BIM建筑信息模型(Building Information Modeling)
什么是bim建模

什么是BIM建筑信息模型(Building Information Modeling)是以建筑工程项目的各项相关信息数据作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息。
它具有可视化,协调性,模拟性,优化性和可出图性五大特点。
BIM技术是一种应用于工程设计建造管理的数据化工具,通过参数模型整合各种项目的相关信息,在项目策划、运行和维护的全生命周期过程中进行共享和传递,使工程技术人员对各种建筑信息作出正确理解和高效应对,为设计团队以及包括建筑运营单位在内的各方建设主体提供协同工作的基础,在提高生产效率、节约成本和缩短工期方面发挥重要作用。
BIM的英文全称是Building Information Modeling,国内较为一致的中文翻译为:建筑信息模型。
定义由三部分组成:1.BIM是一个设施(建设项目)物理和功能特性的数字表达;2.BIM是一个共享的知识资源,是一个分享有关这个设施的信息,为该设施从建设到拆除的全生命周期中的所有决策提供可靠依据的过程;3.在项目的不同阶段,不同利益相关方通过在BIM中插入、提取、更新和修改信息,以支持和反映其各自职责的协同作业。
BIM的来源1975年,“BIM之父”——乔治亚理工大学的Charles Eastman教授创建了BIM理念至今,BIM技术的研究经历了三大阶段:萌芽阶段、产生阶段和发展阶段。
BIM理念的启蒙,受到了1973年全球石油危机的影响,美国全行业需要考虑提高行业效益的问题,1975年“BIM 之父”Eastman教授在其研究的课题“Building Description System”中提出“a computer-based description of-abuilding”,以便于实现建筑工程的可视化和量化分析,提高工程建设效率。
真正的BIM符合以下五个特点:1. 可视化可视化即“所见所得”的形式,对于建筑行业来说,可视化的真正运用在建筑业的作用是非常大的,例如经常拿到的施工图纸,只是各个构件的信息在图纸上的采用线条绘制表达,但是其真正的构造形式就需要建筑业参与人员去自行想象了。
bim技术应用能力评价标准

bim技术应用能力评价标准BIM技术(Building Information Modeling,建筑信息模型)是一种集成了设计、施工和运营的数字化建筑生命周期管理技术。
它通过将建筑物的几何形状、结构、材料等信息进行数字化建模,并与时间、成本、品质等其他相关数据进行整合,实现对建筑项目全过程的集成化管理和协同工作。
在评价BIM技术应用能力时,可以从以下几个方面进行考量。
1.BIM软件和工具的熟练程度:评价BIM技术应用能力的一个重要指标是对BIM软件和工具的熟悉程度。
这包括对常用BIM软件(如Revit、Archicad、Tekla等)的操作熟练程度,以及对BIM 工具(如Navisworks、Solibri Model Checker等)的使用能力。
熟练掌握BIM软件和工具可以提高模型的质量和准确性,提升工作效率。
2.模型构建和数据管理能力:评价BIM技术应用能力还需要考察对模型构建和数据管理的能力。
这包括对建筑物各个组成部分的建模能力,如墙体、楼板、柱子等,以及对参数化建模和族库的应用能力。
此外,对模型的数据管理和协同工作能力也是评价BIM应用能力的重要指标。
3.BIM协同设计和协同施工能力:BIM技术的核心价值在于实现各方之间的协同工作和信息共享。
因此,评价BIM 技术应用能力时需要考察对BIM协同设计和协同施工的能力。
这包括多人同时协同编辑模型、模型版本控制、冲突检测与解决、协同设计会议等能力。
4.BIM应用于施工过程和项目管理的能力:BIM技术在施工过程和项目管理中也发挥着重要的作用。
评价BIM技术应用能力时需要考察对BIM应用于施工过程和项目管理的能力,如进度计划的制定与跟踪、资源管理、碰撞检测和预防、成本估算等能力。
