第一章第二节 算法和算法的描述
算法及算法的描述

• 有穷性:算法中的步骤应是有限的。
• 有零个或多个输入:所谓输入是指在执行算法时,需要从外
界获取必要的信息
• 有一个或多个输出:算法的目的是为了求解,“解”就是输
出
算法的表示
• 自然语言 有序地用简洁的语言加数学符号来描述。 • 流程图 用一些图框、流程线以及文字说明来表示算法。 • 计算机语言 计算机语言即用计算机编写的能被计算机 执行的程序。(程序设计语言如QBASIC、VB、PASCAL、 C、 C++、Java等。)
1、自然语言描述算法 【例1】交换两个杯子中的液体。
A
B
C
提问同学,如何处理? 将杯子A中的液体倒给杯子C; 将杯子B中的液体倒给杯子A; 将杯子C中的液体倒给杯子B。
引入一个空杯子
特点:通俗易懂,但文字冗长,容易出现歧义性
流程图
图形符号 符号名称 说明 流线 起始框:一流出线 终止框:一流入线 开始、结束框 表示算法的开始或结束
输入、输出框 框中标明输入、输出的 内容 处理框
判断框
只有一流入线和一流出线 只有一流入线和一流出线
一流入线两流出线(T和F )但同时只能一流出线起作 用
框中标明进行什么处理
框中标明判定条件并在 框外标明判定后的两种 结果的流向 表示从某一框到另一框 的流向 表示算法流向出口或入 口连接点
流线 连接圈
算法及算法的描述
解决问题的三个阶段
• 分析问题 • 寻找解决问题的途径 • 用计算机进行处理
算法的定义
算法是对解题方法的精确而完整的描述,即 解决问题的方法和步骤。
算法的特征
• 确定性:算法中的每一步必须是明确的,不可以有“多义性”
中图版(2019)高中信息技术必修1课件2.2算法的概念及描述

阅读扩展
算法与数字生活
算法与数字生活息息相关,如使用机器人清 理房间,通过智能运动手环进行科学健身,输入 用户口令安全登录账户等,算法都在其中起着重 要的作用。借助高效的算法和优化的程序,我们 可以更加快捷方便地解决越来越多的问题,提高 生活、工作和学习效率。
项目实施
描述项目问题的算法设计 (1)项目活动
结合“编程控灯利出行”项目,在完成“自 助式人行过街红绿灯”的问题分析和功能分解之 后,对各功能进行算法设计,并用流程图的方式 描述出来。 (2)项目检查
设计项目任务实现的算法,并用流程图描述 出对应的算法。
谢谢
2.描述算法
用流程图描述算法
流程图是一种常用的表示算法的图形化工 具。用流程图描述的算法直观易读,问题解决 的步骤清晰简洁,算法结构表达明确,很适合 初学算法的人员使用。
2.描述算法 流程图常用符号及其功能
2.描述算法
算法结构
算法有顺序结构、选择结构和循环结 构三种基本控制结构。
2.描述算法
当条件成立时,反复执 行处理A,一旦条件不成立 就立即结束循环,如图所示。
2.描述算法
在实际问题解决中,经 常会综合使用这三种结构。 例如,“倒计时15s”的算 法可用如图所示的流程图描 述。
2.描述算法
用伪代码描述算法
用伪代码描述算法就是采用一种类 似于程序设计语言的代码来表示算法。 伪代码没有固定的、严格的语法规则, 只要定义合理,没有矛盾即可。
顺序结构
每一个步骤按先后次序被 执行,即执行处理A,然后执 行处理B,如图所示。
2.描述算法
选择结构
选择结构又称分支结构。根 据条件的成立与否,选择执行不 同的分支处理,如图所示。当条 件成立时(用True表示),执行 处理A;当条件不成立时(用 False表示),执行处理B.
