湖南省湘西土家族苗族自治州2020版九年级上学期数学期中考试试卷A卷

合集下载

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷B卷

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷B卷

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)已知一个三角形的两边长是方程x2-8x+15=0的根,则第三边y长的取值范围是()A . y<8B . 2<y<8C . 3<y<5D . 无法确定2. (2分) (2016九上·莒县期中) 在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中点,以C为圆心,4cm 长为半径作圆,则A,B,C,D四点中,在圆内的有()A . 4个B . 3个C . 2个D . 1个3. (2分) (2016九上·宜城期中) 抛物线y=x2+2x+3的对称轴是()A . 直线x=1B . 直线x=﹣1C . 直线x=﹣2D . 直线x=24. (2分) (2016九下·南京开学考) 某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A . 中位数是4,平均数是3.75B . 众数是4,平均数是3.8C . 众数是2,平均数是3.75D . 众数是2,平均数是3.85. (2分)二次函数y=ax2+bx-1(a≠0)的图象经过点(1,-3),则代数式1+a+b的值为()A . -3B . -1C . 2D . 56. (2分)(2018·资中模拟) 如图,四边形ABCD内接于⊙O,E为AD延长线上一点,若∠CDE=80°,则∠B 等于()A . 60°B . 70°C . 80°D . 90°7. (2分)如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是()A . 不存在B . 等腰三角形C . 直角三角形D . 等腰三角形或直角三角形8. (2分) (2018九上·滨州期中) 若二次函数的图像经过点(-2,0),则关于的方程的实数根为()A .B .C .D .二、填空题 (共10题;共10分)9. (1分) (2020九下·重庆月考) 计算: -()-1-3tan 30°+|-2|=________。

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷(II)卷

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷(II)卷

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·枣庄) 将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A . 96B . 69C . 66D . 992. (2分)给出下列结论:①打开电视机它正在播广告的可能性大于不播广告的可能性②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀”③小明射中目标的概率为,因此,小明连射三枪一定能够击中目标④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有()A . 1个B . 2个C . 3个D . 4个3. (2分)反比例函数的图象在()A . 第一、三象限B . 第二、四象限C . 第一、二象限D . 第三、四象限4. (2分)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)(2019·大连模拟) 将抛物线y=x2向左平移2个单位,所得抛物线的解析式为()B . y=x2+2C . y=(x+2)2D . y=(x﹣2)26. (2分) (2019九上·宁波期末) 下列四条圆弧与直角三角板的位置关系中,可判断其中的圆弧为半圆的是()A .B .C .D .7. (2分) (2018九上·崇明期末) 如图,在平行四边形ABCD中,点E在边DC上,,联结AE交BD于点F,那么的面积与的面积之比为()A .B .C .D .8. (2分) (2019八下·襄城月考) 下列各组数中,能作为直角三角形的三边长的是()A . 1,2,3B . ,,C . 3,3,59. (2分)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A . 1B . -1C . 2D . -210. (2分)下列各点中,在反比例函数y=图象上的是()A . (﹣1,8)B . (﹣2,4)C . (1,7)D . (2,4)二、填空题 (共6题;共6分)11. (1分)某批乒乓球的质量检验结果如下:抽取的乒乓球数n50100200500100015002000优等品频数m479518947894814261898优等品频率a0.95b0.9560.9480.9510.949(1)a=________ , b=________;(2)这批乒乓球“优等品”的概率的估计值是________.12. (1分) (2018九上·丹江口期末) 在一幢高125m的大楼上掉下一个苹果,苹果离地面的高度h(m)与时间t(s)大致有如下关系:h=125﹣5t2.________秒钟后苹果落到地面.13. (1分) (2018九上·三门期中) 如图,△ABD,△AEC 都是等边三角形中,∠BAC=90°,将△ABE 绕点 A 顺时针旋转________可以到△ADC 处.14. (1分) (2018九上·建平期末) 如图,在反比例函数y=(x>0)的图象上,有点P1、P2、P3、P4 ,它们的横坐标依次为1、2、3、4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1、S2、S3 ,则S1+S2+S3=________.15. (1分) (2017九上·台州期中) 如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计),则圆锥形纸帽的高是________.16. (1分) (2019九下·佛山模拟) 如图,点D是等边△A BC的边BC上一点,△ABD绕点A逆时针旋转到△ACE 的位置,则∠DAE=________.三、解答题 (共9题;共90分)17. (5分)如图,P1是反比例函数在第一象限图象上的一点,已知△P1O A1为等边三角形,点A1的坐标为(2,0).(1)直接写出点P1的坐标;(2)求此反比例函数的解析式;(3)若△P2A1A2为等边三角形,求点A2的坐标.18. (5分)如图,AB是圆O的直径,弦CD⊥AB于点E,点P在圆O上且∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,BE=2,求CD的长.19. (10分) (2018九上·华安期末) 有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20. (15分)如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y= 的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.21. (10分) (2019九上·西安月考) 已知抛物线与x轴有两个不同的交点.(1)求c的取值范围;(2)抛物线与x轴两交点的距离为2,求c的值.22. (10分)(2017·鞍山模拟) 为庆祝某商场开业,商场推出两种购物方案:方案一,非会员购物所有商品价格可获得九折优惠,方案二:如交纳500元会员费成为该商场会员,则所有商品价格可获八五折优惠.(1)设x(元)表示某商品价格,y(元)表示购买该商品支出的金额,分别写出两种购物方案中y关于x 的函数解析式;(2)若某人计划在该商场购买价格为13500元的苹果电脑一台,请分析选择哪种方案更省钱?23. (10分)(2019·江汉) 如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y .(1)直接写出y关于t的函数解析式及t的取值范围:________;(2)当PQ= 时,求t的值;(3)连接OB交PQ于点D,若双曲线(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.24. (10分) (2016八上·绍兴期末) 如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.25. (15分)(2018·龙东) 如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共90分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷(I)卷

