高一数学必修一综合试卷

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

(word完整版)高一数学必修1综合测试题3套[含解析],文档

(word完整版)高一数学必修1综合测试题3套[含解析],文档

范文模范参照高一数学综合检测题〔1〕一、选择题:5 分,共60 分,请将所选答案填在括号内〕〔每题1.会集 M{4,7,8},且 M中至多有一个偶数, 那么这样的会集共有()(A)3个(B) 4个(C) 5个(D) 6个2. S={x|x=2n,n∈ Z}, T={x|x=4k± 1,k ∈ Z}, 那么〔〕(A)S T(B) T S(C)S≠T(D)S=T3.会集 P= y | y x22,x R, Q=y| y x 2,x R ,那么PI Q 等〔〕(A) 〔 0, 2〕,〔 1, 1〕(B){〔 0,2〕,〔 1, 1〕 } (C){1, 2}(D)y | y24.不等式ax2ax40 的解集为,那么a 的取值范围是〔〕R(A)16 a 0(B)a16(C)16 a0(D) a 05. f ( x) =x5( x6),那么 f(3)的值为〔〕f (x4)( x6)(A)2(B)5(C)4( D)36. 函数y x24x3, x[0,3]的值域为〔〕(A)[0,3](B)[-1,0](C)[-1,3](D)[0,2]7.函数 y=(2k+1)x+b 在 (- ∞,+ ∞ ) 上是减函数,那么〔〕(A)k> 1(B)k<1(C)k>1(D).k<1 22228. 假设函数f(x)=x2+2(a-1)x+2在区间 ( ,4]内递减,那么实数 a 的取值范围为〔〕(A)a≤ -3(B)a≥ -3(C)a≤ 5(D)a≥39.函数y(2 a23a 2) a x是指数函数,那么 a 的取值范围是(A) a 0, a1(B) a 1(C)a a 1或 a1212〔〕( D)10.函数 f(x)4 a x 1的图象恒过定点p,那么点 p 的坐标是〔〕〔A〕〔 1 ,5 〕〔B〕〔 1, 4 〕〔C〕〔 0 ,4〕〔 D〕〔 4 ,0〕11.函数 y log 1 (3 x2)的定义域是〔〕2〔A〕 [1,+](B) (32 ,)(C) [32 ,1](D)(32 ,1]12.设a,b,c都是正数,且3a4b6c,那么下列正确的是〔〕(A)111(B)221(C)122(D)212 c a b C a b C a b c a b二、填空题:〔每题 4 分,共 16 分,答案填在横线上〕13.〔 x,y 〕在照射f下的象是(x-y,x+y),那么(3,5)在f下的象是,原象是。

高中数学必修一综合测试二(含答案)

高中数学必修一综合测试二(含答案)

高中数学必修一综合测试二(含答案)高一数学必修1综合测试题(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足CI (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.AB B.BA C.A=B D.A∩B=3.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q (P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为A.18B.30C. eq \f(27,2)D.286.函数f(x)= eq \f(3x-1,2-x) (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是A.2B.-2C.-1D.-37.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为A.3x-2B.3x+2C.2x+3D.2x-38.下列各组函数中,表示同一函数的是A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)= eq \f(x2-4,x-2)C.f(x)=|x|,g(x)= eq \b\lc\{(\a\al(x x≥0,-x x<0))D.f(x)=x,g(x)=( eq \r(x) )29. f(x)=eq \b\lc\{(\a\al(x2 x>0,π x=0,0 x<0)) ,则f{f [f(-3)]}等于A.0B.πC.π2 D.910.已知2lg(x-2y)=lgx+lgy,则 eq \f(x,y) 的值为A.1B.4C.1或4D. eq \f(1,4) 或411.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则A.a≥1B.a>1C.0<a≤1D.a<112.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A.(0, eq \f(1,2) )B.(0,C.( eq \f(1,2) ,+∞)D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.14.函数y= eq \r(x2+x+1) 的定义域是______,值域为__ ____.15.若不等式3>( eq \f(1,3) )x+1对一切实数x恒成立,则实数a的取值范围为___ ___.16. f(x)=,则f(x)值域为_____ _.17.函数y= eq \f(1,2x+1) 的值域是__________.18.方程log2(2-2x)+x+99=0的两个解的和是______.三、解答题19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(CUA)∩(CUB).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f(x)=log2x-logx+5,x∈[2,4],求f(x)的最大值及最小值.23.已知函数f(x)=eq \f(a,a2-2) (ax-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.参考答案一、选择题二、填空题13. 14. R [ eq \f(\r(3),2),+∞) 15. - eq \f(1,2) < a < eq \f(3,2)16. (-2,-1] 17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(CUA)∩(CUB).(CUA)∩(CUB)={x|-1<x<1}20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】不等式化为f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数∴解得2<x< eq \f(16,7)21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为eq \f(3600-3000,50) =12,所以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为f(x)=(100-eq \f(x-3000,50) )(x-150)-eq \f(x-3000,50) ×50整理得:f(x)=-eq \f(x2,50) +162x-2100=-eq \f(1,50) (x-4050)2+307050∴当x=4050时,f(x)最大,最大值为f(4050)=307050 元22.已知函数f(x)=log2x-logx+5,x∈[2,4],求f(x)的最大值及最小值.考查函数最值及对数函数性质.【解】令t=logx ∵x∈[2,4],t=logx在定义域递减有log4<logx<log2,∴t∈[-1,- eq \f(1,2) ]∴f(t)=t2-t+5=(t- eq \f(1,2) )2+ eq \f(19,4) ,t∈[-1,-eq \f(1,2) ]∴当t=- eq \f(1,2) 时,f(x)取最小值 eq \f(23,4)当t=-1时,f(x)取最大值7.23.已知函数f(x)=eq \f(a,a2-2) (ax-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.考查指数函数性质.【解】 f(x)的定义域为R,设x1、x2∈R,且x1<x2则f(x2)-f(x1)= eq \f(a,a2-2) (a-a-a+a)= eq \f(a,a2-2) (a-a)(1+)由于a>0,且a≠1,∴1+>0∵f(x)为增函数,则(a2-2)( a-a)>0于是有,解得a> eq \r(2) 或0<a<1PAGE6。