算法的概念

gcd(60,24)=gcd(24,60 mod 24)=gcd(24,12) =gcd(12,24 mod 12)=gcd(12,0)=12
下面是该算法的一个更加结构化的描述。
1.1 算法的概念和描述
用于计算 gcd(m,n)的欧几里得算法:
第一步: 如果 n=0,返回 m的值作为结果,同时函数结束;否则,进入第二步。
第二步:m 除以 n,将余数赋给 r。
第三步: 将 n 的值赋给 m,将r 的值赋给 n,返回第一步。
我们也可以使用伪代码来描述这个算法:
算法 Euclid(m,n)
//使用欧几里得算法计算gcd(m,n)
//输入∶两个不全为0的非负整数m,n
//输出∶m,n的最大公约数
while n≠0do
{ r←mmodn
m←n
n←r
} return m
图1.2 欧几里得算法的流程图
上面的伪代码也可以用流程图来加以描述,如图1.2所示。
第一节、水文现象与桥涵水文的研究意义
第一章 算法的概念
↘1 . 1 ↘1 . 2
算法的概念和描述 算法的时间复杂度和空间复杂度
1.1 算法的概念和描述
【1.1பைடு நூலகம்1 算法的概念】
算法是一系列解决问题的清晰指令,也就是对于符合一定规范的输入在有限步骤内求
解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过
程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,
第一章 算法初步全章教案

第一章 算法初步第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解→写出算法.③练习:举例更多的算法例子;→对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1.2.顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.第一课时 1.2.1 输入语句、输出语句和赋值语句教学要求:正确理解输入语句、输出语句、赋值语句的结构. 让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿. 通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想. 教学重点:会用输入语句、输出语句、赋值语句.教学难点:正确理解输入语句、输出语句、赋值语句的作用.教学过程:一、新课导入:1. 提问:学习了哪些算法的表示形式?(自然语言或程序框图描述)算法中的三种基本的逻辑结构?(顺序结构、条件结构和循环结构)2. 导入:我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的. 因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序. 程序设计语言有很多种. 如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB 等.各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输入语句、输出语句、赋值语句. 基本上对应于算法中的顺序结构.二、讲授新课:1. 教学三种语句的格式及功能:①出示例1:编写程序,计算一个学生数学、语文、英语三门课的平均成绩.(分析算法→框图表示→教师给出程序,学生试说说对各语句的理解.)①出示例2:用描点法作函数y=x3+3x2-24x+30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值②出示例3:给一个变量重复赋值. (程序见P16)③出示例4:交换两个变量A和B的值,并输出交换前后的值.(教法:先分析算法→画出框图→编写程序→分析各语句→变式→小结:先写算法,再编程)3. 小结:输入、输出和赋值语句的格式;赋值“=”及表达式;编写简单程序解决数学问题.三、巩固练习:1. 练习:教材P16 1、2题 2. 作业:P16 3、4题.第二课时 1.2.2 条件语句教学要求:正确理解条件语句的概念,并掌握其结构. 会应用条件语句编写程序. 教学重点:条件语句的步骤、结构及功能.教学难点:会编写程序中的条件语句.教学过程:一、复习准备:1. 提问:算法的三种逻辑结构?条件结构的框图模式?2. 提问:输入语句、输出语句和赋值语句的格式与功能?3. 一次招生考试中,测试三门课程,如果三门课程的总成绩在200分及以上,则被录取. 请对解决此问题的算法分析,画出程序框图. (变题:…总成绩在200分以下,则不被录取)二、讲授新课:1. 教学条件语句的格式与功能:①分析:复习题③中的两种条件结构的框图模式?②给出复习题③的程序,试读懂程序,说说新的语句的结构及含义.③条件语句的一般有两种:IF—THEN语句;IF—THEN—ELSE语句. 语句格式及框图如下.分析语句执行流程,并说明:①“条件”是由一个关系表达式或逻辑表达式构成,其一般形式为“<表达式><关系运算符><表达式>”,常用的运算符有“>”(大于)、“<”(小于)、“>=”(大于或等于)、“<=”(小于或等于),“<>”(不等于). 关系表达式的结果可取两个值,以“真”或“假”来表示,“真”表示条件满足,“假”则条件不满足. ②“语句”是由程序语言中所有语句构成的程序段,即可以是语句组. ③条件语句可以嵌套,即条件语句的THEN 或ELSE后面还可以跟条件语句,嵌套时注意内外分层,避免逻辑混乱.2. 