算法设计与分析实验三
算法设计与分析实验报告

实验报告题目实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
二、实验内容设计一个递归和分治算法,找出数组的最大元素,找出x在数组A中出现的次数。
三、实验要求(1)用分治法求解…问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1.设计一个递归算法,找出数组的最大元素。
2.设计一个分治算法,找出x在数组A中出现的次数。
3.写一个主函数,调用上述算法。
五、实验结果分析(分析时空复杂性,设计测试用例及测试结果)时间复杂性:最好情况下,O(n)最坏情况下:O(nlog(n)空间复杂性分析:O(n)六、实验体会通过写递归与分治策略实验,更加清楚的知道它的运行机理,分治法解题的一般步骤:(1)分解,将要解决的问题划分成若干规模较小的同类问题;(2)求解,当子问题划分得足够小时,用较简单的方法解决;(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
做实验重在动手动脑,还是要多写写实验,才是硬道理。
七、附录:(源代码)#include"stdio.h"#define ElemType intint count(ElemType a[],int i,int j,ElemType x){int k=0,mid; //k用来计数,记录数组中x出现的次数if(i==j){if(a[i]==x) k++;return k;}else{mid=(i+j)/2;k+=count(a,i,mid,x);k+=count(a,mid+1,j,x);}return k;}ElemType Maxitem(ElemType a[],int n){ElemType max=a[n-1],j;if(n==1){max=a[n-1];return max;}else{j=Maxitem(a,n-1);if(j>max) max=j;return max;}}void main(void){ElemType a[]={1,5,2,7,3,7,4,8,9,5,4,544,2,4,123};ElemType b;ElemType x;int n;b=Maxitem(a,15);printf("数组的最大元素为%d\n",b);printf("输入想要计数的数组元素:\n");scanf("%d",&x);n=count(a,0,14,x);printf("%d在数组中出现的次数为%d次\n",x,n);}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
算法设计与分析作业三

算法设计与分析实验报告学院信息科学与技术学院专业班级软件工程3班学号20122668姓名王建君指导教师尹治本2014年10月实验四 矩阵相乘次序一、问题提出用动态规划算法解矩阵连乘问题。
给定n 个矩阵{A 1,A 2,…,A n },其中A i 与A i+1是可乘的,i=1,2,…,n-1。
要算出这n 个矩阵的连乘积A 1A 2…A n 。
由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。
这种计算次序可以用加括号的方式来确定。
若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A 是完全加括号的,则A 可表示为2个完全加括号的矩阵连乘积B 和C 的乘积并加括号,即A=(BC)。
例如,矩阵连乘积A 1A 2A 3A 4有5种不同的完全加括号的方式:(A 1(A 2(A 3A 4))),(A 1((A 2A 3)A 4)),((A 1A 2)(A 3A 4)),((A 1(A 2A 3))A 4),(((A 1A 2)A 3)A 4)。
每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。
若A 是一个p ×q 矩阵,B 是一个q ×r 矩阵,则计算其乘积C=AB 的标准算法中,需要进行pqr 次数乘。
(3)为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A 1,A 2,A 3}连乘的情况。
设这三个矩阵的维数分别为10×100,100×5,5×50。
加括号的方式只有两种:((A 1A 2)A 3),(A 1(A 2A 3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。
算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。
算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。
本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。
二、算法分析算法分析是评估算法性能的过程。
在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。
常用的算法分析方法包括时间复杂度和空间复杂度。
1. 时间复杂度时间复杂度衡量了算法执行所需的时间。
通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。
常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。
2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。
通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。
常见的空间复杂度有O(1)、O(n)和O(n^2)等。
其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。
三、算法设计算法设计是构思和实现算法的过程。
好的算法设计能够提高算法的效率和可靠性。
常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。
1. 贪心算法贪心算法是一种简单而高效的算法设计方法。
它通过每一步选择局部最优解,最终得到全局最优解。
贪心算法的时间复杂度通常较低,但不能保证得到最优解。
2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。
它通过保存子问题的解,避免重复计算,提高算法的效率。
动态规划适用于具有重叠子问题和最优子结构的问题。
3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。
算法设计与分析实验报告