专题65 高中数学必修第一册全册综合测评(一)(解析版)

专题65 高中数学必修第一册全册综合测评(一)(解析版)

专题65 必修第一册全册综合测评(一)考试时间:120分钟 满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知全集为R ,集合A ={x |2x ≥1},B ={x |x 2-3x +2<0},则A ∩∁R B =( )A .{x |0≤x ≤1}B .{x |0≤x ≤1或x ≥2}C .{x |1<x <2}D .{x |0≤x <1或x >2}[解析]A ={x |2x ≥1}={x |x ≥0},B ={x |x 2-3x +2<0}={x |(x -1)(x -2)<0}={x |1<x <2},则∁R B ={x |x ≥2或x ≤1},则A ∩∁R B ={x |0≤x ≤1或x ≥2}. 2.已知命题p :x 为自然数,命题q :x 为整数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析]若x 为自然数,则它必为整数,即p ⇒q .但x 为整数不一定是自然数,如x =-2,即q p .故p 是q 的充分不必要条件. 3.若a <b <0,则下列不等式不能成立的是( )A.1a -b >1aB.1a >1b C .|a |>|b | D .a 2>b 2[解析]取a =-2,b =-1,则1a -b >1a 不成立.4.函数f (x )=x 2x 2-1+lg(10-x )的定义域为( )A .RB .[1,10]C .(-∞,-1)∪(1,10)D .(1,10)[解析]要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x 2-1>0,10-x >0,解得x <-1或1<x <10.故选C.5.已知f (x )=x 2-ax 在[0,1]上是单调函数,则实数a 的取值范围是( )A .(-∞,0]B .[1,+∞)C .[2,+∞)D .(-∞,0]∪[2,+∞) [解析]函数f (x )=x 2-ax 图象的对称轴为直线x =a2,根据二次函数的性质可知a 2≤0或a2≥1,解得a ≤0或a ≥2.故选D.6.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a[解析]a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 在(0,+∞)上是增函数,且27>33>26,所以b >a >c . 7.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)等于( ) A.225 B .-25 C.25 D .-225[解析] sin ⎝⎛⎭⎫α+π4-22cos(π-α)=22sin α+22cos α+22cos α=22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π,∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25.[答案] B 8.将函数f (x )=23cos 2x -2sin x cos x -3的图象向左平移t (t >0)个单位,所得图象对应的函数为奇函数,则t 的最小值为( )A.2π3B.π3C.π2D.π6[解析]将函数f (x )=23cos 2x -2sin x cos x -3=3cos2x -sin2x =2cos ⎝⎛⎭⎫2x +π6的图象向左平移t (t >0)个单位,可得y =2cos ⎝⎛⎭⎫2x +2t +π6的图象.由于所得图象对应的函数为奇函数,则2t +π6=k π+π2,k ∈Z , 则t 的最小值为π6.故选D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.下列函数是偶函数且值域为[0,+∞)的是( )A .y =|x |;B .y =x 3;C .y =2|x |;D .y =x 2+|x |.[解析]对于A ,y =|x |是偶函数,且值域为[0,+∞);对于B ,y =x 3是奇函数;对于C ,y =2|x |是偶函数,但值域为[1,+∞);对于D ,y =x 2+|x |是偶函数,且值域为[0,+∞),所以符合题意的有A C ,故选AC. 10.若幂函数f (x )=x m 在区间(0,+∞)上单调递减,则实数m 的值可能为( )A .-2B .12C .-1D .2[解析] ∵幂函数f (x )=x m 在区间(0,+∞)上单调递减,∴m <0,由选项可知,选AC 11.已知函数①y =sin x +cos x ,②y =22sin x cos x ,则下列结论不正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0成中心对称图形 B .两个函数的图象均关于直线x =-π4成轴对称图形C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数 D .两个函数的最小正周期相同[解析]①y =2sin ⎝⎛⎭⎫x +π4,图象的对称中心为⎝⎛⎭⎫-π4+k π,0,k ∈Z ,对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π,k ∈Z ,最小正周期为2π;②y =2sin 2x 图象的对称中心为⎝⎛⎭⎫12k π,0,k ∈Z ,对称轴为x =π4+12k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-π4+k π,π4+k π,k ∈Z ,最小正周期为π.