教学典型例题:②出示例5:编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根.(算法分析→画程序框图→编写程序→给出系数的一组值,分析框图与程序各步结果)注意:解方程之前,先由判别式的符号判断方程根的情况. 函数SQR()的功能及格式.②讨论:例5程序中为何要用到条件语句?条件语句一般用在什么情况下?答:一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套③练习:编写程序,使得任意输入的2个实数从小到大排列.④出示例6:编写程序,使得任意输入的3个实数从小到大排列.(讨论:先用什么语句?→用具体的数值给a、b、c,分析计算机如何排列这些数?→写出程序→画出框图→说说算法→变式:如果是4个实数呢?3. 小结:条件语句的格式与功能及对应框图. 编程的一般步骤:①算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法. ②画程序框图:依据算法分析,画出程序框图. ③写出程序:根据程序框图中的算法步骤,逐步写出相应的程序语句.三、巩固练习: 1. 练习:教材P22 1、2题.2. 试编写程序进行印刷品邮资的计算. (前100g 0.7元,以后每100g 0.4元)3. 作业:P22 3、4题.第三课时 1.2.3 循环语句教学要求:正确理解循环语句的概念,并掌握其结构. 会应用循环语句编写程序. 教学重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法.教学难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句. 教学过程:一、复习准备:1. 设计一个计算1+2+3+……+10的算法,并画出程序框图.2. 循环结构有哪两种模式?有何区别?相应框图如何表示?答:当型(while 型)和直到型(until 型). 当型循环语句先对条件判断,根据结果决定是否执行循环体,可能一次也不执行循环体,也称为“前测试型”循环;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.二、讲授新课:1. 教学两种循环语句的格式与功能:① 给出复习题①的两种循环语句的程序,试读懂程序,说说新的语句的结构及含义.② 两种循环语句的语句结构及框图如下.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 当使用WHIL 语句时,循环内部应当有改变循环的条件,否则会产生无限循环. 学习时注意两种循环语句的区别.③ 讨论:两种循环语句的区别?当型循环先判断后执行,直到型循环先执行后判断,则:在WHILE 语句中,是当条件满足时执行循环体;在UNTIL 语句中,先执行循环体,再当条件不满足时再执行循环体.2. 教学例题:① 出示例:编写程序,计算1+2+3+……+99+100的值.(分析:实现累加的算法 → 分别用两种循环语句编写 → 变题:计算20以内偶数的积.② 给出下列一段程序,试读懂程序,说说各语句的作用,分析程序的功能. (见教材P24)(读,找疑问 → 说各语句 → 分析功能)③ 练习:用描点法作函数y =x 3+3x 2-24x +30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x =-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. ④ 分析右边所给出程序:当n=10时,结果是多少?程序INPUT “n=”;ni =1 a =0 WHILE i <= n a = a +(i +1)/i i = i+1WENDPRINT “…”;aEND实现功能?3. 小结:① 循环语句的两种不同形式:WHILE 语句和UNTIL 语句(还可补充了For 语句),掌握它们的一般格式.② 在用WHILE 语句和UNTIL 语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法. WHILE 语句中是当条件满足时执行循环体,而UNTIL 语句中是当条件不满足时执行循环体.③ 循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务. 如累加求和,累乘求积等问题中常用到.三、巩固练习: 1. 练习:教材P24 1题.2. 编写程序,实现输出1000以内能被3和5整除的所有整数. (算术运算:5 MOD 3 =2)3. 作业:P24 2、3题.第一课时 1.3.1 算法案例---辗转相除法与更相减损术教学要求:理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析; 基本能根据算法语句与程序框图的知识设计出辗转相除法与更相减损术完整的程序框图并写出它们的算法程序.教学重点:理解辗转相除法与更相减损术求最大公约数的方法.教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言. 教学过程:一、复习准备:1. 回顾算法的三种表述:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句).2. 提问:①小学学过的求两个数最大公约数的方法?(先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.)