5.BIM应用于运维与设施管理的能力:BIM技术在建筑物运维与设施管理方面也有广泛应用。
评价BIM技术应用能力时需要考察对BIM应用于运维与设施管理的能力,如设备管理、维修保养计划、能耗分析与优化等能力。
建筑信息模型(BIM)技术应用指南

建筑信息模型(BIM)技术应用指南第一章建筑信息模型(BIM)基础 (2)1.1 BIM概述 (2)1.2 BIM发展历程 (2)1.3 BIM与传统设计模式的区别 (3)第二章 BIM技术标准与规范 (3)2.1 BIM标准体系 (3)2.1.1 BIM国家标准 (3)2.1.2 BIM行业标准 (4)2.1.3 BIM地方标准 (4)2.2 BIM技术规范 (4)2.2.1 BIM设计规范 (4)2.2.2 BIM施工规范 (4)2.2.3 BIM运维规范 (4)2.3 BIM应用指南 (4)2.3.1 BIM应用流程 (4)2.3.2 BIM技术应用要点 (4)2.3.3 BIM技术应用案例 (5)2.3.4 BIM培训与考核 (5)第三章 BIM建模技术 (5)3.1 建模软件概述 (5)3.2 建模流程与方法 (5)3.3 建模技巧与注意事项 (6)第四章 BIM模型管理与维护 (6)4.1 模型管理原则 (6)4.2 模型维护与更新 (7)4.3 模型数据交换与共享 (7)第五章 BIM在设计阶段的应用 (8)5.1 设计协同 (8)5.2 设计优化 (8)5.3 设计变更与审批 (8)第六章 BIM在施工阶段的应用 (9)6.1 施工进度管理 (9)6.2 施工成本控制 (9)6.3 施工安全管理 (10)第七章 BIM在运维阶段的应用 (10)7.1 设施管理 (10)7.2 能源管理 (11)7.3 设备维护与维修 (11)第八章 BIM与绿色建筑 (11)8.1 绿色建筑设计原则 (11)8.2 BIM在绿色建筑设计中的应用 (12)8.3 BIM与绿色建筑评价 (12)第九章 BIM与建筑工业化 (13)9.1 建筑工业化概述 (13)9.2 BIM在建筑工业化中的应用 (13)9.3 BIM与建筑工业化发展趋势 (14)第十章 BIM与大数据 (14)10.1 大数据概述 (14)10.2 BIM与大数据的融合 (14)10.3 BIM大数据应用案例 (15)第十一章 BIM与人工智能 (15)11.1 人工智能概述 (15)11.2 BIM与人工智能的融合 (15)11.3 BIM人工智能应用案例 (16)第十二章 BIM技术在国内外的发展趋势 (17)12.1 国内外BIM政策与发展现状 (17)12.1.1 国外BIM政策与发展现状 (17)12.1.2 我国BIM政策与发展现状 (17)12.2 BIM技术未来发展趋势 (18)12.3 我国BIM技术发展策略与建议 (18)第一章建筑信息模型(BIM)基础1.1 BIM概述建筑信息模型(Building Information Modeling,简称BIM)是一种数字化的建筑设计、施工和运维管理方法。
建筑行业的建筑信息模型(BIM)最佳实践和应用案例

建筑行业的建筑信息模型(BIM)最佳实践和应用案例随着科技的不断发展,建筑行业也在不断变革和创新。
其中,建筑信息模型(Building Information Modeling,简称BIM)作为一种数字化建模工具,逐渐成为建筑行业的重要技术和工具之一。
本文将介绍建筑信息模型的最佳实践和应用案例,并探讨其在建筑行业中的重要性和发展前景。
一、什么是建筑信息模型(BIM)?建筑信息模型(BIM)是一种基于三维模型的数字化工具,通过集成建筑设计、施工和运营管理等环节的相关数据和信息,实现建筑项目全生命周期的协同管理和优化。
BIM不仅仅是一个三维建模软件,更是整个建筑过程中各方参与者之间的合作和沟通平台。
二、建筑信息模型(BIM)的最佳实践1. 阶段性应用BIM技术针对建筑项目的不同阶段,建筑信息模型的应用也有所不同。
