宁波市鄞州区2017-2018学年七年级上期末考试数学试题及答案
浙江省宁波市七年级上学期数学期末考试试卷

浙江省宁波市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·浦北期中) 如果电梯向上运行3m记作“ m”,那么电梯向下运行6m记作()A . mB . mC . mD . m2. (2分)(2017·天津模拟) 下列几何体的主视图与其他三个不同的是()A .B .C .D .3. (2分) (2018七上·萍乡期末) 据某市旅游局统计,今年“五一”小长假期间,各旅游景点门票收入约3700万元,数据“3700万”用科学记数法表示为()A . 3.7×107B . 3.7×108C . 0.37×108D . 37×1084. (2分)如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A . 3b﹣2aB .C .D .5. (2分) (2019七上·安庆期中) 下列各组是同类项的是()A . 与B . 12ax与8bxC . 与D . π与-36. (2分)已知点A(-3,2),B(3,2),则A,B两点相距()A . 3个单位长度B . 4个单位长度C . 5个单位长度D . 6个单位长度7. (2分) (2018七上·宜昌期末) 已知x=﹣1是方程ax+4x=2的解,则a的值是()A . ﹣6B . 6C . 2D . ﹣28. (2分)若|a-2008|+(b-2009)2=0,则a-b=()A . 1B . -1C . 0D . ±19. (2分)某同学随机将一枚硬币抛向空中20次,有12次出现反面,那么正面出现的频率是()A . 0.12B . 0.4C . 0.8D . 0.610. (2分) (2017七上·吉林期末) A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A . 2(x-1)+3x=13B . 2(x+1)+3x=13C . 2x+3(x+1)=13D . 2x+3(x-1)=13二、填空题 (共5题;共7分)11. (2分) (2019七上·房山期中) 比较大小:-2________-3(填“>”或“<”或“=”).请你说明是怎样判断的:________.12. (1分) (2017七下·临沧期末) 若甲看乙的方向为南偏西25°,则乙看甲的方向是________.13. (1分)(2019·莲湖模拟) 中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是________分.14. (1分)某商店卖出两个计算器,两个计算器都卖64元,一个盈利60%,另一个亏本20%,则这个商店________元.(填赚了还是亏了多少元)15. (2分)已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做xn .例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=________ ;②若|x+x1+x2+x3+…+x20|的值最小,则x3=________ .三、解答题 (共9题;共65分)16. (10分) (2018七上·灵石期末)(1)计算:① ;②-22+[12-(-3)×2]÷(-3)(2)先化简,再求值:(2x2-5xy+2y2)-2(x2-3xy+2y2),其中x=-1,y=2.17. (5分)讨论x=12是不是方程的解.18. (5分) (2019八上·新兴期中) 如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?19. (5分) (2018七上·灵石期末) 如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,求AC的值20. (9分)(2017·吉林模拟) 深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注M0.1B.一般关注1000.5C.不关注30ND.不知道500.25(1)根据上述统计图可得此次采访的人数为________人,m=________,n=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有________人.21. (5分) (2017七下·大庆期末) 如果方程和的解相同,求出a 的值.22. (5分)如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.23. (10分) (2018七上·三河期末) 为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?24. (11分) (2019七上·辽阳月考) 如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=________;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共7分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共65分)16-1、16-2、17-1、18-1、19-1、20-1、20-2、20-3、21-1、22-1、23-1、23-2、24-1、24-2、24-3、。
宁波市七年级上学期期末数学试题题及答案

宁波市七年级上学期期末数学试题题及答案一、选择题1.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1392.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠3.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个 B .2个C .3个D .4个5.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .16.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( )A .13或﹣1 B .1或﹣1C .13或73D .5或737.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣78.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 17.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;19.将520000用科学记数法表示为_____. 20.