口算出36和64的最大公约数. ②除了用这种方法外还有没有其它方法?6436128=⨯+,36∴和28的最大公约数就是64和36的最大公约数,反复进行这个步骤,直至842=⨯,得出4即是36和64的最大公约数.二、讲授新课:1. 教学辗转相除法:例1:求两个正数1424和801的最大公约数.分析:可以利用除法将大数化小,然后逐步找出两数的最大公约数. (适用于两数较大时)①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的. 利用辗转相除法求最大公约数的步骤如下:(1)用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2)若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3)若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;……依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数.②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数是否等于0来决定,所以我们可以把它看成一个循环体,它的程序框图如右图:(师生共析,写出辗转相除法完整的程序框图和程序语言)练习:求两个正数8251和2146的最大公约数. (乘法格式、除法格式)2. 教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之.翻译为:(1)任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执行第二步.(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.例2:用更相减损术求91和49的最大公约数.分析:更相减损术是利用减法将大数化小,直到所得数相等时,这个数(等数)就是所求的最大公约数. (反思:辗转相除法与更相减损术是否存在相通的地方) 练习:用更相减损术求72和168的最大公约数.3. 小结:辗转相除法与更相减损术及比较①都是求最大公约数的方法,辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少;②结果上,辗转相除法体现结果是以相除余数为0得到,而更相减损术则以减数与差相等而得到.三、巩固练习:1、练习:教材P35第1题 2、作业:教材P38第1题 第二课时 1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为:5432()254367f x x x x x x =--+-+=,依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式) ④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值. (学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?)⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++. 首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+. ⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩.这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题 2、作业:教材P36第2题 第三课时 1.3.3 算法案例---进位制教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化.教学难点:除k 取余法的理解以及各进位制之间转换的程序框图及其程序的设计.教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f x x x =-+当3x =时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?二、讲授新课:1. 教学进位制的概念:① 进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制. 同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139==② 一般地,任意一个k 进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即1110()1...(0,n n n n k n n n n a a a a a k a a a k a k a ka k a k ----<<≤<=⨯+⨯+⨯+⨯.如:把(2)110011化为十进制数,(2)110011=1⨯25+1⨯24+0⨯23+0⨯22+1⨯21+1⨯20=32+16+2+1=51.把八进制数(8)7348化为十进制数,3210(8)7348783848883816=⨯+⨯+⨯+⨯=.2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数.(学生板书→教师点评→师生共同总结将非十进制转为十进制数的方法) 分析此过程的算法过程,编写过程的程序语言. 见P34②练习:将(5)2341、(3)121转化成十进制数.