图象分别位于()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限3.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2B.3C.4D.5(第3题图)(第4题图)(第9题图)4.如图,在△ABC中,点D,E分别在AB,AC上,若DE∥BC,ADAB =25,DE=6cm,则BC的长为()A.9cmB.12cmC.15cmD.18cm5.点A(a,1)在双曲线y=3x上,则a的值是()A.1B.﹣1C.3D.﹣36.如果两个相似多边形的周长比是2:3,那么它们的面积比是()A.4:9B.2:3C.√2:√3D.16:817.若点A(2,y1),B(﹣1,y2),C(4,y3),都在反比例函数y=8x的图象上,则y1,y2,y3的大小比较是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y2<y1<y38.连续掷两枚质地均匀的硬币,两枚正面朝上的概率是()A.14B.12C.13D.349.如图,点A是函数y=kx图象上一点,AB垂直x轴于点B,若S△ABO=4,则k的值为()A.4B.8C.﹣4D.﹣810.某时刻测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长是12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米11.若反比例函数y=kx的图象的两个分支位于第一、三象限,则一次函数y=kx-k的图象大致是()A. B. C. D.12.若反比例函数y=a-1x(a>1,x<0)图象上有两个点(x1,y1)和(x2,y2),设m=(x1-x2)(y1-y2),则y=mx-m不经过第()象限.A.一B.二C.三D.四二.填空题。
人教版九年级上册数学第一次月考考试卷(及参考答案)

人教版九年级上册数学第一次月考考试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.函数123y x x =+--的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .29.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539B .2539+C .18253+D .25318+二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:3x -x=__________.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、B5、B6、A7、B8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x(x+1)(x-1)3、7或-14、12 5.5、x=26、24 5三、解答题(本大题共6小题,共72分)1、无解2、(1)证明见解析(2)1或23、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m1,2.4、(1)略;(2)AC.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
2022-2023学年北师大版九年级数学上册第一次月考测试卷含答案

九年级数学上册第一次月考试卷(满分150分 时间:120分钟)一.单选题。
(每小题4分,共48分)1.方程:①2x 2-13x=1,②2x 2-5xy+y 2=0,③7x 2+1=0,④y22=0,其中是一元二次方程是( )A.①②B.②③C.③④D.①③ 2.矩形,菱形,正方形具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角 3.下列命题中,不正确的是( )A.顺次连接菱形各边中点所得的四边形是矩形B.有一个角是直角的菱形是正方形C.对角线相等且垂直的四边形是正方形D.有一个角是60°的等腰三角形是等边三角形 4.不解方程,判断方程2x 2-4x -1=0的根的情况是( )A.没有实数根B.有两个相等实数根C.有两个不相等实数根D.无法确定 5.在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( ) A.频率就是概率 B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得的频率的值也相同D.随着试验次数的增加,频率一定会逐步稳定在概率数值附近6.若m ,n 是一元二次方程x 2+2x -2021=0的两个实数根,则2m+2n -mn 的值为( ) A.2021 B.2019 C.2017 D.20157.用配方法解方程2x 2+4x+1=0,配方后的方程是( )A.(2x+2)2=﹣2B. (2x+2)2=﹣3C.(x+12)2=12D.(x+1)2=12 8.