在设计阶段,BIM可以用于模拟建筑结构,提前发现和解决潜在问题;在施工阶段,BIM可以用于协调各方施工过程,提高施工效率和质量;在运营阶段,BIM可以用于建筑设备的管理和维护,延长建筑的寿命。
因此,针对不同阶段的应用需求,合理使用BIM技术可以最大程度地提升项目效率和质量。
2. 多方合作与信息共享BIM模型的核心理念是多方合作和信息共享。
在建筑项目中,各方参与者包括建筑师、结构工程师、电气工程师、机械工程师等,通过BIM模型的共享和协同,可以减少信息传递的误差和漏洞,提高项目的合作效率。
此外,BIM模型还可以与其他管理系统(如ERP、CIM 等)进行数据的交互和整合,进一步优化企业的管理。
3. 数据的可视化和分析BIM模型不仅仅是一个三维建模工具,更是一个数据驱动的系统。
通过在BIM模型中添加参数和属性数据,我们可以实现对建筑项目各项数据的可视化和分析。
这不仅有助于设计和施工过程中的决策,还可以为建筑运营和维护提供数据支持,进一步降低运营成本和提高建筑的可持续性。
三、建筑信息模型(BIM)的应用案例1. 上海中心大厦上海中心大厦是一座位于上海浦东新区的超高层建筑,其建设过程中采用了BIM技术。
bim作用

bim作用BIM,全名为建筑信息模型(Building Information Modeling),是一种基于数字化技术的建筑设计和施工管理方法。
通过使用BIM技术,可以将建筑项目的各种信息,包括几何形状、空间关系、材料性质、时间进度和成本等,以统一的数据模型进行管理。
BIM的作用体现在以下几个方面:1.设计效率提升:BIM可以对建筑项目进行全面的三维建模,表达建筑形态和空间关系。
设计师可以根据预先设定的规则进行模型的自动更新,减少了手动修改的工作量,提高了设计效率。
2.信息共享和协同:BIM可以将建筑项目的各种信息整合到一个统一的平台上,方便各个参与方共享信息。
设计师、工程师和施工人员可以同时访问和修改模型,实现信息的协同,减少沟通成本和错误。
3.碰撞检测和冲突解决:BIM可以自动进行碰撞检测,识别出各种不当的空间重叠和冲突,提前发现并解决问题。
这样可以避免在施工过程中出现不必要的改动和返工,提高了工程质量和效率。
4.成本和时间控制:BIM可以根据模型自动生成详细的施工图和材料清单,还可以与成本估算和进度控制软件进行集成。
这样可以实现对项目成本和时间的精确控制,避免超支和延期。
5.可视化和沟通效果改善:BIM可以生成高质量的三维可视化图像和动画,使建筑项目更加直观和生动。
这样可以帮助设计师向业主和利益相关者展示设计意图,提高沟通效果和项目接受度。
6.运维和维护管理:BIM可以将建筑项目的信息进行长期保存和管理。
这样可以为建筑的运维和维护工作提供便利,包括设备的定位、使用说明的查看和维修记录的管理等。
这将有助于延长建筑的使用寿命,降低运营成本。
综上所述,BIM作为一种新兴的建筑设计和施工管理方法,具有提高效率、共享协同、碰撞检测、成本控制、可视化和运维管理等多方面的作用。
随着数字技术的不断发展,BIM的应用前景越来越广阔,将成为建筑行业的一项重要技术和工具。
BIM建筑信息模型(Building Information Modeling)

BIM建筑信息模型(Building Information Modeling)是以建筑工程项目的各项相关信息数据作为模型的基础,进行建筑模型的建立。
它具有可视化,协调性,模拟性,优化性和可出图性五大特点。
简介BIM的全拼是Building Information Modeling,中文翻译最为贴切的、也被大家所认可的名称为:建筑信息模型。
这些建筑模型的数据在建筑信息模型中的存在是以多种数字技术为依托,从而以这个数字信息模型作为各个建筑项目的基础,去进行各个相关工作。
建筑工程与之相关的工作都可以从这个建筑信息模型中拿出各自需要的信息,即可指导相应工作又能将相应工作的信息反馈到模型中。