③例2、把89化为二进制数.分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)上述方法也可以推广为把十进制化为k 进制数的算法,这种算法成为除k 取余法. ④练习:用除k 取余法将89化为四进制数、六进制数.⑤例3、把二进制数(2)11011.101化为十进制数.解:4(211-=⨯. (小数也可利用上述方法化进行不同进位制之间的互化. )变式:化为八进制→方法:进制互化3. 小结:进位制的定义;进位制之间的互化.三、巩固练习:1、练习:教材P35第3题 2、作业:教材P38第3题 第四课时 1.3.4 生活中的算法实例教学要求:通过生活实例进一步了解算法思想.教学重点:生活实例的算法分析.教学难点:算法思想的理解.教学过程:一、复习准备:1. 前面学习了哪几种算法案例?每种算法的作用及操作方法是怎样的?2. 算法思想在我们的生活中无处不在,如何利用我们所学习的知识解决生活中的实际问题?二、讲授新课:1. 霍奇森算法:提问:同学们经常会面对一个共同的问题,就是有时有太多的事情要做. 例如,你可能要面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你该怎么办?(霍奇森算法可以。
算法和算法的描述

优点:书写方便,格式紧凑,易于理解,便于向计算机 程序设计语言过度。 用伪代码描述算法
缺点:由于语言的种类繁多,伪代码的语句不容易规范。
三、算法在解决问题中的地位和作用
探究:运行这两个程序,比较它们的效率,把 你观察到的现象填在表1-6中。
同学甲的算法: Private Sub Command1_Click() m = 9147485 n = 5147480 r = m Mod n Do While r <> 0 m=n n=r r = m Mod n Loop Print "最大公约数="; n End Sub 同学乙的算法: Private Sub Command1_Click() m = 9147485 n = 5147480 i=m Do While m Mod i <> 0 Or n Mod i <> 0 i=i-1 Loop Print "最大公约数="; i End Sub
二、算法的描述
2、用流程图描述算法
例:求200-500能被5整除的所有正整数。
开始 I=200 I能被5整除 否 I=I+1 是 是 输出I的值
I<=500 否 结束
二、算法的描述
2、用流程图描述算法
优点:描述清晰简洁,不依赖计算机和计算机程序设计语言。
用流程图描述算法
缺点:画起来费事,难以阅读,难以修改。
一、算法
2、算法的特征
(1)输入。一个算法有零个或多个输入。 零个输入的例子: Private sub command1_click() a=3:b=4 Print a*b End sub (2)确定性。算法的每一个步骤必须要确切地定义。 例1:这个人好说话。
计算机二级理论知识精华版

第一章数据结构与算法第一节算法一、算法的基本概念所谓算法是指解题方案的准确而完整的描述。
1、算法的基本特征:(1)可行性(2)确定性(3)有穷性(4)拥有足够的情报2、算法的基本要素(1)算法中对数据的运算和操作算术运算,逻辑运算,关系运算,数据传输(2)算法的控制结构:算法中各操作之间的执行顺序称为算法的控制结构。
一个算法可以用顺序、选择、循环三种基本控制结构组合而成。
2、算法设计的基本方法(1)列举法(2)归纳法(3)递推(4)递归(5)减半递推技术二、算法复杂度1、算法的时间复杂度:指执行算法所需要的计算工作量。
用算法在执行过程中所需基本运算的次数来衡量算法的工作量。
方法:平均性态,最坏情况复杂性2、算法的空间复杂度:指执行这个算法所需的内存空间。
第二节数据结构的基本概念一、什么是数据结构数据结构是指相互有关联的数据元素的集合。
如:(1)春、夏、秋、冬(2)父亲、儿子、女儿(1)数据元素有共同的特征(2)各个元素之间存在着某种关系(联系)。
用前后件关系来描述。
如:夏是秋的前件,秋是夏的后件。
父亲是儿子和女儿的前件儿子和女儿都是父亲的后件1、数据的逻辑结构数据结构是指带有结构的数据元素的集合。
一个数据结构应包含以下两方面的信息:(1)表示数据元素的信息(2)表示各数据元素之间的前后件关系,前后件关系是逻辑关系,与它们在计算机中的存储位置无关。
数据的逻辑结构反映数据元素之间的逻辑关系。
2、数据的存储结构数据的逻辑结构在计算机中的存放形式称为数据的存储结构,也称数据的物理结构。
采用不同的存储结构,数据处理的效率不同。
一般情况下,数据的逻辑结构和存储结构是不同的。
二、数据结构的图形表示每一个数据元素用中间标有元素值的方框表示,称为数据结点,简称结点。
用一条有向线段从前件结点指向后件结点。
父亲丨在数据结构中,没有前件的结点称为根结点,没有后件的结点称为终端结—午—点(也称为叶子结点)。
其他结点一儿子女儿般称为内部结点。
算法与程序设计第一章如何用计算机解决问题课件

水仙花数流程图描述
开始 N=100 N<=999 Y
N
N的个位数的三次方+N 的十位数的三次方+N的 Y 百位数的三次方=N N N=N+1 输出N值
结束
用伪代码描述水仙花数算法 For N=100 to 999 if N的个位数的三次方+N的十位数的三次方+N的百位数的三次方=N then 输出n end if next1
课堂练习: 分别用自然语言和流程图描述求解 1、所有水仙花数的问题。水仙花数是指一个三位数, 它的各位数的立方和正好等于该数本身。如 153=13+53+33。 2、设计统计前1000个自然数中的奇数的个数的流程图