五边形从某一个顶点出发可以引_____条对角线.21.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.22.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.单项式()26a bc -的系数为______,次数为______.三、解答题25.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.26.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).27.已知x ay b=⎧⎨=⎩是方程组2025x yx y-=⎧⎨+=⎩的解,则3a b-=_____.28.化简:4(m+n)﹣5(m+n)+2(m+n).29.解方程:2112 233x x-+=.30.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?四、压轴题31.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.32.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.33.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】 【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .2.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.3.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.4.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.6.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.7.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.8.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.10.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.16.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.17.3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.22.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.23.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3c m .故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.24.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此 解析:16- 【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc -的系数为16-;次数为2+1+1=4; 故答案为16-;4. 【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.三、解答题25.(1)155°;(2)OD 平分AOC ∠,理由见详解.【解析】【分析】(1)由题意先根据角平分线定义求出∠BOE ,进而求出BOD ∠的度数;(2)由题意判断OD 是否平分AOC ∠即证明AOD DOC ∠=∠,以此进行分析求证即可.【详解】解:(1)∵130BOC ∠=︒,OE 平分BOC ∠,∴∠BOE =65°,∵DO OE ⊥,∴BOD ∠=90°+65°=155°.(2)OD 平分AOC ∠,理由如下:∵由(1)知BOD ∠=155°,∴AOD ∠=180°-155°=25°,∵130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥,∴DOC ∠=90°-65°=25°,∴AOD DOC ∠=∠=25°,即有OD 平分AOC ∠.【点睛】本题考查角的运算,利用角平分线定义以及垂直定义结合题意对角进行运算即可.26.(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,34或1,15.【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b =, 当k=4时,15b =, 答: B 款瓷砖的长和宽分别为1,34或1,15. 【点睛】 本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.27.【解析】【详解】解:∵x a y b=⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解, ∴2025a b a b -=⎧⎨+=⎩①②, ①+②得,3a ﹣b =5.故答案为5.28.m +n .【解析】【分析】把(m +n )看着一个整体,根据合并同类项法则化简即可.【详解】解:4()5()2()m n m n m n +-+++(425)()m n =+-+m n =+.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.29.12x =. 【解析】【分析】 根据解一元一次方程的步骤依次计算可得.【详解】解:去分母,得:3(21)24x x -+=,去括号,得:6324x x -+=,移项,得:6432x x -=-,合并同类项,得:21x =,系数化为1,得:12x =. 【点睛】 本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a ﹣20)2+|b+10|=0,∴a ﹣20=0,b+10=0,∴a =20,b =﹣10.(2)∵设P 表示的数为x ,点A 表示的数为20,M 是AP 的中点.∴点M 表示的数为202x +. 又∵点B 表示的数为﹣10,∴BM =202x +﹣(﹣10)=20+2x . (3)当0≤t≤203时,点C 表示的数为3t ; 当203<t≤503时,点C 表示的数为:20﹣3(t ﹣203)=40﹣3t ; 当0≤t≤5时,点D 表示的数为﹣2t ;当5<t≤20时,点D 表示的数为:﹣10+2(t ﹣5)=2t ﹣20.当0≤t≤5时,CD =3t ﹣(﹣2t )=5,解得:t =1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.四、压轴题31.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.32.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.33.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。
