高中物理公式大全(全集) 八、动量与能量

合集下载

高中物理常见公式+实用规律

高中物理常见公式+实用规律
- 洛伦兹定律: F = q∇ × E = -dB / dt, ∇ × B = μ0(J + ε0dE / dt),∇ · E = ρ / ε0, ∇ · B = 0
2. 静力学公式:
- 牛顿第一定律: F = 0
- 牛顿第二定律: F = m*a
- 牛顿第三定律: F1 = -F2
3. 热力学公式:
- 热力学第一定律: Q = ΔU + W
- 热力学第二定律: ΔS ≥ 0
- 热力学第三定律: 熵在绝对零度时为零
4. 光学公式:
- 光速公式: c = λf
- 瑞利公式: n1sinθ1 = n2sinθ2
高中物理常见公式+实用规律
高中物理常见公式+实用规律?(最全?)? -
以下是高中物理中常见的公式和实用规律:
1. 动力学公式:
- 力的作用: F = ma
- 动能公式: E = 1/2 mv²
- 动量公式: p = mv
- 能量守恒定律: E1 + E2 = E3
- 动量守恒定律: p1 + p2 = p3
- 菲涅尔公式: (rs - rp) / (rs + rp) = (n1cosθ1 - n2cosθ2) / (n1cosθ1 + n2cosθ2)
- 光的波动性和粒子性: E = hf, p = h/λ
5. 电磁学公式:
- 库伦定律: F = kq1q2 / r²
- 安培定律: B = μ0I / (2πr)

高中物理公式大全(全集)八动量与能量

高中物理公式大全(全集)八动量与能量

高中物理公式大全(全集)八动量与能量1.动量 2.机械能1.两个〝定理〞〔1〕动量定理:F ·t =Δp 矢量式 (力F 在时刻t 上积存,阻碍物体的动量p ) 〔2〕动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积存,阻碍物体的动能E k )动量定理与动能定理一样,差不多上以单个物体为研究对象.但所描述的物理内容差不极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时刻积存作用成效——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时刻为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如下图.那么在Δt 内:以小球为研究对象,其受力情形如下图.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-〔-mv 0cos θ〕小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要专门注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个〝定律〞〔1〕动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′〔2〕机械能守恒定律:适用条件——只有重力〔或弹簧的弹力〕做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如下图,分不以m 1和m 2为研究对象,依照动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理能够解决动量守恒咨询题,只是较苦恼一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——明白得〝摩擦生热〞(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,通过一段时刻,物块的位移为s 1,板的位移s 2,现在两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在那个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断〝生热〞,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,缺失的机械能〔〝生热〞〕等于摩擦力与相对位移的乘积。

高中物理公式大全(全集) 八、动量与能量

高中物理公式大全(全集) 八、动量与能量

八、动量与能量1.动量 2.机械能1.两个“定理”(1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p )(2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k )动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则在Δt 内:以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ)小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =02.两个“定律”(1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′(2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如图所示,分别以m 1和m 2为研究对象,根据动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——理解“摩擦生热”(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,经过一段时间,物块的位移为s 1,板的位移s 2,此时两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。