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷(I)卷

湖南省湘西土家族苗族自治州2020版九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九上·景县期末) 若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()A . 1B . -1C . 1或-1D .2. (2分)如图,在中,,,,是斜边上的中线,以为直径作⊙O,设线段的中点为,则点与⊙O的位置关系是()A . 点在⊙O内B . 点在⊙O上C . 点在⊙O外D . 无法确定3. (2分)抛物线y=3(x﹣2)2+5的顶点坐标是()A . (﹣2,5)B . (﹣2,﹣5)C . (2,5)D . (2,﹣5)4. (2分)如图,正方形ABCD是⊙O的内接正方形,点P是劣弧AB上不同于点B的任意一点,则∠BPC为()度.A . 60°B . 45°C . 30°D . 36°5. (2分) (2019八上·克东期末) 若x2+2(m-1)x+16是完全平方式,则m的值等于()A . 3B . -3C . 5.D . 5或-36. (2分) (2018八上·武汉期中) 一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A . 6B . 8C . 9D . 127. (2分)(2018·成都) 在平面直角坐标系中,点关于原点对称的点的坐标是()A .B .C .D .8. (2分)如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是()A . 4B . 6C . 8D . 109. (2分)时钟分针的长10cm,经过45分钟,它的针尖转过的路程是()A . cmB . 15πcmC . cmD . 75πcm10. (2分)(2017·定远模拟) 从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)一元二次方程x2﹣x﹣2=0的解是________12. (1分)(2018·东莞模拟) 在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为________.13. (1分)若(m﹣2)﹣mx+1=0是一元二次方程,则m的值为________.14. (1分)(2017·邳州模拟) 如图,已知△ABC中,AB=AC=1,∠BAC=120°,将△ABC绕点C顺时针旋转90°,得到△A′B′C,则点B运动的路径长为________(结果保留π)15. (1分)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转90°得到△OA1B1 ,若AB=2,则点B走过的路径长为________.16. (1分)已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=________.三、解答题 (共9题;共105分)17. (20分)解方程:(1)(4x﹣1)2=25(直接开平方法)(2) 2x2+5x+3=0(公式法)(3) x2﹣6x+1=0(配方法)(4) x(x﹣7)=8(x﹣7)(因式分解法)18. (5分)如图所示的一块地,AD=9m,CD=12m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.19. (10分) (2019九上·大丰月考) 如图,在边长为1的正方形组成的网格中,的顶点均在格点上,绕点顺时针旋转后得到 .(1)画出;(其中、对应点分别是、)(2)分别画出旋转过程中,点点经过的路径;①求点经过的路径的长;②求线段所扫过的面积.20. (5分)(2018·沈阳) 经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.21. (15分)(2019·荆门模拟) 如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1 , 0),与x 轴正半轴交于点B(x2 , 0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC=ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.22. (10分) (2017八下·万盛期末) 如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.23. (15分) (2017九下·滨海开学考) 由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=-2x+1000.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?24. (10分)(2011·徐州) 如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.25. (15分)(2014·绵阳) 如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N (﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共105分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。

2020年湖南省湘西州中考数学试卷 (解析版)

2020年湖南省湘西州中考数学试卷 (解析版)