某公司今年一月产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元,设这个百分数为x ,则可列方程为( )A.200(1+x )2=1400B.200+200(1+x )+200(1+x )2=1400C.1400(1+x )2=200D.200(1+x )3=14009.有一个不透明的口袋中,装有5个红球和3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ) A.15 B.13 C.58 D.3810.根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=√2,当∠B=90°时,如图2,AC=().A.√2B.2C.2√2D.√3(第10题图)(第11题图)(第12题图)11.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数为()A.50°B.55°C.70°D.75°12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,下列结论:①EF=2BE,②PF=2PE,③FQ=2EQ,④△PBF是等边三角形,其中正确的是()A.①②B.②③C.①③D.①④二.填空题。
24-25九年级数学第一次月考卷(全解全析)【测试范围:苏科版九年级上册第1章-第2章】(苏科版)

2024-2025学年九年级数学上学期第一次月考卷(苏科版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题和解答题时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级上册第1章-第2章。
5.难度系数:0.8。
一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列方程中,是一元二次方程的是( )A .211x y +=B .213x x +=C .2130x -=D .210x +=2.用配方法解一元二次方程2410x x -+=,下列变形正确的是( )A .2(2)30x --=B .2(4)15x +=C .2(2)3x +=D .2(2)3x -=-【答案】A【详解】解:2410x x -+=,配方得:24430x x -+-=,∴()2230x --=,故选:A .3.如图,在ABC V 中,904ACB AC Ð=°=,,点D 在边AB 上,且5AD =,以AC 为直径作O e ,设线段CD 的中点为P ,则点P 与O e 的位置关系是( )A .点P 在O e 内B .点P 在O e 上C .点P 在O e 外D .无法确定4.已知1x 、2x 是关于x 的方程240x ax --=的两根,下列结论一定正确的是( )A .12x x ¹B .120x x +>C .120x x ×>D .120,0x x <<【答案】A【详解】解:A .22()41(4)160a a D =--´´-=+>Q ,∴12x x ¹,结论A 正确,符合题意;B 、∵1x 、2x 是关于x 的方程240x ax --=的两根,∴12x x a +=,∵a 的值不确定,∴B 结论不一定正确,不符合题意;C 、∵1x 、2x 是关于x 的方程240x ax --=的两根,∴124x x ×=-,结论C 错误,不符合题意;D 、∵124x x ×=-,∴1x 、2x 异号,结论D 错误,不符合题意.故选:A .5.如图,将O e 沿弦AB 折叠,点C 在 AmB 上,点D 在AB 上,若73ACB Ð=°,则ADB Ð的值为( )A .107°B .108°C .110°D .106°D 在AB 上,6.如图,菱形ABCD 的顶点B ,C ,D 在O e 上,且AB 与O e 相切,若O e 的半径为1,则菱形ABCD 的周A.B.C.6D.8 Q是菱形,ABCD\=,AD ABQ,OD OBOA OA==二、填空题:本题共10小题,每小题4分,共40分。
北师大版九年级上学期数学第一次月考试卷(10月份)(含答案)

九年级上学期数学第一次月考试卷(满分150分 时间:120分钟)一.单选题。
(每小题4分,共48分)1.如图所示,属于物体在太阳光下形成的影子的图形是( )A. B. C. D.2.若4m=5n (m ≠0),下列等式成立的是( ) A.m 4=n5B.m 4=5nC.m n =45D.m n =543.下列各组中的四条线段成比例的是( )A.2cm ,3cm ,4cm ,6cmB.2cm ,3cm ,4cm ,5cmC.1cm ,2cm ,3cm ,4cmD.3cm ,4cm ,6cm ,9cm4.如图,底面是等边三角形的棱柱叫正三棱柱,下面的正三棱柱的主视图是( )A.B. C. D.5.已知反比例函数y=kx 的图象经过点(3,﹣2),则k 的值是( ) A.﹣6 B.6 C.23 D.﹣236.已知点C 是线段AB 的黄金分割点,且AC >BC ,若AB=2,则AC 的长为( ) A.3-√5 B.1+√5 C.√5-1 D.√5-27.如图,若△ABC 与△A 1B 1C 1是位似图形,则位似中心的坐标为( ) A.(1,0) B.(0,1) C.(﹣1,0) D.