2017-2018第一学期七年级数学期末试题参考答案

2017—2018学年第一学期期末学业水平检测七年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。
对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,即可得分。
另外请各位阅卷老师仔细核对答案,如有问题,请及时更正。
题号123456789101112D B D C C A B A A D C C 13.1514.215.1116.∠BOD 17.42018.-719(1)解:原式=21-2-4-+………………………………3分=61-…………………………………………5分(2)解:原式=)(16-16-16811-⨯+…………………………7分=-1+2+0…………………………………………9分=1………………………………………………10分20.(1)解:方程两边同乘以12得:4(x+1)-12=24-3(2+3x)………………2分去括号得:4x+4-12=24-6-9x……………………………………3分移项得:13x=26………………………………………………4分系数化为1得:x=2…………………………………………5分(2)解:根据题意得:x 32-.5x 0=,……………………………………2分去分母得:2x-8=3x…………………………………………3分移项得:-x=8……………………………………………………4分系数化为1得:x=-8………………………………………………5分21.解:(1)根据题意得,所捂住的整式为:⎥⎦⎤⎢⎣⎡---+)2231(223y x 2-y x x ………………………………2分=)2231(223y x 2-y x x -+-+=2232223y x 2-y x x -+-+=2y 31x 23-+……………………………5分(2)将x=-2,y=3代入2y 31x 23-+得:原式=3+3=6……………………………………………………8分22.解:(1)AC,C,BC;…………………………3分(2)点D 在线段AC 上,∵E 为线段AC 中点,EC=5,∴AC=2CE=10,∵CD=4,∴AD=AC﹣CD=6,∵BC+CD=AD=6,∴BC=6﹣4=2;…………………………………………………6分点D 在线段BC 上,∵E 为线段AC 中点,EC=5,∴AC=2CE=10,∵CD=4,∴AC+CD=14,∵BD=AC+CD=14,∴BC=14+4=18.……………………………………………………8分23.解:(1)①∠BOD=∠AOB.………………………………………1分∵∠AOB +∠COD = 180,∠BOD +∠COD =180∴∠AOB=∠BOD.……………………………………………2分②设∠COD=x ,则∠AOB=︒36-x 21∴︒︒=-+1803621x x …………………………………………3分∴0144=x ,∠AOB=036=∴∠AOC=︒︒=-=∠14436180-18000AOB ………………………4分(2)∵OE 、OF 分别平分∠BOC 与∠AOD ,∴∠EOC=BOC ∠1,∠AOF=AOD ∠1∴∠EOF=∠EOC+∠AOF-∠AOC ……………………………………6分=BOC ∠21+AOD ∠21-∠AOC =)(21AOD BOC ∠+∠-∠AOC =)2(21AOC COD AOB ∠-∠+∠-∠AOC =)(21COD AOB ∠+∠= 18021⨯=90…………………………8分24.解:设还需x 天完成这项工作,根据题意得:110x 102152=++……………………………………4分解得:x=320…………………………………………7分答:还需320天完成剩余的工作。
浙江省宁波市鄞州区2017-2018学年第一学期期末考试七年级数学试题及答案(WORD版)(解析版)

宁波市鄞州区2017-2018学年第一学期期末考试七年级数学试题一、精心选一选,相信你一定会选对!(本大题共10小题,每题2分,共20分)1. 宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚。
全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座。
其中9.2亿用科学计数法表示正确的是()A. B. C. D.【答案】A【解析】因为科学计数法的表达形式为:,所以9.2亿用科学计数法表示为:,故选A. 点睛:本题主要考查科学计数法的表达形式,解决本题的关键是要熟练掌握科学计数法的表达形式.2. 下列说法正确的是()A. 9的倒数是B. 9的相反数是-9C. 9的立方根是3D. 9的平方根是3【答案】B【解析】9的倒数是,所以A选项错误, 9的相反数是-9,所以B选项正确, 9的立方根是,所以C选项错误, 9的平方根是±3,所以D选项错误,故选B.点睛:本题主要考查倒数,相反数,立方根,平方根的概念,解决本题的关键是要熟练掌握倒数,相反数,立方根,平方根的概念.3. 在数,,,,3.14,,0.303003中,有理数有()A. 3个B. 4个C. 5个D. 6个【答案】B【解析】根据有理数和无理数的概念可得,,, 3.14, 0.303003是有理数,所以有理数有4个,故选B.点睛:本题主要考查有理数的概念,解决本题的关键是要熟练掌握有理数的概念.4. 把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A. 两点之间线段最短B. 两点确定一条直线C. 垂线段最短D. 两点之间直线最短【答案】B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.5. 下面各式中,计算正确的是()【答案】A【解析】根据有理数乘方运算法则可得:,所以A,,所以B,,所以C,,所以D选项错误,故选A和B.6. 下列说法正确的是()的系数是-3的次数是2次是多项式的常数项是1【答案】C【解析】因为单项式的系数是指单项式前数字因数,单项式的次数是指所含字母指数之和,的系数是,所以A,的次数是3次,所以B选项错误是多项式,所以C正确,因为的常数项是-1,所以D选项错误,故选C.7. 