3、设计算法:找出乘积为840的两个相邻偶数
水仙花数自然语言描述 1、将N的初始值赋为100 2、如果N的个位数的三次方加上N的十位数的三次 方再加上N的百位数的三次方等于N,输出N值,否则转 入第3步 3、如果N<=999,将N的值加1,转到第2步,否则转入 第4步 4、输出运算结果,结束程序
算法独立于任何具体的程序设计语言,一个算法 可以用多种程序设计语言来实现。
算法的特征
算法要有一个清晰的起始步,表示处理问题的起点, 且每一个步骤只能有一个确定的后继步骤(1算法的 确定性),从而组成一个步骤的有限序列(2算法的有 穷性);要有一个终止步(序列的终止)表示问题得到 解决或不能得到解决;每条规则必须是确定的、可 行的(3算法的可行性)、不能存在二义性。算法总是 对数据进行加工处理,因此,算法的执行过程中通 常要有数据4输入(0个或多个)和数据5输出(至少一 个)的步骤。
人解决问题的一般过程 观察问题→分析问题→脑中收集信息→根据已有的 知识、经验判断、推理→采用方法和步骤解决 简单地概括 ⑴明确问题 ⑵提出假设 ⑶验证假设
1.2算法和算法的描述

算法一
算法二
第一步:烧水;
第一步:烧水;
第二步:水烧开后, 优化? 第二步:烧水过程中,
洗刷茶具;
洗刷茶具;
第三步:沏茶。
第三步:水烧开后沏茶。
一个好算法必须用到科学的方法
第二个算法的科学性在于应用了“统筹方法”
算法是程序设计的核心,是程序设计的灵 魂。算法的好坏,直接影响着程序的通用性和 有效性,影响着问题解决的效率。
第三步:人和菜过河,人返回,留下菜; 第四步:人和羊过河
二、算法的描述——用流程图描述算法
常用的“流程图”所用的基本符号
程序框
名称
功能
开始/ 结束
算法的开始 和结束
输入/ 输出
输入和输出 信息
处理
计算与赋值
判断
条件判断
流程线 连接点
算法中的流向
表示算法流向出口或入 口连接点
用流程图描述求解 a的绝对值的算法
一、算法——解决问题的方法和步骤
算法的特征:
1、输入——一个算法有零个或多个输入; 2、输出——算法有一个或多个输出; 3、确定性——算法的每一个这步个骤人必连须老要张也确不切认地识定义; 4、有穷性——一个算法在执行有穷步之后必须结束; 5、能行性——算法中有待执行的运算和操作必须是相
当基本的。(运算和操作能精确地执行)
最小自然数。
韩信点兵
1、令X为1 2、如果X整除3余1,X整除5余2,X整除7余4,这就是题目要求的 数,则记下这个X 3、令X为X+1(为算下一个作准备) 4、如果算出,则结束;否则跳转2 5、写出答案
过河的方案: 第一步:人和羊过河,人返回,留下羊; 第二步:人和狼过河,人和羊返回,留下狼; 第三步:人和菜过河,人返回,留下菜和狼; 第四步:人和羊过河
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章第二节算法和算法的描述
一、课程内容标准:
经历用自然语言、流程图或伪代码描述算法的过程
二、教学理念:
本节课的教学设计充分体现了《普通高中信息技术课程标准》中的基本理念,注重教学过程中三维目标的渗透,采用了以学生的学习和发展为中心,基于建构主义理论的任务驱动、情境教学、赏识教学等教学方法,突出自主、合作、探究等学习方法;强调信息技术与生活实际的联系,培养学生的逻辑思维能力、解决问题的能力等;设置多种形式的评价方式,让学生掌握学习内容的同时,形成交流与评价的能力。
三、教学分析:
1.教材分析:
本节课是广东教育出版社出版的普通高中《信息技术选修1算法与程序设计》第一章第2节的部分教学内容,包括有算法的概念、描述算法的过程、算法在解决问题中的地位和作用等。
本章是全书的开篇和概述,而本节内容是本章的重要环节,是对前一节知识内容的进一步学习,也为后续章节的学习和开展多元化交流与合作做好必要的准备。
2.学情分析:
本节课的教学对象是高二年级学生,他们已具备了一定的逻辑思维、分析问题、表达思想等能力。
在本课前一节里,学生已基本掌握了用计算机解决问题的步骤等基础知识,为本节课的学习提供了良好的基础。
3.课时安排:1课时
三、教学目标:
1.知识与技能:
(1)理解算法的概念。
(2)经历用自然语言、流程图、伪代码等方法描述算法的过程。
(3)了解算法在计算机解决问题中的地位和作用。
(4)能初步利用算法解决简单的问题。
2.过程与方法:
(1)能在学习过程中,学习发现知识的规律和方法并把它运用到解决实际问题中去。
(2)根据算法主题进行问题分析,选择适当的算法描述工具进行算法探究活动。
(3)通过对完成任务的过程和结果进行简单的评价。
3.情感态度与价值观:
(1)引导学生关注算法在社会生活的应用,激发学生学习的热情。
(2)培养学生运用计算机解决实际问题的意识,并初步形成严谨的逻辑思维习惯。
(3)培养学生合作意识、进取精神。
(4)引导学生初步了解评价的基本思想和方法,并形成反思的意识。
四、教学重点:经历用自然语言、流程图、伪代码等方法描述算法的过程。
五、教学难点:用流程图来描述算法。
六、教学方法:讲授法、演示法、任务驱动、情境教学、分层教学
七、学习方法:协作学习、自主学习
八、教学策略:情境创设→目标导航→任务引领→自主探究→交流评价→总结拓展
九、教学资源:
1.硬件资源:多媒体网络教室、投影仪等。
2.软件资源:office软件十、教学过程
姓名_________________、_______________
两个同学一组,完成后将此文档用组员名字命名
通过网络上交至教师机
〖算法及其描述〗学习任务单.