(0,﹣1)(第7题图) (第9题图) (第12题图) 8.反比例函数y=2x ,下列说法不正确的是( )A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.y 随x 的增大而减小D.当x <0时,y 随x 的增大而减小9.如图,在△ABC 中,∠A=78°,AB=4,AC=6,将△ABC 沿图中的虚线剪开,剩下的阴影三角形与原三角形不相似的是( )A. B. C. D.10.点A (﹣3,y 1),B (﹣1,y 2),C (2,y 3),都在反比例函数y=﹣6x的图象上,则y 1,y 2,y 3的大小关系是( )A.y 1<y 2<y 3B.y 3<y 2<y 1C.y 3<y 1<y 2D.y 2<y 1<y 3 11.函数y=﹣ax+a 与y=ax 在同一坐标系的图象可能是( )A. B. C. D.12.如图,正方形ABCD 中,E 是BC 的中点,连接AE ,DF ⊥AE 于点F ,连接CF ,FG ⊥CF 交AD 于点G ,下列结论:①CF=CD ,②G 是AD 于点G ,③△DCF ∽△AGF ,④AF EF =23,其中结论正确有( )个.A.1B.2C.3D.4 二.填空题。
九年级数学(上)第一次月考试卷(含答案)

年 班 姓名 一、选择题(每题3分;共39分)1.一元二次方程x 2+6x ﹣6=0配方后化为( ) A .(x ﹣3)2=3B .(x ﹣3)2=15C .(x +3)2=15D .(x +3)2=32、已知点P (﹣1;4)在反比例函数ky x=(k ≠0)的图象上;则k 的值是( ) A .14-B .14C .4D .﹣4 3、【2018广东省东莞市二模】下列函数中;当x >0时;y 随x 的增大而减小的是( )A .y =2xB .y =﹣4xC .y =3x +2D .y =x 2﹣34.【2018广州市番禹区】二次函数y =x 2+bx 的图象如图;对称轴为直线x =1;若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解;则t 的取值范围是( )A .t ≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .3<t <85、抛物线222++-=kx x y 与x 轴交点的个数为( )A 、0B 、1C 、2D 、以上都不对6、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念;全班共送1035张照片;如果全班有x 名同学;根据题意;列出方程为( ) A .x (x +1)=1035B .x (x ﹣1)=1035C . x (x +1)=1035D . x (x ﹣1)=10357.二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断正确的是( )x … 1- 0 1 3 … y…3-131…A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时;y >0D .方程02=++c bx ax 的正根在3与4之间8、(3分)某市2004年底已有绿化面积300公顷;经过两年绿化;绿化面积逐年增加;到2006年底增加到363公顷.设绿化面积平均每年的增长率为x ;由题意;所列方程正确的是( ) A .300(1+x )=363 B .300(1+x )2=363C .300(1+2x )=363D .363(1﹣x )2=300 二、填空题(每题3分;共21分)9.(3分)关于x 的方程x 2+5x ﹣m =0的一个根是2;则m =____________10、已知二次函数244y ax x =++的图象与x 轴有两个交点;则a 的取值范围是_____________ 11、若二次函数y =2x 2的图象向左平移2个单位长度后;得到函数y =2(x +h )2的图象;则h = .12.如图;A 、B 是反比例函数y =kx图象上关于原点O 对称的两点; BC ⊥x 轴;垂足为C ;连线AC 过点D (0;﹣).若△ABC 的面积为7;则点B 的坐标为 .13、当a ;二次函数224y ax x =+-的值总是负值.14、A 市“安居工程”新建成的一批楼房都是8层高;房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1;2;3;4;5;6;7;8);已知点(x ;y )都在一个二次函数的图像上(如下图所示);则6楼房子的价格为 元/平方米.15、如下图为二次函数y =ax 2+bx +c 的图象;在下列说法中:①ac <0; ②方程ax 2+bx +c =0的根是x 1= -1; x 2= 3 ③a +b +c >0 ④当x >1时;y 随x 的增大而增大. 