故选ABD. 12.关于函数f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6,给出下列命题: A .f (x )的最大值为2; B .f (x )的最小正周期是2π;C .f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;D .将函数y =2cos2x 的图象向右平移π24个单位长度后,与函数y =f (x )的图象重合.其中正确命题是( )[解析] f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6=cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3=2⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3=2cos ⎝⎛⎭⎫2x -π3+π4=2cos ⎝⎛⎭⎫2x -π12, ∴函数f (x )的最大值为2,最小正周期为π,又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴函数f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故C 正确; 由D 得y =2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故D 正确. [答案] ACD三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知关于实数x 的不等式2x 2-bx +c <0的解集为⎝⎛⎭⎫-1,32,则b +c 的值为________. [解析]∵一元二次不等式2x 2-bx +c <0的解集是⎝⎛⎭⎫-1,32,∴-1,32是方程2x 2-bx +c =0的两根, 由根与系数关系得⎩⎨⎧-1+32=b2,-1×32=c2,即b =1,c =-3.∴b +c =-2.14.计算:1-cos 210°cos 800°1-cos 20°=________.[解析]1-cos 210°cos 800°1-cos 20°=sin 210°cos (720°+80°)·2sin 210°=sin 210°cos 80°·2sin 10°=sin 210°sin10°·2sin10°=22.15.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则经过5小时,1个病毒能繁殖为________个. [解析]当t =0.5时,y =2,所以2=e k2,所以k =2ln 2,所以y =e 2t ln 2,当t =5时,y =e 10ln 2=210=1 024.16.已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝⎛⎭⎫12x ,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k 的取值范围是_____.[解析]∵f (f (x ))-2=0,∴f (f (x ))=2,∴f (x )=-1或f (x )=-1k(k ≠0).① ② ③(1)当k =0时,作出函数f (x )的图象如图①所示,由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出函数f (x )的图象如图②所示,由图象可知f (x )=-1无解且f (x )=-1k 无解,即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示,由图象可知f (x )=-1有1个实根, ∵f ((x ))-2=0有3个实根,∴f (x )=-1k 有2个实根,∴1<-1k ≤3,解得-1<k ≤-13.综上,k 的取值范围是⎝⎛⎦⎤-1,-13. 四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.已知集合A ={x |x 2-7x +6<0},B ={x |4-t <x <t },R 为实数集.(1)当t =4时,求A ∪B 及A ∩∁R B ; (2)若A ∪B =A ,求实数t 的取值范围.[解析] (1)解二次不等式x 2-7x +6<0,得1<x <6,即A ={x |1<x <6}. 当t =4时,B ={x |0<x <4},∁R B ={x |x ≤0或x ≥4}, 所以A ∪B ={x |0<x <6},A ∩∁R B ={4≤x <6}. (2)由A ∪B =A ,得B ⊆A ,①当4-t ≥t ,即t ≤2时,B =∅,满足题意, ②B ≠∅时,由B ⊆A ,得⎩⎪⎨⎪⎧4-t <t ,4-t ≥1,t ≤6,解得2<t ≤3,综合①②得,实数t 的取值范围为(-∞,3].18.已知A (cos α,sin α),B (cos β,sin β),其中α,β为锐角,且|AB |=105. (1)求cos(α-β)的值; (2)若cos α=35,求cos β的值.[解析] (1)由|AB |=105,得(cos α-cos β)2+(sin α-sin β)2=105, ∴2-2(cos αcos β+sin αsin β)=25,∴cos(α-β)=45.(2)∵cos α=35,cos(α-β)=45,α,β为锐角,∴sin α=45,sin(α-β)=±35.当sin(α-β)=35时,cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=2425.