建筑信息模型不是简单的将数字信息进行集成,它还是一种数字信息的应用,并可以用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率、大量减少风险。
在建筑工程整个生命周期中,建筑信息模型可以实现集成管理,因此这一模型既包括建筑物的信息模型,同时又包括建筑工程管理行为的模型。
将建筑物的信息模型同建筑工程的管理行为模型进行完美的组合。
因此在一定范围内,建筑信息模型可以模拟实际的建筑工程建设行为,例如:建筑物的日照、外部维护结构的传热状态等。
同时BIM可以四维模拟实际施工,以便于在早期设计阶段就发现后期真正施工阶段所会出现的各种问题,来提前处理,为后期活动打下坚固的基础。
在后期施工时能作为施工的实际指导,也能作为可行性指导,以提供合理的施工方案及人员,材料使用的合理配置,从而来最大范围内实现资源合理运用。
当前建筑业已步入计算机辅助技术的引入和普及,例如CAD的引入,解决了计算机辅助绘图的问题。
而且这种引入受到了建筑业业内人士大力欢迎,良好地适应建筑市场的需求,设计人员不再用手工绘图了,同时也解决了手工绘制和修改易出现错误的弊端。
在“对图”时也不再用落后的将各专业的硫酸图纸进行重叠式的对图了。
bim的认识

bim的认识BIM的认识BIM是建筑信息模型(Building Information Modeling)的缩写,是一种基于数字化技术的建筑设计、施工和管理方法。
它将建筑物的各个方面(包括几何形状、材料、构造、设备等)以及与之相关的信息(如成本、进度、能源效率等)整合在一个三维数字模型中,实现了建筑设计和施工过程的数字化。
BIM的优势1.提高设计效率传统建筑设计过程中,需要进行多次修改和沟通,而BIM可以帮助设计师在模型中快速调整并预览效果,减少了重复工作和时间浪费。
2.提高质量控制BIM可以对建筑物进行全方位的分析和检测,包括结构强度、能源消耗等方面,有助于提前发现问题并加以解决。
3.降低成本通过BIM模型进行虚拟施工预演,可以避免实际施工过程中出现的错误和浪费,从而减少施工成本。
4.提高协作效率BIM可以实现不同部门之间信息共享和沟通交流,促进协作,并且可以随时更新模型信息。
BIM的应用领域1.建筑设计BIM可以帮助设计师在模型中进行实时修改和预览,从而提高设计效率和质量。
2.工程施工BIM可以对施工过程进行虚拟预演,避免错误和浪费,提高施工效率。
3.设备维护BIM可以对建筑物的设备进行数字化管理和维护,包括故障排除、维修计划等。
4.城市规划BIM可以对城市规划进行数字化模拟,包括交通流量、环境影响等方面的分析。
BIM的发展趋势1.云端技术随着云计算技术的普及,BIM也将向云端转移,实现更高效的协作和数据共享。
2.人工智能人工智能技术将有助于优化建筑物设计和施工过程,并提高建筑物的能源效率。
3.可持续发展随着全球环保意识的提高,BIM将越来越注重建筑物的可持续性和环保性。
结语:总之,BIM是一种数字化技术革命,在未来建筑领域中将扮演越来越重要的角色。
BIM的应用将带来更高效、更经济、更环保的建筑设计和施工过程。
建筑信息模型(Building_Information_Modeling,_BIM)

建筑信息模型(Building_Information_Modeling,_BIM) 建筑信息模型BIM的全拼是Building Information Modeling,即:建筑信息模型。
建筑信息模型(Building Information Modeling, BIM)是近两年来出现在建筑界中的一个新名词。
其实,它是引领建筑业信息技术走向更高层次的一种新技术,它的全面应用,将为建筑业界的科技进步产生无可估量的影响,大大提高建筑工程的集成化程度。
同时,也为建筑业的发展带来巨大的效益,使设计乃至整个工程的质量和效率显著提高,成本降低。
建筑信息模型,是以三维数字技术为基础,集成了建筑工程项目各种相关信息的工程数据模型,是对该工程项目相关信息的详尽表达。