以上说法中;正确的有________ _____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年山东省临沂市平邑县金城中学九年级(上)第一次月考数学试卷© 2011 菁优网一、选择题(每题2分,共20分)1、(2010•湛江)下列二次根式是最简二次根式的是()A、12B、4C、3D、82、在二次根式x+1x﹣3中,x的取值范围是()A、x≥﹣1B、x>3C、x≥﹣1且x≠3D、x≠﹣1且x≠33、(2010•嘉兴)设a>0,b>0,则下列运算错误的是()A、ab=a•bB、a+b=a+bC、(a)2=aD、a b=a b4、(2002•甘肃)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A、m=±2B、m=2C、m=﹣2D、m≠±25、(2002•重庆)若x<2,化简(x﹣2)2+|3﹣x|的正确结果是()A、﹣1B、1C、2x﹣5D、5﹣2x6、下列运算正确的是()A、5﹣3=2B、419=213C、12﹣3=2+3D、(2﹣5)2=2﹣57、三角形的一边长是42cm,这边上的高是30cm,则这个三角形的面积是()A、62B、32C、1260cm2D、121260cm28、(2009•成都)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A、k>﹣1B、k>﹣1且k≠0C、k<1D、k<1且k≠09、(2007•内江)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A、(x﹣2)2=2B、(x+2)2=2C、(x﹣2)2=﹣2D、(x﹣2)2=610、(2009•河南)方程x2=x的解是()A、x=1B、x=0C、x1=1,x2=0D、x1=﹣1,x2=0二、填空题(每小题3分,共30分)11、化简:①(﹣0.3)2=_________;②(2﹣5)2=_________.③449=_________.12、比较大小:①2 3 _________ 13; ②( 3﹣4) _________ 1. 13、计算: 12• 27= _________ ; 2xy • 8y = _________ ;a 3a+ 9a ﹣a 3=_________ . 14、a a +1= a a +1成立的条件是 _________ . 15、如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱表面爬到B 点,那么它所行的最短路线的长是 _________ .16、已知最简二次根式 a 2+3与 5a ﹣3可以合并,则a 的值为 _________ . 17、若 3的整数部分是a ,小数部分是b ,则 3a ﹣b = _________ . 18、若x= 5﹣3,则 x 2+6x +5的值为 _________ .19、已知方程2x 2﹣mx ﹣10=0的一根是﹣5,求方程的另一根为 _________ ,m 的值为 _________20、已知关于x 的一元二次方程(1﹣2k )x 2﹣ k x ﹣1=0有实数根,则k 的取值范围是 _________ .三、解答题(共50分) 21、计算:(1)23334×(﹣9 45)(2)(2 3﹣3 2)2+(2+ 3)(2﹣ 3)(3)2 2﹣1+ 18﹣4 12 (4)(6 x 4﹣2x 1x )÷3 x .22、已知:x=2+ 3,y=2﹣ 3,求代数式:x 2+y 2﹣2xy 的值.23、(2005•南通)先化简,再求值a 2﹣b2a 2b ﹣ab2÷(1+a 2+b22ab),其中a= 3﹣ 11,b= 3+ 11.24、用适当方法解下列方程(1)(2x ﹣5)2﹣(x+4)2=0(2)3m 2﹣7m ﹣4=0(3)(x ﹣3)2+2x (x ﹣3)=0(4)x2+25x+10=0.25、已知a、b、c均为实数,且a﹣2+|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.26、已知关于x的方程x2+(4k+1)x+2k﹣1=0.(1)求证:不论k取何值此方程总有两个不相等的实数根.(2)当k取绝对值最小的实数时,求此时方程的根.答案与评分标准一、选择题(每题2分,共20分)1、(2010•湛江)下列二次根式是最简二次根式的是()A、12B、4C、3D、8考点:最简二次根式。
分析:A选项的被开方数中含有分母;B、D选项的被开方数中含有未开尽方的因数;因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是C.解答:解:A、12=22;B、4=2;D、8=22;因此这三个选项都不是最简二次根式,故选C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2、在二次根式x+1x﹣3中,x的取值范围是()A、x≥﹣1B、x>3C、x≥﹣1且x≠3D、x≠﹣1且x≠3考点:二次根式有意义的条件;分式有意义的条件。
专题:计算题。
分析:让二次根式的被开方数为非负数,分母不为0列式求值即可.解答:解:由题意得:x+1≥0 x﹣3≠0,解得x≥1且x≠3.故选C.点评:考查二次根式及分式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数;分式有意义,分母不为0.3、(2010•嘉兴)设a>0,b>0,则下列运算错误的是()A、ab=a•bB、a+b=a+bC、(a)2=aD、a b=a b考点:二次根式的混合运算。