算法设计与分析实验报告算法设计与分析实验报告引言:算法设计与分析是计算机科学中的重要课程,它旨在培养学生解决实际问题的能力。
本次实验旨在通过设计和分析不同类型的算法,加深对算法的理解,并探索其在实际应用中的效果。
一、实验背景算法是解决问题的步骤和方法的描述,是计算机程序的核心。
在本次实验中,我们将重点研究几种经典的算法,包括贪心算法、动态规划算法和分治算法。
通过对这些算法的设计和分析,我们可以更好地理解它们的原理和应用场景。
二、贪心算法贪心算法是一种基于局部最优选择的算法,它每一步都选择当前状态下的最优解,最终得到全局最优解。
在实验中,我们以背包问题为例,通过贪心算法求解背包能够装下的最大价值物品。
我们首先将物品按照单位重量的价值从大到小排序,然后依次将能够装入背包的物品放入,直到背包无法再装下物品为止。
三、动态规划算法动态规划算法是一种通过将问题分解为子问题,并记录子问题的解来求解整体问题的算法。
在实验中,我们以斐波那契数列为例,通过动态规划算法计算斐波那契数列的第n项。
我们定义一个数组来保存已经计算过的斐波那契数列的值,然后通过递推公式将前两项的值相加得到后一项的值,最终得到第n项的值。
四、分治算法分治算法是一种将问题分解为更小的子问题,并通过递归求解子问题的算法。
在实验中,我们以归并排序为例,通过分治算法对一个无序数组进行排序。
我们首先将数组分成两个子数组,然后对子数组进行递归排序,最后将两个有序的子数组合并成一个有序的数组。
五、实验结果与分析通过对以上三种算法的设计和分析,我们得到了以下实验结果。
在贪心算法中,我们发现该算法能够在有限的时间内得到一个近似最优解,但并不能保证一定得到全局最优解。
在动态规划算法中,我们发现该算法能够通过记忆化搜索的方式得到准确的结果,但在问题规模较大时,其时间复杂度较高。
在分治算法中,我们发现该算法能够将问题分解为更小的子问题,并通过递归求解子问题,最终得到整体问题的解。
西北工业大学算法设计实验三

实验三:遗传算法VS回溯法一、问题分析回溯法可以处理货郎担问题,遗传算法也可以处理货郎担问题,回溯法和遗传算法哪个算法处理货郎担问题效率更高呢?在相同计算时间内,哪个算法得到的解更好呢?实现遗传算法,通过随机产生10个不同规模的算例(城市数量分别为10,20,40,80,100,120,160,180,200,500,或者其它规模),比较上次实验实现的回溯法和遗传算法。
二、算法基本思想1、回溯法从初始状态出发,搜索其所能到达的所有“状态”,当一条路走到尽头,再后退一步或若干步,从另外一种状态出发,继续搜索,直到所有的路径都搜索过。
这种不断前进、不断回溯寻找解的方法叫回溯法。
回溯法通常将问题解空间组织成“树”结构,采用系统的方法搜索解空间树,从而得到问题解。
搜索策略:深度优先为主,也可以采用广度优先、函数优先、广度深度结合等。
避免无效搜索策略:约束函数:在扩展结点处剪去不满足约束条件的子树界限函数:在扩展结点处剪去得不到最优解的子树2、遗传算法首先针对遗传算法要有种群,个体,适应度函数,选择,交叉,变异。
对于种群是由若干个个体组成,其中个体的编码可以用走过的每一个城市的路径表示。
适应度函数用一个路径的代价的倒数表示。
使用轮盘赌的方式进行选择下一代个体。
其中轮盘赌的方式可以转换为每一个个体的适应度与种群的适应度的比例进行比较。
先随机选择两个个体,根据交叉的概率进行单点交叉,将较优的交叉结果保留下来。
接着在种群中选择一个个体,根据变异概率来判断是否变异,将该个体保留,根据生成的子代的个数重复上述的运算。
根据指定的代数,重复上述的运算。
三、算法设计1、回溯法TSP问题的目的是得到一条路径,即一个解向量(X1,X2...Xn),为排列树问题。
对所有城市进行编号后,按大小顺序存储于数组path中,构造一个交换函数swap();对数组path进行遍历,判断当前城市与目标城市是否连通,若连通,通过swap函数对当前节点和目标城市进行交换,即树的节点拓展。
算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
常见算法设计实验报告(3篇)