动量和能量的关系公式

动量和能量的关系公式

动量和能量的关系公式动量和能量是物理学中两个重要的物理量,它们之间存在着紧密的关系。

在经典力学中,动量和能量可以通过公式进行相互转化。

首先,我们来看动量的定义。

动量是物体的运动状态的量度,它定义为物体的质量乘以速度:动量 = 质量×速度。

动量的单位是千克·米/秒(kg·m/s)。

而能量则描述了物体所具有的做工能力。

能量可以通过物体的动能和势能来表示。

动能是物体由于运动而具有的能量,它等于物体的质量乘以速度的平方再除以2:动能 = 1/2 ×质量×速度^2。

动能的单位也是千克·米/秒(kg·m/s)。

势能则是物体由于位置而具有的能量,它与物体所处位置的势场相关,例如重力势能、弹性势能等。

根据动量和能量的定义可以得知,动量和能量的关系是通过速度来联系的。

由动量的定义可知,动量正比于速度,即动量随速度的变化而变化。

而根据动能的定义可以得知,动能正比于速度的平方。

因此,动量和能量之间存在以下关系:动能 = 动量的平方 / (2 ×质量)这个公式表明,当物体的质量不变时,动量的平方和动能呈正比关系。

当动量增加时,动能也会增加。

这意味着,在碰撞或运动过程中,当物体的动量增加时,它的动能也会增加。

此外,还存在能量守恒定律,即在一个封闭系统中,能量的总量保持不变。

这意味着在物体之间发生碰撞或相互作用时,能量可以从一个物体转移到另一个物体,但总能量保持不变。

总结起来,动量和能量之间存在紧密的联系,而它们的关系可以通过速度、质量和能量守恒定律进行描述和推导。

这些公式和定律的应用使得我们能够更好地理解和解释物体的运动和相互作用过程。

高中物理公式整理大全

高中物理公式整理大全

高中物理公式整理大全以下是高中物理公式整理大全:1.动力学公式。

(1)牛顿第一定律:当物体未受力或受力平衡时,物体的速度保持不变。

(2)牛顿第二定律:物体受到的力与物体的质量成正比,加速度与受力成正比,即。

F=ma。

(3)牛顿第三定律:若两个物体相互作用,则它们之间的作用力大小相等、方向相反,且作用在两个物体的不同部位。

2.动量和能量公式。

(1) 动量p=mv,其中m为物体的质量,v为物体的速度。

(2)冲量J=FΔt,其中F为作用力,Δt为作用时间。

(3)动量定理:一个物体在作用力F的作用下,其速度会发生变化,根据牛顿第二定律和动量定义,可以得到动量定理的表达式:J=Δp=mv2-mv1。

(4)机械能定理:当只有重力作用于物体时,物体的总机械能守恒。

即。

E = U + K = const.其中E为总机械能,U为重力势能,K为动能。

3.电学公式。

(1)库伦定律:两个电荷之间的电力与电荷的大小成正比,与它们之间的距离的平方成反比,即。

F=k(q1q2)/r^2。

其中k为常数,称为库伦常数。

(2)电势能公式:两个电荷之间在距离r处的电势能为:U=k(q1q2)/r。

(3)电场强度公式:电场强度E是受力电荷q的电力F与电荷的大小成正比,与距离的平方成反比,即。

E = F/q = kq/r^2。

(4)电势差公式:电势差是电场对电荷移动的做功和电荷的大小之积之比,可表示为。

ΔV=W/q。

其中W为电场对电荷的做功。

4.热力学公式。

(1)热力学第一定律,即能量守恒定律,表示为。

ΔU=Q-W。

其中ΔU为系统内部能量的变化量,Q为系统所吸收的热量,W为系统所获得的功。

(2)热力学第二定律,即熵增原理,表示为。

ΔS=Q/T。

其中ΔS为系统的熵变,Q为系统吸收的热量,T为系统的温度。

(以上公式中,Q表示吸热量或释放热量,W表示获得功或做功,Δ表示变化量,k表示常数,r表示距离,E表示电场强度,V表示电势差,U表示电势能,F表示力,m表示质量,v表示速度,J表示冲量,a表示加速度)。

高中物理知识点总结及公式大全

高中物理知识点总结及公式大全

高中物理知识点总结及公式大全高中物理是一门重要的科学学科,主要研究物质的运动、变形和相互作用规律。

下面将介绍高中物理的一些重要知识点及相关的公式。

一、力学1.牛顿三定律(1)第一定律:物体静止或匀速直线运动,当且仅当合外力为零时。

(2)第二定律:物体的加速度与作用力成正比,与物体质量成反比。

(3)第三定律:相互作用力大小相同,方向相反,作用在不同的物体上。

2.动力学(1)速度公式:v=s/t(2)加速度公式:a=(v-u)/t(3)路程公式:s=(u+v)t/2(4) 动量公式:p = mv(5) 动能公式:E_k = 1/2mv^2(6)功的定义:W=Fs(7) 功的公式:W = mas(8)功与能量的转化关系:W=ΔE_k3.平衡力学(1)平衡条件:合外力为零,合力矩为零。

(2)力矩公式:M=Fd(3)杠杆原理:M1/M2=d2/d1二、热学1.热传递(1)热传导:热量通过物质间的分子传递。

(2)热辐射:热能以电磁波的形式传播。

(3)热对流:热量通过流体传递。

2.热力学(1) 比热容公式:Q = mcΔT(2) 比热容的单位:J/(kg·℃)(3)热传导公式:Q=kAΔT/Δx(4)热功定理:ΔU=Q-W(5)热机效率:η=W/Q_h三、光学1.几何光学(1)光的反射定律:入射角等于反射角。