2020年湘西州中考数学试卷一、选择题(共10小题).1.下列各数中,比﹣2小的数是()A.0B.﹣1C.﹣3D.32.2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.0.927×105B.9.27×104C.92.7×103D.927×1023.下列运算正确的是()A.=﹣2B.(x﹣y)2=x2﹣y2C.+=D.(﹣3a)2=9a24.如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.5.从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()A.B.C.D.6.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形7.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,﹣2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y18.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线9.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x10.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.﹣的绝对值是.12.分解因式:2x2﹣2=.13.若一个多边形的内角和是外角和的两倍,则该多边形的边数是.14.不等式组的解集为.15.如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC=度.16.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是.17.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE 沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为.18.观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN =CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN =DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN =EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是.三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.计算:2cos45°+(π﹣2020)0+|2﹣|.20.化简:(﹣a﹣1)÷.21.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.22.为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 7676 76 77 77 78 79c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9m80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有人;(2)表中m的值为;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.23.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求.工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?24.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.25.问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC =2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.26.已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b的值.参考答案一、选择题(本大题共10小题,每小题4分,共40分.请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1.下列各数中,比﹣2小的数是()A.0B.﹣1C.﹣3D.3【分析】利用数轴表示这些数,从而比较大小.解:将这些数在数轴上表示出来:∴﹣3<﹣2<﹣1<0<3,∴比﹣2小的数是﹣3,故选:C.2.2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.0.927×105B.9.27×104C.92.7×103D.927×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解:92700=9.27×104.故选:B.3.下列运算正确的是()A.=﹣2B.(x﹣y)2=x2﹣y2C.+=D.(﹣3a)2=9a2【分析】根据二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,进行计算即可判断.解:A.=2,所以A选项错误;B.(x﹣y)2=x2﹣2xy+y2,所以B选项错误;C.+≠,所以C选项错误;D.(﹣3a)2=9a2.所以D选项正确.故选:D.4.如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.5.从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()A.B.C.D.【分析】列举出所有可能出现的结果情况,进而求出能构成三角形的概率.解:从长度为1cm、3cm、5cm、6cm四条线段中随机取出三条,共有以下4种结果(不分先后):1cm 3cm 5cm,1cm 3cm 6cm,3cm 5cm 6cm,1cm 5cm 6cm,其中,能构成三角形的只有1种,∴P(构成三角形)=.故选:A.6.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【分析】依据已知条件即可得到∠ODE=∠OGE,即可得到OD=OG,进而得出△ODG是等腰三角形.解:如图所示,∵OM平分∠AOB,∴∠AOC=∠BOC,由题可得,DG垂直平分OC,∴∠OED=∠OEG=90°,∴∠ODE=∠OGE,∴OD=OG,∴△ODG是等腰三角形,故选:C.7.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,﹣2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y1【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,﹣4),∴正比例函数y1=﹣2x,反比例函数y2=﹣,∴两个函数图象的另一个交点为(﹣2,4),∴A,B选项说法错误;∵正比例函数y1=﹣2x中,y随x的增大而减小,反比例函数y2=﹣中,在每个象限内y随x的增大而增大,∴C选项说法错误;∵当x<﹣2或0<x<2时,y2<y1,∴选项D说法正确.故选:D.8.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线【分析】根据切线的性质即可求出答案.解:(A)∵PA、PB为圆O的切线,∴PA=PB,∴△BPA是等腰三角形,故A正确.(B)由圆的对称性可知:AB⊥PD,但不一定平分,故B不一定正确.(C)连接OB、OA,∵PA、PB为圆O的切线,∴∠OBP=∠OAP=90°,∴点A、B、P在以OP为直径的圆上,故C正确.(D)∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D正确.故选:B.9.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x【分析】作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=b sin x,DE=a cos x,进而得出答案.解:作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠CDE=∠DAO=x,∵sin∠DAO=,cos∠CDE=,∴OD=AD×sin∠DAO=b sin x,DE=D×cos∠CDE=a cos x,∴OE=DE+OD=a cos x+b sin x,∴点C到x轴的距离等于a cos x+b sin x;故选:A.10.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故此选项错误;③当x=﹣1时,y=a﹣b+c<0,故此选项错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;故④⑤正确.故选:D.二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.﹣的绝对值是.【分析】根据绝对值的意义,求出结果即可.解:根据负数的绝对值等于它的相反数可得,|﹣|=,故答案为:.12.分解因式:2x2﹣2=2(x+1)(x﹣1).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).13.若一个多边形的内角和是外角和的两倍,则该多边形的边数是6.【分析】任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n 边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:设该多边形的边数为n,根据题意,得,(n﹣2)•180°=720°,解得:n=6.故这个多边形的边数为6.故答案为:614.不等式组的解集为x≥﹣1.【分析】求出每个不等式的解集,最后求出不等式组的解集即可.解:,∵解不等式①得:x≥﹣3,解不等式②得:x≥﹣1,∴不等式组的解集为x≥﹣1,故答案为:x≥﹣1.15.如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC=36度.【分析】根据垂直的定义得到∠BAC=90°,根据三角形的内角和定理得到∠C=90°﹣54°=36°,根据平行线的性质即可得到结论.解:∵BA⊥AC,∴∠BAC=90°,∵∠ABC=54°,∴∠C=90°﹣54°=36°,∵AE∥BC,∴∠EAC=∠C=36°,故答案为:36.16.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是乙.【分析】在平均数基本相等的前提下,方差越小产量越稳定,据此求解可得.解:∵甲=乙≈7.5,S甲2=0.010,S乙2=0.002,∴S甲2>S乙2,∴乙玉米种子的产量比较稳定,∴应该选择的玉米种子是乙,故答案为:乙.17.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE 沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为2.