轮船在静水中的速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离. 设甲、乙两码头间的距离为x km/h,则列出的方程正确的是()【答案】D【解析】因为顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,故在顺水中行驶的时间为:,逆水中行驶时间为:,根据题意可得:,故答案为:D.8. 如果代数式的值为5,那么代数式的值等于()A. 2B. 5C. 7D. 13【答案】C【解析】因为=5,所以,所以,故选C.9. 古希腊人常用小石子在沙滩上摆成各种形状来研究数. 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地称图2中的1,4,9,16,…这样的数为正方形数. 那么第100个三角形数和第50个正方形数的和为()图1 图2A. 7450B. 7500C. 7525D. 7550【答案】D【解析】根据图1归纳出规律是第n个图形三角形数是:1+2+3+……+n=,所以第100个三角形数是:,根据图2归纳出第n个正方形数是,所以第50个正方形数是2500,故它们的和为故选D.10. 有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干。
浙江省宁波市七年级上学期数学期末考试试卷

浙江省宁波市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)日媒报道说,尽管美元贬值有利于日本GDP换算美元时数值提高,但抵不过中国经济的快速增长势头,2010年日本GDP低于中国1月公布的58786亿美元,比中国少4044亿美元,将其中的58786亿美元化成科学记数法()A . 58786×108B . 5.8786×108C . 5.8786×1012D . 5.8786×10112. (2分)从上面看如图所示的几何体,得到的图形是()A .B .C .D .3. (2分) (2017七上·甘井子期末) 如图,有理数a、b、c、d在数轴上的对应点分别是A、B、C、D,若a、c互为相反数,则b+d()A . 小于0B . 大于0C . 等于0D . 不确定4. (2分)(2018·杭州模拟) 如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则下列说法正确的是()A . ∠AOE与∠BOC互为对顶角B . 图中有两个角是∠EOD的邻补角C . 线段DO大于EO的理由是垂线段最短D . ∠AOC=65°5. (2分)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A . (7m+4n)元B . 28mn元C . (4m+7n)元D . 11mn元6. (2分)如图,如果M点在∠ANB的角平分线上,AM⊥AN,BM⊥BN,那么和AM相等的线段一定是()A . BMB . BNC . MND . AN7. (2分)如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点F,∠ADB=30°,则EF=()A .B .C . 3D .二、填空题 (共12题;共12分)8. (1分) (2016七上·东阳期末) -5的相反数是________;-5的绝对值是________;-5的立方是________;-0.5的倒数是________;9. (1分) (2017七上·灌云月考) 当x=________时,3(x-2)与2(2+x)互为相反数.10. (1分) (2019七上·长兴月考) 单项式-2x2y的系数是________。
2017-2018学年浙教版初一年级上册数学期末测试题及答案

2017-2018学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是()A、6B、6-C、61D、61-2、下面几个有理数中,最小的数是()A、1B、2-C、0 D、5.2-3、计算3)3(-的结果是()A、6B、9C、27D、-274、下列各组代数式中,不是同类项的是()A、yx2-和yx25B、32和2 C、xy2和23xyD、2ax和2a x5、下列等式中正确的是()A、abba-=--)(B、baba+-=+-)(C、12)1(2+=+aa D、xx+=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是()7、若ba=,则下列式子不正确的是()A、11+=+ba B、55-=+ba C、ba-=-D、0=-ba8、下列等式中,不是整式的是()A、yx21-B、x73C、11-xD、0A B C D9、若0<a ,下列式子正确的是( )A 、0<-aB 、02>a C 、22a a -= D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6= AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?BAA22、(1)已知()2210x y +++=,求x ,y 的值; (2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108 DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.N M OAC BE AD2017-2018学年度第一学期期末测试七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm . 三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(-,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分21去分母,得)1(218)5(6->++-x x x , 2分 去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、 去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分 ∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD , 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72 COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB , 若点B 在原点的右边,60= AB ,∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15, 若点B 在原点的左边,30= AB ,∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。