(2)光的折射定律:入射角与折射角的正弦比等于介质的折射率比。

(3)透镜的焦距公式:1/f=1/v-1/u(4)成像公式:m=-v/u(5)光的全反射定律:当光从光密介质射向光疏介质时,入射角大于临界角时发生全反射。

2.波动光学(1)光的干涉:光波的叠加现象。

(2)光的衍射:光波通过孔径或物体的边缘时发生弯曲现象。

(3) 杨氏双缝干涉公式:d*sinθ = mλ(4) 单缝衍射公式:a*sinθ = mλ四、电磁学1.静电学(1)库仑定律:F=k*(q1*q2)/r^2(2)电势能公式:U=k*(q1*q2)/r(3)电场强度公式:E=F/q2.电路(1)欧姆定律:U=IR(2)电功、电功率:P=IV,W=Pt(3) 串联电阻:R_eq = R1 + R2 + ...(4) 并联电阻:1/R_eq = 1/R1 + 1/R2 + ...五、原子物理1.元素周期表(1)元素周期表由水平周期和垂直族组成。

高中物理公式大全之完整版

高中物理公式大全之完整版

高中物理公式大全之完整版高中物理公式1.运动学公式:v = v0 + ats = v0t + 1/2at^2v^2 - v0^2 = 2as2.牛顿定律:F = ma3.能量守恒:E = Ek + Ep4.动量守恒:p = mv5.引力定律:F = Gm1m2/r^26.圆周运动:v = ωra = ω^2rT = 2πr/v7.功和功率:W = FscosθP = W/t8.摩擦力和滑动摩擦力:f = μFn9.能量和功:E = W + Q10.机械能守恒:Ek1 + Ep1 = Ek2 + Ep2以上是高中物理公式的概述,其中包括运动学公式、牛顿定律、能量守恒、动量守恒、引力定律、圆周运动、功和功率、摩擦力和滑动摩擦力、能量和功、机械能守恒等。

这些公式在物理学中非常重要,学生们需要掌握它们的含义和应用。

合外力为零或接近于零,或某个方向上的合外力为零时,下面的公式适用于一动一静的弹性碰撞模型:Mv1=Mv1'+mv2'①Mv2=Mv2'+M-mv1'②其中,M和m分别为两个物体的质量,v1和v2是碰撞前的速度,v1'和v2'是碰撞后的速度。