当sin(α-β)=-35时,cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=0.∵β为锐角,∴cos β=2425.19.已知f (x )=4cos x sin ⎝⎛⎭⎫x +π3- 3. (1)求f ⎝⎛⎭⎫π6的值;(2)求f (x )的最小正周期及单调增区间.[解析] (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π3-3=4cos x ⎝⎛⎭⎫12sin x +32cos x - 3 =2sin x cos x +23cos 2x -3=sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3, 所以f ⎝⎛⎭⎫π6=2sin 2π3= 3. (2)因为f (x )=2sin ⎝⎛⎭⎫2x +π3,所以函数的最小正周期为T =2π2=π. 由-π2+2k π≤2x +π3≤2k π+π2(k ∈Z ),得-5π12+k π≤x ≤k π+π12(k ∈Z ),所以函数f (x )的单调增区间为⎣⎡⎦⎤-5π12+k π,k π+π12(k ∈Z ). 20.已知函数f (x )=ax 2+2x +c (a ∈N *,c ∈N *)满足:①f (1)=5;②6<f (2)<11.(1)求函数f (x )的解析式;(2)若对任意x ∈[1,2],都有f (x )≥2mx +1成立,求实数m 的取值范围. [解析] (1)∵f (1)=5,∴5=a +c +2,∴c =3-a . 又6<f (2)<11,∴6<4a +c +4<11,∴-13<a <43.又a ∈N *,∴a =1,c =2,∴f (x )=x 2+2x +2.(2)设g (x )=f (x )-2mx -1=x 2-2(m -1)x +1,x ∈[1,2],则由已知得 当m -1≤1,即m ≤2时,g (x )min =g (1)=4-2m ≥0,此时m ≤2.当1<m -1<2,即2<m <3时,g (x )min =g (m -1)=1-(m -1)2≥0,此时无解. 当m -1≥2,即m ≥3时,g (x )min =g (2)=9-4m ≥0,此时无解. 综上所述,实数m 的取值范围是(-∞,2].21.某村电费收取有以下两种方案供用户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L (x )(单位:元)与用电量x (单位:度)间的函数关系; (2)老王家九月份按方案一交费35元,问老王家该月用电多少度? (3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?[解析] (1)当0≤x ≤30时,L (x )=2+0.5x ;当x >30时,L (x )=2+30×0.5+(x -30)×0.6=0.6x -1,∴L (x )=⎩⎪⎨⎪⎧2+0.5x ,0≤x ≤30,0.6x -1,x >30.(注:x 也可不取0)(2)当0≤x ≤30时,令L (x )=2+0.5x =35得x =66,舍去;当x >30时,由L (x )=0.6x -1=35得x =60,∴老王家该月用电60度. (3)设按方案二收费为F (x )元,则F (x )=0.58x .当0≤x ≤30时,由L (x )<F (x ),得2+0.5x <0.58x ,解得x >25,∴25<x ≤30; 当x >30时,由L (x )<F (x ),得0.6x -1<0.58x ,解得x <50,∴30<x <50. 综上,25<x <50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好. 22.已知f (x )=log 4(4x +1)+kx (k ∈R)为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. [解析] (1)∵f (x )是偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,化简得log 44-x +14x +1=2kx ,log 44-x =-x =2kx ,则有(2k +1)x =0.对任意的x ∈R 恒成立,于是有2k +1=0,k =-12.(2)∵f (x )=log 4(4x +1)-12x ,f (x )=log 4(a ·2x -a )有且只有一个根,∴log 4(4x +1)-12x =log 4(a ·2x -a ),即(1-a )(2x )2+a ·2x +1=0有唯一实根.令t =2x ,则关于t 的方程(1-a )t 2+at +1=0有唯一的正根.①当1-a =0即a =1时,方程(1-a )t 2+at +1=0,则t +1=0,即t =-1,不符合题意. ②当1-a ≠0即a ≠1时,Δ=a 2-4(1-a )=a 2+4a -4=(a +2)2-8. 若Δ=0,则a =-2±22,此时,t =a2(a -1).当a =-2+22时,则有t =a2(a -1)<0,方程(1-a )t 2+at +1=0无正根,不符合题意;当a =-2-22时,则有t =a 2(a -1)>0,且a ·2x -a =a (t -1)=a ·⎣⎡⎦⎤a 2(a -1)-1=a (2-a )2(a -1)>0, 方程(1-a )t 2+at +1=0有两个相等的正根,符合题意.若Δ>0,则方程(1-a )t 2+at +1=0有两个不相等的实根,则只需其中有一正根即可满足题意. 于是有⎩⎪⎨⎪⎧Δ>0,11-a <0,由此解得a >1.综上所述,a >1或a =-2-2 2.。