2017-2018学年上学期七年级数学期末检测卷(含答案)

2017/2018学年度上学期七年级上册数学期末检测卷时间:120分钟 满分:120分题号 一 二 三 总分 得分一、选择题(每小题3分,共30分) 1.如果水库水位上升2m 记作+2m ,那么水库水位下降2m 记作( ) A.-2 B.-4 C.-2m D.-4m2.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为( ) ×1010×108元 ×109×1010元3.-(-3)的绝对值是( ) A.-3 B.13 C.-13D.34.下列计算正确的个数是( )①a 2+a 2=a 4;②3xy 2-2xy 2=1;③3ab -2ab =ab ;④(-2)3-(-3)2=-17. A.1个 B.2个 C.3个 D.0个5.一个几何体的表面展开图如图所示,则这个几何体是( ) A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱6.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为( ) A.0 B.2 C.0或2 D.-27.借助一副三角板,你能画出下面哪个度数的角?( ) A.65° B.75° C.85° D.95°8.某商店换季促销,将一件标价为240元的T 恤8折售出,获利20%,则这件T 恤的成本为( ) A.144元 B.160元 C.192元 D.200元9.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,……,设C (碳原子)的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( )A.C n H 2n +2B.C n H 2nC.C n H 2n -2D.C n H n +310.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1,在边BC 上取点P 3,使得BP 3=BP 2,若P 0P 3=1,则CP 0的长度为( )A.4B.6C.4或5D.5或6二、填空题(每小题3分,共24分)11.-12的倒数是 .12.如图,已知∠AOB =90°,若∠1=35°,则∠2的度数是 .第12题图 第13题图13.如图,数轴上A 表示的数为1,B 表示的数为-3,则线段AB 中点表示的数为 . 14.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a = ,化简结果为 . 15.若方程x +5=7-2(x -2)的解也是方程6x +3k =14的解,则k = . 16.把234260精确到万位是 ;近似数1.31×104精确到 位.17.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,则安排 名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.18.如图,我们可以用长度相同的火柴棒按一定规律拼搭正多边形组成图案,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,搭建第n 个图案需要 根火柴棒,搭建第2017个图案需要 根火柴棒.三、解答题(共66分) 19.(8分)计算:(1)(-1)2×5+(-2)3÷4; (2)⎝⎛⎭⎫58-23×24+14÷⎝⎛⎭⎫-123+|-22|.20.(10分)解方程:(1)x -12(3x -2)=2(5-x ); (2)x +24-1=2x -36.21.(10分)某教辅书中一道整式运算的参考答案破损看不见了,形式如图:(1)求破损部分的整式;(2)若|x -2|+(y +3)2=0,求破损部分整式的值.22.(8分)如图,BD 平分∠ABC ,BE 把∠ABC 分成2∶5的两部分,∠DBE =21°,求∠ABC 的度数.23.(8分)某中学计划从荣威公司购买A ,B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元.求购买一块A 型小黑板、一块B 型小黑板各需多少元.24.(10分)如图,已知线段AB 上有两点C ,D ,且AC =BD ,M ,N 分别是线段AC ,AD 的中点,若AB =a cm ,AC =BD =b cm ,且a ,b 满足(a -10)2+⎪⎪⎪⎪b 2-4=0.(1)求AB ,AC 的长度; (2)求线段MN 的长度.25.(12分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a = ,若居民乙用电200千瓦时,应交电费 元;(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?参考答案与解析1.C 2.C 3.D 4.B 5.A 6.A 7.B 8.B 9.A10.D 解析:设CP 0的长度为x ,则CP 1=CP 0=x ,AP 2=AP 1=9-x ,BP 3=BP 2=x -1,BP 0=10-x ,∵P 0P 3=1,∴|10-x -(x -1)|=1,11-2x =±1,解得x =5或6.故选D.11.-2 12.55° 13.-1 14.2 -x 2-7y 215.2316.23万 百 17.25 18.(7n +1) 1412019.解:(1)原式=3.(4分)(2)原式=19.(8分) 20.解:(1)x =6.(5分)(2)x =0.(10分)21.解:(1)设破损部分的整式为A ,根据题意得A =-11x +8y 2+4(2x -y 2)-2(3y 2-2x )=-11x +8y 2+8x -4y 2-6y 2+4x =-2y 2+x .(5分)(2)∵|x -2|+(y +3)2=0,∴x -2=0,y +3=0,解得x =2,y =-3,(7分)则原式=-18+2=-16.(10分)22.解:设∠ABE =2x °,则∠CBE =5x °,∠ABC =7x °.(2分)又BD 为∠ABC 的平分线,所以∠ABD =12∠ABC =72x °,(4分)∠DBE =∠ABD -∠ABE =72x °-2x °=32x °=21°.(6分)所以x =14,所以∠ABC =7x °=98°.(8分)23.解:设购买一块A 型小黑板需要x 元,则购买一块B 型小黑板需要(x -20)元,依题意有5x +4(x -20)=820,(5分)解得x =100,(6分)则x -20=80.