在电学中,元电荷的大小为e=1.6×10^-19C。

电荷可以通过三种方式产生:摩擦起电、感应起电和接触起电。

库仑定律表明,两个电荷之间的电场力与它们之间的距离的平方成反比。

电场强度的定义式为E= F/Q,其中F是电场力,Q是电荷。

在真空中,电场强度的决定式为E=kQ/r^2.电场线的方向与正电荷所受电场力的方向相同。

电势差可以表示为UAB=WAB/q,其中WAB表示从A到B的电场做功。

电势表示为从某点到无穷远的电势能。

场强可以表示为E=U/(4πkQ/r^2)。

电阻可以表示为R=ρ=l/A,其中l为电线的长度,A为其横截面积。

电流可以表示为I=Q/t,其中Q是电荷,t是时间。

电容可以表示为C=Q/U,其中U是电势差。

高二物理公式大全

高二物理公式大全

高二物理公式大全高二物理公式大全物理学是研究自然界中物体运动、能量、力学、电磁学、光学、原子物理、热力学等现象的一门科学。

在学习物理时需要掌握一些重要的公式,这里为大家整理了高二物理公式大全。

力学1. 动能定理:KE = 1/2mv²其中,KE表示动能,m表示质量,v表示速度。

2. 动量定理:FΔt = Δp = mΔv其中,F表示力,Δt表示时间,Δp表示动量变化,m为质量,Δv为速度变化。

3. 能量守恒定律:K1 + U1 = K2 + U2其中,K1表示初态中动能,U1表示初态中势能,K2表示末态中的动能,U2表示末态中势能。

4. 热力学第一定律:ΔU = Q - W其中,U表示内能,Q表示吸收的热量,W表示做功。

5. 热力学第二定律:ΔS > 0其中,S表示熵。

电磁学1. 库仑定律:F = 1/4πε0(q1q2/r²)其中,F表示静电力,q1和q2表示两个电荷,r表示两个电荷的距离,ε0表示真空介电常数。

2. 电场强度:E = F/q = 1/4πε0(q/r²)其中,F表示电荷受到的静电力,q表示电荷大小,r表示电荷与电场的距离,ε0为真空介电常数。

3. 电势能:U = qEd其中,q表示电荷大小,E表示电场强度,d表示电荷所在位置与参考点之间的距离。

4. 电势:V = U/q = Ed其中,U表示电势能,q表示电荷大小,E表示电场强度,d表示电荷所在位置与参考点之间的距离。

5. 磁场强度:B=F/IL其中,F表示射线所受的洛伦兹力,I表示电流强度,L 表示射线的长度。

光学1. 折射定律:n1sinθ1 = n2sinθ2其中,n1和n2表示两种介质的折射率,θ1和θ2分别表示光线在两种介质中的入射角和折射角。

2. 光程差:Δ = nl其中,n表示折射率,l表示光路中的长度。

3. 杨氏干涉公式:d(sinθ ± sinφ) = mλ其中,d表示光栅常数,θ和φ表示两束光的入射角,m为干涉条纹颜色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八、动量与能量1.动量 2.机械能1.两个“定理”(1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p )(2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k )动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则在Δt 内:以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ)小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =02.两个“定律”(1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′(2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如图所示,分别以m 1和m 2为研究对象,根据动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——理解“摩擦生热”(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,经过一段时间,物块的位移为s 1,板的位移s 2,此时两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。

特别要指出,在用Q = f ·Δs 计算摩擦生热时,正确理解是关键。

这里分两种情况:(1)若一个物体相对于另一个物体作单向运动,Δs 为相对位移;(2)若一个物体相对于另一个物体作往返运动,Δs 为相对路程。

5.相互作用中的动量与能量,三类碰撞中能量的变化: (1)(2) 设两物体发生完全弹性碰撞,其中m 1以v 1匀速运动,m 2静止。

据⎪⎩⎪⎨⎧++=+=''''222211211221111212121v m v m v m v m v m v m 可得⎪⎪⎩⎪⎪⎨⎧+='+-='2112121212m m m v m m m m v 讨论:(a)当m 1>m 2时,v 1′与v 1方向一致;(b)当m 1=m 2时,v 1′=0,v 2′=v 1,即m 1与m 2交换速度(c)当m 1<m 2时,v 1′反向,v 2′与v 1同向。

(3)非完全弹性碰撞:为一般情况,只有动量守恒,机械能有损失,损失量不最大,亦不最小。

6. 功和能的关系例题: 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v 1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H 和物块的最终速度v 。

解析:解析:系统水平方向动量守恒,全过程机械能也守恒。

在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()gm M Mv H +=221 全过程系统水平动量守恒,机械能守恒,得12v m M m v += 本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。

例题:动量分别为5kg ∙m/s 和6kg ∙m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。

若已知碰撞后A 的动量减小了2kg ∙m/s ,而方向不变,那么A 、B 质量之比的可能范围是什么?解析:A 能追上B ,说明碰前v A >v B ,∴BA m m 65>;碰后A 的速度不大于B 的速度,B A m m 83≤;又因为碰撞过程系统动能不会增加, BA B A m m m m 282326252222+≥+,由以上不等式组解得:7483≤≤B A m m 此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。

例题:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d 对子弹用动能定理:22012121mv mv s f -=⋅ ……① 对木块用动能定理:2221Mv s f =⋅ ……② ①、②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ……③ 这个式子的物理意义是:f ∙d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =⋅,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:()dm M Mmv f +=220 至于木块前进的距离s 2,可以由以上②、③相比得出:d mM m s +=2 从牛顿运动定律和运动学公式出发,也可以得出同样的结论。

由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:()d mM m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下m M >>,所以s 2<<d 。

这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。

这就为分阶段处理问题提供了依据。

象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:()202v m M Mm E k +=∆…④ 当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。

做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。

以上所列举的人、船模型的前提是系统初动量为零。

如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

例题:在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们从抛出到落地时,比较它们的动量的增量△P ,有[ ]A .平抛过程较大B .竖直上抛过程较大C .竖直下抛过程较大D .三者一样大的。

解析:1.由动量变化图中可知,△P 2最大,即竖直上抛过程动量增量最大,所以应选B 。

2、由动量定理可知I 合=ΔP ,而I 合=mgt ,竖起上抛过程t 2为最大)(22h H g gv t m o ++=,而mg 均相同。

所以ΔI 2为最大。

正确答案为B【小结】 对于动量变化问题,一般要注意两点:(1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。

(2) 由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。

如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。

例题: 向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 [ ]A .b 的速度方向一定与原速度方向相反B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大C .a ,b 一定同时到达地面D .炸裂的过程中,a 、b 中受到的爆炸力的冲量大小一定相等解析: 物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(m A +m B )v = m A v A +m B v B当v A 与原来速度v 同向时,v B 可能与v A 反向,也可能与v A 同向,第二种情况是由于v A 的大小没有确定,题目只讲的质量较大,但若v A 很小,则m A v A 还可能小于原动量(m A +m B )v 。

这时,v B 的方向会与v A 方向一致,即与原来方向相同所以A 不对。

a ,b 两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运运动,落地时间由gh t 2 决定。

相关文档
最新文档