第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三分治算法(2)
一、实验目的与要求
1、熟悉合并排序算法(掌握分治算法)
二、实验题
1、问题陈述:
对所给元素存储于数组中和存储于链表中两中情况,写出自然合并排序算
法.
2、解题思路:
将待排序元素分成大小大相同的两个集合,分别对两个集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合.自然排序是通过一次扫描待排元素中自然排好序的子数组,再进行子数组的合并排序.
三、实验步骤
程序代码:
#include <iostream.h>
const int N=100;//定义不可变常量N
//各个函数的声明
void ScanTarget(int target[], int n, int head[], int tail[]);
int CountHead(int head[]);
void MergeSort(int a[], int head[], int tail[], int m);
void MergePass(int x[], int y[], int s, int a[], int b[], int m);
void Merge(int c[], int d[], int l, int m, int r);
//主函数的定义
void main()
{
char a;
do
{
int target[N],head[N],tail[N];
int i=0,n,m;
for(; i<N; i++)
{
head[i]=-1;
tail[i]=-1;
}
cout<<"请输入需要排序的数列的总数:"<<endl;
cin>>n;
cout<<"请输入需要排序的数列:" <<endl;
for(i=0; i<n; i++)
cin>>target[i];
ScanTarget(target,n,head,tail);
m=CountHead(head);//调用求长度的函数
MergeSort(target,head,tail,m);//调用归并排序函数
cout<<"排序后:"<<endl;
for(i=0; i<n; i++)
cout<<target[i]<<" ";
cout<<endl;
cout<<"是否继续(y/n):"<<endl;
cin>>a;
}
while(a!='n' && a!='N');
}
void ScanTarget(int target[], int n, int head[], int tail[])//定义扫描待排数组的函数;{
int i,j=0,k=0;
head[k]=0;
k++;
for(i=1;i<n;i++)
{
if(target[i-1]>target[i])
{
tail[j++]=i-1;
head[k++]=i;
}
}
tail[j]=n-1;
}
int CountHead(int head[])//定义求长度的函数;
{
int i(0);
while(head[i]!=-1)
{
i++;
}
return i;//返回长度值
}
void MergeSort(int a[], int head[], int tail[], int m)//定义归并排序算法{
int b[N];
int s=1;
while(s<m)
{
MergePass(a,b,s,head,tail,m);
s+=s;
MergePass(b,a,s,head,tail,m);
s+=s;
}
}
void MergePass(int x[], int y[], int s, int a[], int b[], int m)//合并输出
{
int i=0;
while(i <= m-2*s)
{
Merge(x,y,a[i],b[i+s-1],b[i+2*s-1]);
i=i+2*s;
}
if(i+s < m)
{
Merge(x,y,a[i],b[i+s-1],b[m-1]);
}
else
{
for(int j=i; j<m; j++)
for(int k=a[j]; k<=b[j]; k++)
y[k]=x[k];
}
}
void Merge(int c[], int d[], int l, int m, int r)//合并已经排序的两个数组,即归并操作{
int i,j,k;
i=l;
j=m+1;
k=l;
while((i<=m) && (j<=r))
{
if( c[i] <= c[j] )
d[k++]=c[i++];
else d[k++]=c[j++];
}
if( i>m )
{
for(int q=j; q<=r; q++)
d[k++]=c[q];
}
else
{
for(int q=i; q<=m; q++)
d[k++]=c[q];
}
}
程序运行结果如下所示:
请输入需要排序的数列的总数:
5
请输入需要排序的数列:
13 78 34 5 66
排序后:
5 13 34 6
6 78
是否继续(y/n):
n
Press any key to continue。