【分析】由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4,作出图形,根据三角形面积公式列出方程即可得出答案.解:∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);∴矩形CODE的面积为4×2=8,∵将矩形CODE沿x轴向右平移,矩形CODE与△ABO重叠部分的面积为6∴矩形CODE与△ABO不重叠部分的面积为2,如图,设ME′=x,则FE′=x,依题意有x×x÷2=2,解得x=±2(负值舍去).故矩形CODE向右平移的距离为2.故答案为:2.18.观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN =CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN =DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN =EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n=.【分析】根据已知所给得到规律,进而可得在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程会有类似的结论.解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC==60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN =DM,∠NOD==90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN =EM,∠NOE==108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也有类似的结论是A1N=A n M,∠NOA n=.故答案为:A1N=A n M,∠NOA n=.三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.计算:2cos45°+(π﹣2020)0+|2﹣|.【分析】分别根据特殊角的三角函数值,任何非零数的零次幂定义1以及绝对值的定义计算即可.解:原式===3.20.化简:(﹣a﹣1)÷.【分析】先计算括号内分式的减法、将除式分母因式分解,再将除法转化为乘法,最后约分即可得.解:原式=(﹣)÷=•=.21.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.【分析】(1)利用等边三角形的性质得到∠AD=AE=DE,∠EAD=∠EDA=60°,利用正方形的性质得到AB=AD=CD,∠BAD=∠CDA=90°,所以∠EAB=∠EDC =150°,然后根据“SAS”判定△BAE≌△CDE;(2)先证明AB=AE,然后根据等腰三角形的性质和三角形内角和计算∠ABE的度数.【解答】(1)证明:∵△ADE为等边三角形,∴∠AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠ABE=(180°﹣150°)=15°.22.为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 7676 76 77 77 78 79c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9m80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有31人;(2)表中m的值为77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)将频数分布直方图中第3、4、5组数据相加可得答案;(2)根据中位数的定义求解可得;(3)由90≤x≤100的频数为8、80≤x<90的频数为15,据此可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数占被调查人数的比例即可得.解:(1)在这次测试中,七年级在75分以上(含75分)的有8+15+8=31(人),故答案为:31.(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名,故答案为:24;(4)估计七年级成绩超过平均数76.9分的人数为500×=270(人).23.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求.工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?【分析】(1)根据题意设口罩日产量的月平均增长率为x,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为24200个,即可预计4月份平均日产量.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.24.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.【分析】(1)连接AE,OE,由AB是⊙O的直径,得到∠AEB=90°,根据直角三角形的性质得到AD=DE,求得∠DAE=∠AED,根据切线的性质得到∠CAE+∠EAO=∠CAB=90°,等量代换得到∠DEO=90°,于是得到结论;(2)证明△AEC∽△BAC,列比例式可得BC的长,最后根据勾股定理可得OA的长.【解答】(1)证明:连接AE,OE,∵AB是⊙O的直径,且E在⊙O上,∴∠AEB=90°,∴∠AEC=90°,∵D为AC的中点,∴AD=DE,∴∠DAE=∠AED,∵AC是⊙O的切线,∴∠CAE+∠EAO=∠CAB=90°,∵OA=OE,∴∠OAE=∠OEA,∴∠DEA+∠OEA=90°,即∠DEO=90°,∴DE是⊙O的切线;(2)解:∵∠AEC=∠CAB=90°,∠C=∠C,∴△AEC∽△BAC,∴,∵CA=6,CE=3.6,∴,∴BC=10,∵∠CAB=90°,∴AB2+AC2=BC2,∴AB==8,∴OA=4,即⊙O的半径OA的长是4.25.问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是EF=AE+CF;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC =2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.【分析】问题背景:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,即可得出结论:EF=AE+CF;探究延伸1:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;探究延伸2:延长DC到H,使得CH=AE,连接BH,先证明△BCH≌△BAE,即可得到BE=HB,∠ABE=∠HBC,再证明△HBF≌△EBF,即可得出EF=HF=HC+CF =AE+CF;实际应用:连接EF,延长BF交AE的延长线于G,根据题意可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.再根据探究延伸2的结论:EF=AE+BF,即可得到两舰艇之间的距离.解:问题背景:如图1,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG ≌△BFE,可得出结论:EF=AE+CF;故答案为:EF=AE+CF;探究延伸1:如图2,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG ≌△BFE,可得出结论:EF=AE+CF;探究延伸2:上述结论仍然成立,即EF=AE+CF,理由:如图3,延长DC到H,使得CH=AE,连接BH,∵∠BAD+∠BCD=180°,∠BCH+∠BCD=180°,∴∠BCH=∠BAE,∵BA=BC,CH=AE,∴△BCH≌△BAE(SAS),∴BE=HB,∠ABE=∠HBC,∴∠HBE=∠ABC,又∵∠ABC=2∠MBN,∴∠EBF=∠HBF,∵BF=BF,∴△HBF≌△EBF(SAS),∴EF=HF=HC+CF=AE+CF;实际应用:如图4,连接EF,延长BF交AE的延长线于G,因为舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B 处,所以∠AOB=140°,因为指挥中心观测两舰艇视线之间的夹角为70°,所以∠EOF=70°,所以∠AOB=2∠EOF.依题意得,OA=OB,∠A=60°,∠B=120°,所以∠A+∠B=180°,因此本题的实际的应用可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.根据探究延伸2的结论可得:EF=AE+BF,根据题意得,AE=75×1.2=90(海里),BF=100×1.2=120(海里),所以EF=90+120=210(海里).答:此时两舰艇之间的距离为210海里.26.已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b的值.【分析】(1)将A点坐标代入直线与抛物线的解析式中求得k的值和b与c的关系式,再将抛物线的顶点坐标代入求得的直线的解析式,便可求得b、c的值,进而求得E点的坐标;(2)先根据抛物线的解析式求得C、Q点坐标,用m表示△EQM的面积,再根据S△EQM =S△ACE列出m的方程进行解答;(3)取点N(0,1),则∠OAN=45°,过D作直线AN的垂线,垂足为G,DG与x 轴相交于点M,此时AM+2DM=2DG的值最小,由2DG=列出关于b的方程求解便可.解:(1)∵直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A (﹣1,0),∴﹣k﹣2=0,1+b+c=0,∴k=﹣2,c=﹣b﹣1,∴直线y=kx﹣2的解析式为y=﹣2x﹣2,∵抛物线y=x2﹣bx+c的顶点坐标为E(,),∴E(,),∵直线y=﹣2x﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E,∴=﹣2×﹣2,解得,b=2,或B=﹣2(舍),当b=2时,c=﹣3,∴E(1,﹣4),故k=﹣2,b=2,c=﹣3,E(1,﹣4);(2)由(1)知,直线的解析式为y=﹣2x﹣2,抛物线的解析式为y=x2﹣2x﹣3,∴C(0,﹣3),Q(2,﹣3),如图1,设直线y=﹣2x﹣2与y轴交点为N,则N(0,﹣2),∴CN=1,∴,∴,设直线EQ与x轴的交点为D,显然点M不能与点D重合,设直线EQ的解析式为y=dx+n(d≠0),则,解得,,∴直线EQ的解析式为y=x﹣5,∴D(5,0),∴=,解得,m=4,或m=6;(3)∵点D(b+,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴,可知点D(b+,)在第四象限,且在直线x=b的右侧,∵,∴可取点N(0,1),则∠OAN=45°,如图2,过D作直线AN的垂线,垂足为G,DG与x轴相交于点M,∵∠GAM=90°﹣∠OAN=45°,得AM=GM,则此时点M满足题意,过D作DH⊥x轴于点H,则点H(b+,0),在Rt△MDH中,可知∠DMH=∠MDH=45°,∴DH=MH,DM=MH,∵点M(m,0),∴0=()=(b+)﹣m,解得,m=,∵,∴,解得,Bb=3,此时,m=,符合题意,∴b=3.。