建筑信息模型是数字技术在建筑工程中的直接应用,以解决建筑工程在软件中的描述问题,使设计人员和工程技术人员能够对各种建筑信息做出正确的应对,并为协同工作提供坚实的基础。
建筑信息模型同时又是一种应用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率和大量减少风险。
由于建筑信息模型需要支持建筑工程全生命周期的集成管理环境,因此建筑信息模型的结构是一个包含有数据模型和行为模型的复合结构。
它除了包含与几何图形及数据有关的数据模型外,还包含与管理有关的行为模型,两相结合通过关联为数据赋予意义,因而可用于模拟真实世界的行为,例如模拟建筑的结构应力状况、围护结构的传热状况。
当然,行为的模拟与信息的质量是密切相关的。
应用建筑信息模型,可以支持项目各种信息的连续应用及实时应用,这些信息质量高、可靠性强、集成程度高而且完全协调,大大提高设计乃至整个工程的质量和效率,显著降低成本。
应用建筑信息模型,马上可以得到的好处就是使建筑工程更快、更省、更精确,各工种配合得更好和减少了图纸的出错风险,而长远得到的好处已经超越了设计和施工的阶段,惠及将来的建筑物的运作、维护和设施管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BIM建筑信息模型(Building Information Modeling)是以建筑工程项目的各项相关信息数据作为模型的基础,进行建筑模型的建立。
它具有可视化,协调性,模拟性,优化性和可出图性五大特点。
简介BIM的全拼是Building Information Modeling,中文翻译最为贴切的、也被大家所认可的名称为:建筑信息模型。
这些建筑模型的数据在建筑信息模型中的存在是以多种数字技术为依托,从而以这个数字信息模型作为各个建筑项目的基础,去进行各个相关工作。
建筑工程与之相关的工作都可以从这个建筑信息模型中拿出各自需要的信息,即可指导相应工作又能将相应工作的信息反馈到模型中。
建筑信息模型不是简单的将数字信息进行集成,它还是一种数字信息的应用,并可以用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率、大量减少风险。
在建筑工程整个生命周期中,建筑信息模型可以实现集成管理,因此这一模型既包括建筑物的信息模型,同时又包括建筑工程管理行为的模型。
将建筑物的信息模型同建筑工程的管理行为模型进行完美的组合。
因此在一定范围内,建筑信息模型可以模拟实际的建筑工程建设行为,例如:建筑物的日照、外部维护结构的传热状态等。
同时BIM可以四维模拟实际施工,以便于在早期设计阶段就发现后期真正施工阶段所会出现的各种问题,来提前处理,为后期活动打下坚固的基础。
在后期施工时能作为施工的实际指导,也能作为可行性指导,以提供合理的施工方案及人员,材料使用的合理配置,从而来最大范围内实现资源合理运用。
当前建筑业已步入计算机辅助技术的引入和普及,例如CAD的引入,解决了计算机辅助绘图的问题。
而且这种引入受到了建筑业业内人士大力欢迎,良好地适应建筑市场的需求,设计人员不再用手工绘图了,同时也解决了手工绘制和修改易出现错误的弊端。
在“对图”时也不再用落后的将各专业的硫酸图纸进行重叠式的对图了。
这些CAD图形可以在各专业中进行相互的利用。
给人们带来便捷的工作方式,减轻劳动强度,所以计算机辅助绘图一直在受到人们的热烈欢迎。
其他方面的特点,在此就不再列举了。
特点那么BIM建筑信息模型也同CAD一样,也只是个设计绘图软件或者出图工具吗?对于这个问题,我们需要真正的认识BIM了。
真正的BIM应该符合以下五个特点:1.可视化:可视化即“所见所得”的形式,对于建筑行业来说,可视化的真正运用在建筑业的作用是非常大的,例如经常拿到的施工图纸,只是各个构件的信息在图纸上的采用线条绘制表达,但是其真正的构造形式就需要建筑业参与人员去自行想象了。