1、算法:通俗的说算法就是解决问题的和。
2、【单选题】“算法中有待执行的运算和操作必须是相当基本的,换言之,他们都是能够精确的进行的,算法的执行者甚至不需要掌握算法的含义即可根据该算法的每一个步骤要求进行操作,并最终得出正确的结果”该语句描述的是哪一项算法特征()。
A. 有穷性
B. 确定性
C. 输入和输出
D. 可行性
3、【单选题】在流程图的基本图形中,菱形表示()。
A.开始/结束
B.输入/输出
C.处理
D.判断
4、算法常见的描述方法有:
___________________、___________________、伪代码、N—S图、PAD图等。
5、算法的三种描述方法的优势和不足:
请将以下词语填写(剪切粘贴)到表格合适的位置:
通俗易懂;清晰简洁;容易造成歧义;容易表达复杂的算法;语句一般很长;复杂算法比较难清晰表示出来;不方便翻译成程序设计语言;有利于转化成不同的程序设计语言;
例题:某商场为了对苹果进行促销,规定购买达到或者超过5千克可以在原价每千克10元的基础上打8折。
请同学们设计算法,由计算机完成:输入所买苹果的千克数,输出应付款。
分别用自然语言和流程图描述算法,提示:在本文档中可以复制粘贴图形修改文本
分析:用x代表购买苹果的千克数,y代表应付款,如果x≥5,则y=x*10*0.8 否则y=x*10
1、输入斤数x
2、如果x≥5,则y=x*10*0.8
否则y=x*10 3、输出y
6、让计算机完成用辗转相除法求两个正整数的最大公约数 用自然语言描述如下: 1、输入正整数m 和n
开始
称苹果重量x
价钱y=x*10*0.8
打印总价等信息
价钱y=x*10
结束
2、以m 除以n ,令所得的余数为r
3、若r =0,则输出结果n ,结束;否则继续步骤4
4、令m 取n 的值,n 取r 的值(可以表示为m =n ,n =r), 返回步骤2继续进行
请用流程图描述出来,提示,可以复制粘贴图形。
7、有四个同学参加定向越野比赛,现在他们要过武江河。
他们都站在河的某一边,请设计一算法让他们快速过河,情况如下:必须从河上唯一的独木桥过,每次最多两人同行,因为是晚上,每次过桥都需用唯一的一个手电筒,所以手电筒必须要传来传去。
每个同学过桥的速度不同,每次过桥当然以较慢的那个人的速度过桥。
同学1:过桥需要1分钟; 同学2:过桥需要2分钟; 同学3:过桥需要5分钟; 同学4:过桥需要10分钟。
比如,如果同学1与同学4首先过桥,等他们过去时,已经过去了10分钟。
如果让同学4将手电筒送回去,那么等他到达桥的另一端时,总共用去了20分钟。
接下来另外两个同学过桥……这是很慢的。
用流程图描述算法:
开始结束
判断
输入输出
处理
拓展练习:
倘若增加一个同学,设为同学5,单独过河时间为9分钟,请设计最快过河的方案。