2023年湖南省湘西初中学业水平数学试卷

2023年湖南省湘西初中学业水平数学试卷

2023年湖南省湘西初中学业水平数学试卷一、单选题1. 的相反数是()A.B.2023C.D.2. 今年五一假期,湘西州接待游客160.3万人次,实现旅游收入1673000000元,旅游复苏形势喜人将1673000000用科学计数法表示为()A.B.C.D.3. 下列运算正确的是()A.B.C.D.4. 已知直线,将一块直角三角板按如图所示的方式摆放.若,则的度数是()A.B.C.D.5. 某校九年级科技创新兴趣小组的7个成员体重(单位:)如下:38,42,35,40,36,42,75,则这组数据的众数和中位数分别是()A.42,36B.42,42C.40,40D.42,406. 如图是由6个完全相同的小正方体搭成的几何体,其箭头所指方向为主视方向,则这个几何体的俯视图...是()A.B.C.D.7. 不等式组的解集在数轴上表示正确的是()A.B.C.D.8. 一个七边形的内角和是()A.B.C.D.9. 如图,点A在函数的图象上,点B在函数的图象上,且轴,轴于点C,则四边形的面积为()A.1B.2C.3D.410. 如图,为的直径,点在的延长线上,,与相切,切点分别为C,D.若,则等于()A.B.C.D.二、填空题11. 在实数3,,,2中,最小的实数是 __________ .12. 若二次根式在实数范围内有意义,则x的取值范围是__________ .13. 分解因式: __________14. 在一个不透明的袋中装有5个白球和2个红球,它们除颜色不同外,其余均相同现从袋中随机摸出一个小球,则摸到红球的概率是 __________ .15. 在平面直角坐标系中,已知点与点关于轴对称,则__________ .16. 已知一元二次方程的一个根为.则另一个根__________ .17. 如图,在矩形中,点E在边上,点F是AE的中点,,则的长为 __________ .18. 如图,是等边三角形的外接圆,其半径为4.过点B作于点E,点P为线段上一动点(点P不与B,E重合),则的最小值为 __________ .三、解答题19. 计算:.20. 先化简,再求值:,其中.21. 某校计划开展以弘扬“文化自信”为主题的系列才艺展示活动,要求每位学生从绘画、合唱、朗诵、书法中自主选择其中一项参加活动为此,学校从全体学生中随机抽取了部分学生进行同卷调查,根据统计的数据,绘制了如下图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中所提供的信息,完成下列问题:(1)该校此次调查共抽取了__________名学生;(2)在扇形统计图中,“书法”部分所对应的圆心角的度数为__________.(3)请补全条形统计图(画图后标注相应的数据);(4)若该校共有2000名学生,请根据此次调查结果,估计该校参加朗诵的学生人数.22. 如图,四边形是平行四边形,,且分别交对角线于点M,N,连接.(1)求证:;(2)若.求证:四边形是菱形.23. 如图(1)所示,小明家、食堂、图书馆在同一条直线上食堂离小明家,图书馆离小明家.小明从家出发,匀速步行了去食堂吃早餐;吃完早餐后接着匀速步行了去图书馆读报;读完报以后接着匀速步行了回到家图()反映了这个过程中,小明离家的距离与时间之间的对应关系.请根据相关信息解答下列问题:(1)填空:①食堂离图书馆的距离为__________ ;②小明从图书馆回家的平均速度是__________ ;③小明读报所用的时间为__________ .④小明离开家的距离为时,小明离开家的时间为__________ .(2)当时,请直接写出关于的函数解析式.24. 2023年“地摊经济”成为社会关注的热门话题,“地摊经济”有着启动资金少、管理成本低等优点,特别是在受到疫情冲击后的经济恢复期,“地摊经济”更是成为许多创业者的首选,甲经营了某种品牌小电器生意,采购2台A种品牌小电器和3台B种品牌小电器,共需要90元;采购3台A种品牌小电器和1台B种品牌小电器,共需要65元销售一台A种品牌小电器获利3元,销售一台B种品牌小电器获利4元.(1)求购买1台A种品牌小电器和1台B种品牌小电器各需要多少元?(2)甲用不小于2750元,但不超过2850元的资金一次性购进A、B两种品牌小电器共150台,求购进A种品牌小电器数量的取值范围.(3)在(2)的条件下,所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,请说明甲合理的采购方案有哪些?并计算哪种采购方案获得的利润最大,最大利润是多少?25. 如图,点D,E在以为直径的上,的平分线交于点B,连接,,,过点E作,垂足为H,交于点F.(1)求证:;(2)若,求的长.26. 如图(1),二次函数的图像与轴交于,两点,与轴交于点.(1)求二次函数的解析式和的值.(2)在二次函数位于轴上方的图像上是否存在点,使?若存在,请求出点的坐标;若不存在,请说明理由.(3)如图(2),作点关于原点的对称点,连接,作以为直径的圆.点是圆在轴上方圆弧上的动点(点不与圆弧的端点重合,但与圆弧的另一个端点可以重合),平移线段,使点移动到点,线段的对应线段为,连接,,的延长线交直线于点,求的值.。