分析:分别根据二次根式的乘除法及二次根式的加法法则进行逐一分析即可.解答:解:A、正确,符合二次根式乘法的逆运算;B、错误,不符合二次根式的加法法则;C、正确,符合二次根式乘法法则;D、正确,符合二次根式的除法法则.故选B.点评:本题考查的是二次根式的乘除法及加法法则,比较简单.4、(2002•甘肃)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A、m=±2B、m=2C、m=﹣2D、m≠±2考点:一元二次方程的定义。
分析:本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.解答:解:由一元二次方程的定义可得∣m∣=2m+2≠0,解得:m=2.故选B.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.5、(2002•重庆)若x<2,化简(x﹣2)2+|3﹣x|的正确结果是()A、﹣1B、1C、2x﹣5D、5﹣2x考点:二次根式的性质与化简。
分析:根据二次根式的性质,绝对值的性质,先化简代数式,再合并.解答:解:∵x<2∴|x﹣2|=2﹣x,|3﹣x|=3﹣x原式=|x﹣2|+3﹣x=2﹣x+3﹣x=5﹣2x.故选D.点评:本题考查实数的综合运算能力及绝对值的性质,是各地中考题中常见的计算题型.6、下列运算正确的是()A、5﹣3=2B、419=213C、12﹣3=2+3D、(2﹣5)2=2﹣5考点:二次根式的加减法;二次根式的乘除法。
分析:二次根式的加减法运算,根据法则,必须是被开方数相同的二次根式才能合并;而对于二次根式的化简,a2=∣a∣,再根据a的符号去绝对值符号.解答:解:A、5与3不能进行合并;故A错误.B、419=379=373;故B错误.C、12﹣3=2+3(2﹣3)(2+3)=2+3;故C正确.D、(2﹣5)2=∣2﹣5∣=5﹣2;故D错误.故选C.点评:本题综合考查了二次根式的性质和化简,解题的关键是熟记法则和性质.7、三角形的一边长是42cm,这边上的高是30cm,则这个三角形的面积是()A、635cm2B、335cm2C、1260cm2D、121260cm2考点:二次根式的乘除法。
专题:常规题型。
分析:直接利用:三角形的面积=12×一边的长×这边上的高,计算面积. 解答:解:这个三角形的面积为12× 42× 30=3 35cm 2. 故选B .点评:考查了三角形面积公式,以及利用面积公式计算三角形面积的能力.8、(2009•成都)若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( ) A 、k >﹣1 B 、k >﹣1且k≠0 C 、k <1 D 、k <1且k≠0 考点:根的判别式。
分析:方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了.注意考虑“一元二次方程二次项系数不为0”这一条件.解答:解:因为方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则b 2﹣4ac >0,即(﹣2)2﹣4k×(﹣1)>0, 解得k >﹣1.又结合一元二次方程可知k≠0, 故选B .点评:总结:一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.本题容易出现的错误是忽视k≠0这一条件.9、(2007•内江)用配方法解方程:x 2﹣4x+2=0,下列配方正确的是( )A 、(x ﹣2)2=2B 、(x+2)2=2C 、(x ﹣2)2=﹣2D 、(x ﹣2)2=6 考点:解一元二次方程-配方法。
专题:配方法。
分析:在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.解答:解:把方程x 2﹣4x+2=0的常数项移到等号的右边,得到x 2﹣4x=﹣2方程两边同时加上一次项系数一半的平方,得到x 2﹣4x+4=﹣2+4配方得(x ﹣2)2=2. 故选A .点评:配方法的一般步骤:(1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10、(2009•河南)方程x 2=x 的解是( ) A 、x=1 B 、x=0 C 、x 1=1,x 2=0 D 、x 1=﹣1,x 2=0 考点:解一元二次方程-因式分解法。
专题:计算题。
分析:首先把移项使右边是0,左边可以分解因式,变形成x (x ﹣1)=0,即可求得方程的解.解答:解:整理原方程得,x 2﹣x=0,x (x ﹣1)=0, ∴x 1=1,x 2=0. 故选C .点评:本题主要考查一元二次方程的一般解法及等式的基本性质,学生易把方程两边都除以x ,得x=1,这里忽略了x 是否为0的验证,导致丢掉方程的一个根,而错误地选择A .根据方程的特点,灵活选择解方程的方法,一般能用因式分解法的要用因式分解法,难以用因式分解法的再用公式法.二、填空题(每小题3分,共30分)11、化简:①(﹣0.3)2=0.3;②(2﹣5)2=5﹣2.③449=2103.考点:二次根式的性质与化简。