(7分)答:购买一块A 型小黑板需要100元,一块B 型小黑板需要80元.(8分)24.解:(1)由题意可知(a -10)2=0,⎪⎪⎪⎪b 2-4=0,∴a =10,b =8,(3分)∴AB =10cm ,AC =8cm.(5分)(2)∵BD =AC =8cm ,∴AD =AB -BD =2cm.(7分)又∵M ,N 分别是AC ,AD 的中点,∴AM =4cm ,AN =1cm.∴MN =AM -AN =3cm.(10分)25.解:(1)0.6 122.5(4分) 解析:∵100<150,∴100a =60,∴a =0.6.若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元).(2)当x >300时,应交的电费为150×0.6+(300-150)×0.65+0.9(x -300)=0.9x -82.5.(8分)(3)设该居民用电x 千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x -150)=0.62x ,解得x =250;当该居民用电处于第三档时,0.9x -82.5=0.62x ,解得x ≈294.6<300(舍去).综上所述,该居民用电不超过250千瓦时时,其当月的平均电价每千瓦时不超过0.62元.(12分)。
2017-2018学年七年级上学期数学期末考试试卷及答案

参考答案:一、选择题(共10个小题,每小题3分,共30分) 1. A 2. C3. B4. A5. D6. A7. D8. C9. A10. A二、填空题(共10个小题,每小题2分,共20分。
其中第11,12题,填对1个答案1分)11. -2,-1 12. 2±13. 2 14. 4,-115. 111+m16. 29°20′,150°40′17. 3-a18. 10519. 120. 41三、解答题(共50分)21. 计算题(1,2小题各3分,3,4小题各4分,共14分) 解:(1)原式=-4+1-3(2分) =-6(3分)(2)原式=-3-(-2-1)(1分) =-3+3(2分) =0(3分)(3)()()3425215122142+-⨯-⎪⎭⎫⎝⎛⨯-÷-解:()()316151241432+-⨯-⨯-÷-=(1分)()3161512414132+-⨯-⨯⎪⎭⎫ ⎝⎛-⨯-=(2分)=2-12(3分) =-10(4分)(4)⎪⎭⎫⎝⎛÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+--3659261125187解:⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛++--=3659261125187(1分)⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛++--=5369261125187(2分) 5369253661536125536187⨯+⨯+⨯-⨯-=(3分)58563514++--=35856514-⎪⎭⎫ ⎝⎛++-= 3-=(4分)22. 化简(每小题3分,共6分)(1)解:原式b a b a 121518422--+=(2分)b a 6112+-=(3分)(2)解:原式2433632323+---+=x x x x (2分) 122-=x (3分)23. 先化简,再求值(本题4分)解:()[]xy y x xy y x y x ----2222323[]xy y x xy y x y x -+--=2223623(1分)()xy y x y x 75322--=(2分) xy y x y x 75322+-= xy y x 722+-=(3分)当1-=x ,2-=y 时,原式18722=+-=xy y x (4分)24. 解方程(每小题4分,共8分) (1)()1352-=+x x 解:去括号,得3352-=+x x (1分)移项,得5332--=-x x (2分)合并同类项,得8-=-x (3分)系数化为1,得8=x (4分)(2)3122413--=+y y 解:去分母,得 ()()12424133--=+y y (1分)去括号,得482439+-=+y y (2分)移项,得342489-+=+y y (3分)合并同类项,得 2517=y 系数化为1,得1725=y (4分) 25. (本题5分) (1)图略(1分) (2)图略(3分) (3)图略(4分)PA 与BK 的和大于线段AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁波市鄞州区2017-2018学年第一学期期末考试七年级数学试题
考生须知:
1. 本试卷分试题卷和答题卡两部分;满分100分,考试时间90分钟;
2. 答题前必须在答题卡上填写学校、班级、姓名,填涂好准考证号;
3. 所有答案都必须做在答题卡指定的位置上,务必注意试题序号和答题序号相对应。
温馨提示:请仔细审题,细心答题,注意把握考试时间,相信你一定会有出色的表现! 一、精心选一选,相信你一定会选对!(本大题共10小题,每题2分,共20分) 1. 宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚。
全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座。
其中9.2亿用科学计数法表示正确的是( ) A. 89.210⨯
B. 79210⨯
C. 90.9210⨯
D. 79.210⨯
2. 下列说法正确的是( )
A. 9的倒数是1
9
- B. 9的相反数是-9 C. 9的立方根是3 D. 9的平方根是3
3. 227,,,3.14,3
π
,0.303003中,有理数有( )
A. 3个
B. 4个
C. 5个
D. 6个
4. 把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A. 两点之间线段最短 B. 两点确定一条直线 C. 垂线段最短
D. 两点之间直线最短
5. 下面各式中,计算正确的是( ) A. 2
24-=-
B. 2
(2)4--=-
C. 2
(3)6-=
D. 2
(1)3-=-
6. 下列说法正确的是( )
A. 35xy
-
的系数是-3 B. 2
2m n 的次数是2次 C. 23
x y -是多项式
D. 2
1x x --的常数项是1
7. 轮船在静水中的速度为20 km/h ,水流速度为4 km/h ,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h (不计停留时间),求甲、乙两码头间的距离. 设甲、乙两码头间的距离为x km/h ,则列出的方程正确的是( ) A. 2045x x +=
B. ()()2042045x x ++-=
C.