湖南省湘西土家族苗族自治州2020版九年级上学期化学期中考试试卷(I)卷(练习)

湖南省湘西土家族苗族自治州2020版九年级上学期化学期中考试试卷(I)卷(练习)

湖南省湘西土家族苗族自治州2020版九年级上学期化学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018九上·沈河期末) 下列关于金属的说法正确的是()A . 食盐等物质可以防止铁生锈B . 通过高炉炼得的铁为生铁,是一种合金C . 金属材料中一定不含“非金属元素”D . 合金的熔点一定低于组成它的成分金属2. (2分)下列实验操作错误的是()A . 给液体加热B . 倾倒液体C . 蒸发食盐水D . 稀释浓硫酸3. (2分) (2018九上·兰州期末) 下列对某一主题知识归纳有错误的一组是()A . 物质的构成B . 性质与用途C . 化学之最D . 化学与生活4. (2分) (2018八上·右玉期中) 下列描述中,前者是物理变化后者是化学变化的是()A . 酒精能挥发煤能燃烧B . 湿衣服晾干葡萄酿酒C . 水容易结冰花香四溢D . 铁制品生锈蜡炬成灰5. (2分) (2016九上·射阳期中) 下列物质的用途与其依据的性质不相符合的是()A . 用于冶金工业﹣﹣碳能够燃烧B . 干冰用于人工降雨﹣﹣干冰易升华同时吸收大量的热C . 金刚石用于裁玻璃﹣﹣金刚石很硬D . 石墨用于制铅笔芯﹣﹣石墨很软6. (2分) (2015九上·西安期中) 成人体内约含钙1.2kg,其中99%存在于骨骼和牙齿中.在元素周期表中,钙元素的信息如图所示.下列说法不正确的是()A . 钙原子的核外电子数为20B . 钙元素属于金属元素C . 钙元素在地壳中的含量为40.08%D . 钙元素的原子序数为207. (2分)对有关实验现象的描述正确的是()A . 碳在氧气中燃烧放出白烟B . 干冰在空气中升华周围出现白雾C . 铁丝在氧气中燃烧生成四氧化三铁D . 硫在氧气中燃烧发出淡蓝色的火焰8. (2分)下列图像能正确反映所对应叙述关系的是()A . 向pH=3的溶液中不断加水B . 向锌粒中逐渐加入稀硫酸C . 向稀硫酸和硫酸铜混合液中滴加氢氧化钠溶液D . 煅烧一定质量的石灰石9. (2分) (2016九上·南市月考) 下列物质的主要成分属于氧化物的是()A . 钻石B . 水晶(SiO2)C . 食盐(NaCl)D . 钟乳石(CaCO3)10. (2分)下列措施有不利于改善环境质量的是()A . 将废电池深埋,以减少重金属的污染B . 向煤中加入石灰石作为脱硫剂,可以减少SO2的排放C . 利用太阳能、潮汐能、风力发电,以获取清洁能源D . 利用二氧化碳等原料合成聚碳酸酯类可降解塑料11. (2分) (2019九下·阜阳月考) 如图是a、b、c三种物质在水中的溶解度曲线(三种物质混合后溶解度不干扰,且它们不发生反应),下列有关叙述不正确的是()A . 20℃时,b的溶解度大于aB . 配制c物质的浓溶液时,必须在低温时进行C . 将50℃时10%a的不饱和溶液降温到20℃,无晶体析出D . 将50℃时的a和b的饱和溶液降温至20℃,可初步提纯a12. (2分)一种无色气体X与炽热的木炭反应,得到另一种无色气体Y,Y在加热条件下与一种黑色固体反应又得到X和一种亮红色固体,则气体X和Y是()A . X是CO,Y是CO2B . X是CO2 , Y是COC . X是O2 , Y是CO2D . X是O2 , Y是CO13. (2分)(2018·成都模拟) 甲、乙两种不含结晶水的固体物质的溶解度曲线如图,下列说法中错误的是()A . t1℃时,50g甲的饱和溶液中溶解了10g的甲B . 将t2℃甲、乙两种物质的饱和溶液升温至t3℃(溶剂的量不变),两种溶液中溶质的质量分数相等C . t2℃时,要使接近饱和的乙溶液达到饱和状态,可采用降温的方法D . 分别将t2℃甲、乙两种物质的溶液降温至t1℃,可能都有晶体析出14. (2分)下列实验方法无法达到实验目的是()A . 用肥皂水鉴别硬水和软水B . 用燃着的木条鉴别氮气与二氧化碳C . 用向上排空气法收集氧气和二氧化碳D . 用紫色石蕊试液鉴别稀硫酸和蒸馏水15. (2分)(2011·南京) 某合金6g与足量的稀硫酸充分反应后,如果生成0.2g氢气,该合金中的元素可能是()A . Zn和FeB . Cu和AuC . Zn和CuD . Mg和Al二、填空题 (共3题;共13分)16. (5分) (2016九下·肥城期中) 如图所示是自然界中常见的两个变化过程.请据图并结合你学过的知识,回答下列问题:(1)从物质组成的角度看,葡萄糖和纤维素均属于________(填“无机物”或“有机物”).(2)图中方框所示变化过程为________,从物质转化的角度看,该变化过程属于________(填“物理”或“化学”)变化.(3)从能量转化的角度看,上述过程中能量转化的方式是________;(4)在图中两个过程中实现了自然界中的重要循环,参与循环的元素有________.17. (2分)(2018·信阳模拟) 某反应的微观示意图如图所示:(1)该反应中化合价没变的元素是________。