对于一般简单的东西来说,这种想象也未尝不可,但是现在建筑业的建筑形式各异,复杂造型在不断的推出,那么这种光靠人脑去想象的东西就未免有点不太现实了。
所以BIM提供了可视化的思路,让人们将以往的线条式的构件形成一种三维的立体实物图形展示在人们的面前;现在建筑业也有设计方面出效果图的事情,但是这种效果图是分包给专业的效果图制作团队进行识读设计制作出的线条式信息制作出来的,并不是通过构件的信息自动生成的,缺少了同构件之间的互动性和反馈性,然而BIM提到的可视化是一种能够同构件之间形成互动性和反馈性的可视,在BIM建筑信息模型中,由于整个过程都是可视化的,所以,可视化的结果不仅可以用来效果图的展示及报表的生成,更重要的是,项目设计、建造、运营过程中的沟通、讨论、决策都在可视化的状态下进行。
2.协调性:这个方面是建筑业中的重点内容,不管是施工单位还是业主及设计单位,无不在做着协调及相配合的工作。
一旦项目的实施过程中遇到了问题,就要将各有关人士组织起来开协调会,找各施工问题发生的原因,及解决办法,然后出变更,做相应补救措施等进行问题的解决。
那么这个问题的协调真的就只能出现问题后再进行协调吗?在设计时,往往由于各专业设计师之间的沟通不到位,而出现各种专业之间的碰撞问题,例如暖通等专业中的管道在进行布置时,由于施工图纸是各自绘制在各自的施工图纸上的,真正施工过程中,可能在布置管线时正好在此处有结构设计的梁等构件在此妨碍着管线的布置,这种就是施工中常遇到的碰撞问题,像这样的碰撞问题的协调解决就只能在问题出现之后再进行解决吗?BIM的协调性服务就可以帮助处理这种问题,也就是说BIM建筑信息模型可在建筑物建造前期对各专业的碰撞问题进行协调,生成协调数据,提供出来。
当然BIM的协调作用也并不是只能解决各专业间的碰撞问题,它还可以解决例如:电梯井布置与其他设计布置及净空要求之协调,防火分区与其他设计布置之协调,地下排水布置与其他设计布置之协调等。
3.模拟性:模拟性并不是只能模拟设计出的建筑物模型,还可以模拟不能够在真实世界中进行操作的事物。
在设计阶段,BIM可以对设计上需要进行模拟的一些东西进行模拟实验,例如:节能模拟、紧急疏散模拟、日照模拟、热能传导模拟等;在招投标和施工阶段可以进行4D模拟(三维模型加项目的发展时间),也就是根据施工的组织设计模拟实际施工,从而来确定合理的施工方案来指导施工。
同时还可以进行5D模拟(基于3D模型的造价控制),从而来实现成本控制;后期运营阶段可以模拟日常紧急情况的处理方式的模拟,例如地震人员逃生模拟及消防人员疏散模拟等。
4.优化性:事实上整个设计、施工、运营的过程就是一个不断优化的过程,当然优化和BIM也不存在实质性的必然联系,但在BIM的基础上可以做更好的优化、更好地做优化。
优化受三样东西的制约:信息、复杂程度和时间。
没有准确的信息做不出合理的优化结果,BIM模型提供了建筑物的实际存在的信息,包括几何信息、物理信息、规则信息,还提供了建筑物变化以后的实际存在。
复杂程度高到一定程度,参与人员本身的能力无法掌握所有的信息,必须借助一定的科学技术和设备的帮助。
现代建筑物的复杂程度大多超过参与人员本身的能力极限,BIM及与其配套的各种优化工具提供了对复杂项目进行优化的可能。
目前基于BIM的优化可以做下面的工作:(1)、项目方案优化:把项目设计和投资回报分析结合起来,设计变化对投资回报的影响可以实时计算出来;这样业主对设计方案的选择就不会主要停留在对形状的评价上,而更多的可以使得业主知道哪种项目设计方案更有利于自身的需求。
(2)、特殊项目的设计优化:例如裙楼、幕墙、屋顶、大空间到处可以看到异型设计,这些内容看起来占整个建筑的比例不大,但是占投资和工作量的比例和前者相比却往往要大得多,而且通常也是施工难度比较大和施工问题比较多的地方,对这些内容的设计施工方案进行优化,可以带来显著的工期和造价改进。
5.可出图性:BIM并不是为了出大家日常多见的建筑设计院所出的建筑设计图纸,及一些构件加工的图纸。