5204
x x
+= D.
5204204
x x
+=+- 8. 如果代数式2
2x x +的值为5,那么代数式2
243x x +-的值等于( ) A. 2
B. 5
C. 7
D. 13
9. 古希腊人常用小石子在沙滩上摆成各种形状来研究数. 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地称图2中的1,4,9,16,…这样的数为正方形数. 那么第100个三角形数和第50个正方形数的和为( )
图1 图2 A. 7450
B. 7500
C. 7525
D. 7550
10. 有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干。
若如图②放置时,测得液面高10厘米;若如图③放置室,测得液面高16厘米;则该玻璃密封器皿总容量为( )立方厘米。
(结果保留π) A. 1250π
B. 1300π
C. 1350π
D. 1400π
图① 图② 图③
二、细心填一填,相信你一定会填对的(本大题共10小题,每题3分,共30分) 11. 我国在数的发展史上有辉煌的成就. 早在东汉初,我国著名的数学书《九章算术》明确 提出了“正负术”. 如果“盈5”记为“+5”,那么“亏7”可以记为__________.
12. =__________. 13. 计算:80°-45°17′=__________.
14. 已知:2是关于x 的方程2x-a=10的解,则a 的值为__________. 15. 若5
23m x
y +与2n x y 的和仍为单项式,则n m =__________.
16. 如图所示,将一块直角三角板的直角顶点0放在直尺的一边CD 上,如果∠AOC=28°,那么∠BOD 等于_________度.
第16图 第17图
17. 如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.
18. 若2
(2)30m n -++=,则m n -的算术平方根是__________.
19. 材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个
:记为n a . 如328=,此时3叫做以
2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.
20. 规定:用{}m 表示大于m 的最小整数,例如{}{}5345 1.512⎧⎫
==-=-⎨⎬⎩⎭
,,等;用[]m 表示不大于m 的最大整数,例如7[]3[2]2[ 3.2]42
==-=-,,,如果整数x 满足关系式:
{}32[]23x x +=,则x =__________.
三、动脑想一想,你一定会获得成功的!(本大题共有7小题,共50分.)
21.(共6分)计算:(1(8)2+-÷= (2)311
(2)12()432
--⨯-+-=
22.(共6分)解方程:(1)()235x x -= (2)
313
536
x x +--=
23.(6分)先化简,再求值:222
2()3(1)3
a a
b a ab ----,其中23a b =-=,
24.(6分)作图题:如图,平面内有四个点A、B、C、D,请你利用三角尺或量角器,根据下列语句画出符合要求的图.
(1)画直线AB,射线AC,线段BC;
(2)在直线AB上找一点M,使线段MD与线段MC之和最小;
(3)过点B作直线l丄直线AB,点B为垂足.
25.(8分)如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C到点A、点B 的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.
(1)点C表示的数为__________;
(2)当点P运动到达点A处时运动时间t为秒__________;
(3)运动过程中点P表示的数的表达式为_____________;(用含字母t的式子表示)(4)当t等于多少秒时,P、C之间的距离为2个单位长度.
26.(9分)目前节能灯在各地区基本普及使用,某市一商场为响应号召,推广销售,该商场计划用3800元购进两种节能灯共120只,这两种节能灯的进价、售价如下表:
(1)求甲、乙两种型号节能灯各进多少只?
(2)全部售完120只节能灯后,该商场获利多少元?
27.(9分)如果两个锐角的和等于90°,就称这两个角互为余角。
类似可以定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角). (1)如图,0为直线AB上一点,OC丄AB于点O,OE⊥OD于点O ,请写出图中所有互为垂角的角有_____________;
(2)如果有一个角的互为垂角等于这个角的补角的4
5
,求这个角的度数.
参考答案。