湖南省娄底地区2020版九年级上学期数学期中考试试卷A卷

湖南省娄底地区2020版九年级上学期数学期中考试试卷A卷

湖南省娄底地区2020版九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共12分)1. (1分)若关于的一元二次方程的常数项为0,则的值等于()A . 1B . 2C . 1或2D . 02. (1分)下列数字中既是轴对称图形又是中心对称图形的有几个()A . 1个B . 2个C . 3个D . 4个3. (1分)下列方程是一元二次方程的是()A . x2﹣y=1B . x2+2x﹣3=0C . x2+=3D . x﹣5y=64. (1分)(2020·大通模拟) 如图,正比例函数与反比例函数的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A . (1,2)B . (-2,1)C . (-1,-2)D . (-2,-1)5. (1分)在平面直角坐标系xOy中,将抛物线y=2x2 先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A . y=2(x-1)2-3B . y=2(x-1)2+3C . y=2(x+1)2-3D . y=2(x+1)2+36. (1分) (2016九上·简阳期末) 已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是()A . ﹣3B . ﹣2C . ﹣1D . 37. (1分) (2016九上·三亚期中) 抛物线y=x2+2x﹣2的图象的顶点坐标是()A . (2,﹣2)B . (1,﹣2)C . (1,﹣3)D . (﹣1,﹣3)8. (1分)已知抛物线经过点(0,4),(1,﹣1),(2,4),那么它的对称轴是直线()A . x=﹣1B . x=1C . x=3D . x=﹣39. (1分)(2016·深圳模拟) 如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF 与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG= CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A . 只有①②B . 只有①③C . 只有②③D . ①②③10. (1分)(2017·杭州) 设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A . 若m>1,则(m﹣1)a+b>0B . 若m>1,则(m﹣1)a+b<0C . 若m<1,则(m﹣1)a+b>0D . 若m<1,则(m﹣1)a+b<011. (1分) (2018八上·柯桥期中) 三角形两边长为2,5,则第三边的长不能是()A . 4B . 5C . 6D . 712. (1分)(2017·平邑模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分)(2017·靖远模拟) 一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是________.14. (1分) (2020八下·哈尔滨月考) 若无实数解,则m的取值范围是________.15. (1分) (2018九上·武昌期中) 若函数的图象与轴有且只有一个交点,则的值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 17 页 湖南省湘西土家族苗族自治州2020版九年级上学期数学期中考试试卷A卷 姓名:________ 班级:________ 成绩:________ 一、 单选题 (共10题;共20分)