而是通过对建筑物进行了可视化展示、协调、模拟、优化以后,可以帮助业主出如下图纸:(l)、综合管线图(经过碰撞检查和设计修改,消除了相应错误以后);(2)、综合结构留洞图(预埋套管图);(3)、碰撞检查侦错报告和建议改进方案。
由上述内容,我们可以大体了解BIM的相关内容了。
BIM目前在国外很多国家已经有比较成熟的BIM标准或者制度了,那么BIM在中国建筑市场内是否能够同国外的一些国家一样那么顺利发展那?这个必须要看BIM如何同国内的建筑市场特色相结合了,当能够满足国内建筑市场的特色需求后,BIM将会给国内建筑业带来一次巨大变革。
目前应用效益由于查询建筑资模讯型能提供各类适切的信息,协助决策者做出准确的判断,同时相比于传统绘图方式,在设计初期能大量地减少设计团队成员所产生的各类错误,以至于后续承造厂商所犯的错误。
计算机系统能用碰撞检测的功能,用图形表达的方式知会查询的人员关于各类的构件在空间中彼此碰撞或干涉情形的详细信息。
由于计算机和软件具有更强大的建筑信息处理能力,相比目前的设计和施工建造的流程,这样的方法在一些已知的应用中,已经给工程项目带来正面的影响和帮助。
对工程的各个参与方来说,减少错误对降低成本都有很重要的影响。
而因此减少建造所需要的时间,同时也有助于降低工程的成本。
应用欧特克建筑资模讯型著名成功案例有德国慕尼黑的宝马世界(BMW Welt)、梅赛德斯-奔驰博物馆(Mercedes-Benz Museum),以及位于斯图加特的保时捷博物馆等许多世界知名案例,均为使用该项技术来完成整个设计项目。
BIM与成本控制实际成本核算困难原因:一是数据量大。
每一个施工阶段都牵涉大量材料、机械、工种、消耗和各种财务费用,每一种人、材、机和资金消耗都统计清楚,数据量十分巨大。
工作量如此巨大,实行短周期(月、季)成本在当前管理手段下,就变成了一种奢侈。
随着进度进展,应付进度工作自顾不暇,过程成本分析、优化管理就只能搁在一边。
二是牵涉部门和岗位众多。
实际成本核算,当前情况下需要预算、材料、仓库、施工、财务多部门多岗位协同分析汇总提供数据,才能汇总出完整的某时点实际成本,往往某个或某几个部门不能实行,整个工程成本汇总就难以做出。
三是对应分解困难。
一种材料、人工、机械甚至一笔款项往往用于多个成本项目,拆分分解对应好专业要求相当高,难度非常高。
四是消耗量和资金支付情况复杂。
材料方面,有的进了库未付款,有的先预付款未进货,用了未出库,出了库未用掉的;人工方面,有的先干未付,预付未干,干了未确定工价;机械周转材料租赁也有类似情况;专业分包,有的项目甚至未签约先干,事后再谈判确定费用。
情况如此复杂,成本项目和数据归集在没有一个强大的平台支撑情况下,不漏项做好三个维度的(时间、空间、工序)的对应很困难。
BIM技术在处理实际成本核算中有着巨大的优势。
基于BIM建立的工程5D (3D实体、时间、WBS)关系数据库,可以建立与成本相关数据的时间、空间、工序维度关系,数据粒度处理能力达到了构件级,使实际成本数据高效处理分析有了可能,解决方案操作方法如下:1)创建基于BIM的实际成本数据库。
建立成本的5D(3D实体、时间、工序)关系数据库,让实际成本数据及时进入5D关系数据库,成本汇总、统计、拆分对应瞬间可得。
以各WBS单位工程量人材机单价为主要数据进入实际成本BIM中。
未有合同确定单价的项目,按预算价先进入。
有实际成本数据后,及时按实际数据替换掉。
2)实际成本数据及时进入数据库一开始实际成本BIM中成本数据以采取合同价和企业定额消耗量为依据。
随着进度进展,实际消耗量与定额消耗量会有差异,要及时调整。
每月对实际消耗进行盘点,调整实际成本数据。
化整为零,动态维护实际成本BIM,大幅减少一次性工作量,并有利于保证数据准确性。
材料实际成本。
要以实际消耗为最终调整数据,而不能以财务付款为标准,材料费的财务支付有多种情况:未订合同进场的、进场未付款的、付款未进场的按财务付款为成本统计方法将无法反映实际情况,会出现严重误差。