1. (2分) 已知函数①y=5x-4,②t=x2-6x,③y=2x3-8x2+3,④y=x2-1,⑤y=−+2,其中二次函数的个数为( ) A . 1 B . 2 C . 3 D . 4 2. (2分) (2018八下·宝安期末) 下列图形中,既是轴对称图形又是中心对称图形的是( )

A . B . C . D . 3. (2分) (2016九上·武汉期中) 二次函数y=(x﹣1)2﹣2的顶点坐标是( ) A . (﹣1,﹣2) B . (﹣1,2) C . (1,﹣2) D . (1,2) 4. (2分) (2020九上·宜兴期中) 如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值是( ) 第 2 页 共 17 页

A . 1.4 B . C . D . 2.6 5. (2分) (2018九上·柳州期末) 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( )

A . B . C . D . 6. (2分) (2019·宝鸡模拟) 如图,AB是⊙O的直径,∠BOD=120°,点C为 的中点,AC交OD于点E,OB=2,则AE的长为( )

A . B . C . 2 D . 2 第 3 页 共 17 页

7. (2分) (2020·嘉兴·舟山) 如图,在等腰△ABC中, AB=AC=2 ,BC=8, 按下列步骤作图: ①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于 EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于 AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点0;③以点为圆心,线段OA长为半径作圆。则⊙O的半径为( )

A . 2 B . 10 C . 4 D . 5 8. (2分) 如图,⊙O的半径为1,A,B,C是圆周上的三点,∠BAC=36°,则劣弧BC的长是( )

A . B . C . D . 9. (2分) 将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A . y=(x-1)2+2 B . y=(x+1)2+2 C . y=(x-1)2-2 D . y=(x+1)2-2 10. (2分) 若二次函数的图象经过点P(-3,2),则该图象必经过点( ) A . (2,3) B . (-2,-3) C . (3,2) 第 4 页 共 17 页

D . (-3,-2) 二、 填空题 (共6题;共7分) 11. (1分) 请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x轴的下方,那么这个二次函数的解析式可以为________ . 12. (1分) (2018·和平模拟) 如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=________.

13. (1分) (2018七下·揭西期末) 某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为________. 14. (1分) (2020·呼伦贝尔模拟) 如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作一个圆锥的侧面和底面,则扇形的面积为________.

15. (1分) 如图,点A,B,C,D分别在⊙O上, ,若∠AOB=40°,则∠ADC的大小是________度.

16. (2分) (2019九上·武汉月考) 抛物线y=(m2-2)x2-4mx+n的对称轴是x=2,且它的最高点在直线y= x+2上,则m=________,n=________. 三、 解答题 (共7题;共56分) 17. (8分) (2020九上·成都月考) 为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其他活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图. 第 5 页 共 17 页

请你根据统计图解答下列问题: (1) 在这次调查中一共抽查了________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为________,喜欢“戏曲”活动项目的人数是________人; (2) 若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率. 18. (5分) (2020九上·舒城月考) 已知二次函数的顶点坐标为(2,4),且其图像与x轴的交点在正方向3个单位处,求此二次函数的解析式. 19. (5分) 一个直角三角形的两条直角边的和是17cm,面积是30cm2 , 求两条直角边的长. 20. (15分) (2018九上·大庆期末) 如图,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.

(1) 求证:AC⊥OD; (2) 求OD的长; (3) 若2sinA﹣1=0,求⊙O的直径. 21. (5分) (2020九下·黄石月考) 如图,弦BC经过圆心D,AD⊥BC,AC交⊙D于E,AD交 ⊙D于M,BE交AD于N.求证:△BND∽△ABD.

22. (5分) 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分 第 6 页 共 17 页

钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间. (1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式; (2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?

23. (13分) (2016九上·重庆期中) 经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1) 不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在下列横线上: 销售单价x(元)________; 销售量y(件)________; 销售玩具获得利润w(元)________; (2) 在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元. (3) 在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少? 第 7 页 共 17 页

参考答案 一、 单选题 (共10题;共20分) 答案:1-1、 考点:

解析: 答案:2-1、 考点:

解析: 答案:3-1、 考点:

解析: 答案:4-1、 考点: 解析: 第 8 页 共 17 页

答案:5-1、 考点: 解析:

答案:6-1、 考点: 第 9 页 共 17 页

解析: 答案:7-1、 考点: 解析: 第 10 页 共 17 页 答案:8-1、 考点:

解析: 答案:9-1、

考点: 解析: 第 11 页 共 17 页

答案:10-1、 考点:

解析: 二、 填空题 (共6题;共7分)

答案:11-1、 考点:

解析: 答案:12-1、 考点: 解析: 第 12 页 共 17 页

答案:13-1、 考点:

解析: 答案:14-1、 考点: 解析: 第 13 页 共 17 页

答案:15-1、 考点:

解析: 答案:16-1、 考点: 解析:

三、 解答题 (共7题;共56分) 答案:17-1、

答案:17-2、 第 14 页 共 17 页

考点: 解析:

答案:18-1、 考点:

解析:

答案:19-1、 考点: 解析:

答案:20-1、 第 15 页 共 17 页

答案:20-2、 答案:20-3、 考点:

解析:

答案:21-1、 考点:

解析: 答案:22-1、

相关文档
最新文档