人教A版高中高一数学必修一综合测试卷(含答案)

人教A版高中高一数学必修一综合测试卷(含答案)

人教A版高中高一数学必修一综合测试卷姓名:班级:学号:时间:120分钟满分:150分一、单选题(每小题5分,共60分)1.(5分)已知集合A={y|y=﹣1},B={x|2x≤4},则A∩B=()A.[0,2]B.[﹣1,2]C.[﹣1,+∞)D.(﹣∞,2] 2.(5分)下列函数为奇函数的是()A.y=sin|x|B.y=|sin x|C.y=cos x D.y=e x﹣e﹣x 3.(5分)已知集合A={x|x2﹣x﹣2=0},B={x|x2=1},则A∩B=()A.{﹣1}B.{﹣1,1}C.{﹣1,2}D.{2}4.(5分)已知集合A={x|x﹣1<0},B={x|x2﹣5x﹣6<0},则A∪B=()A.(﹣∞,1)B.(﹣6,1)C.(﹣1,1)D.(﹣∞,6)5.(5分)若0<a<b<1,则a b,b a,log b a,的大小关系为()A.B.C.D.6.(5分)函数f(x)=sinωx+cosωx﹣1(ω>0)的最小正周期是π,则函数f(x)在区间[0,100]上的零点个数为()A.31B.32C.63D.647.(5分)已知偶函数f(x)满足f(4+x)=f(4﹣x),且当x∈(0,4]时,f(x)=,关于x的不等式f2(x)﹣af(x)>0在[﹣40,40]上有且只有60个整数解,则实数a的取值范围是()A.[,ln2)B.(,ln2)C.[,)D.(,)8.(5分)已知函数f(x)=,若函数g(x)=f(f(x))恰有8个零点,则a的值不可能为()A.8B.9C.10D.129.(5分)已知函数若函数y=f(x)﹣a至多有2个零点,则a的取值范围是()A.B.C.(﹣1,1﹣)D.[1,1+e]10.(5分)已知函数f(x)=x+(其中0<a≤1),g(x)=x﹣lnx,若对任意x1,x2∈[l,e],f(x1)≥g(x2)恒成立,则实数a的取值范围为()A.(0,1)B.(1﹣,1]C.(0,e﹣2]D.[e﹣2,1] 11.(5分)已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣|x|,又,则函数F(x)=g(x)﹣f(x)在区间[﹣2017,2017]上零点的个数为()A.2015B.2016C.2017D.201812.(5分)对任意x∈R,不等式2|sin x|+|sin x﹣a|≥a2恒成立,则实数a的取值范围是()A.0≤a≤1B.﹣1≤a≤1C.﹣1≤a≤2D.﹣2≤a≤2二、填空题(每小题5分,共20分)13.(5分)已知定义在R上的函数f(x)满足f(1+x)=﹣f(3﹣x),且f(x)的图象与g (x)=lg的图象有四个交点,则这四个交点的横纵坐标之和等于.14.(5分)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产,设该工厂连续5天生产的口罩数依次为x1,x2,x3,x4,x5(单位:十万只),若这组数据x1,x2,x3,x4,x5的方差为1.44,且x12,x22,x32,x42,x52的平均数为4,则该工厂这5天平均每天生产口罩十万只.15.(5分)已知正实数x,y,z,则A=max的最小值为;B =max{x,}+max{y,}+max{z,}的最小值为.16.(5分)已知函数,且对于任意的x1,,x1≠x2,|f(x1)﹣f(x2)|<λ|x1﹣x2|恒成立,则λ的取值范围是.三、解答题(每小题14分,共70分)17.(14分)已知函数f(x)是定义在R上的奇函数,当x>0时,.(1)求函数f(x)在R上的解析式;(2)用单调性定义证明函数f(x)在区间上是增函数.18.(14分)已知函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)≥2;(2)记函数f(x)的最小值为m,若a,b为正实数,且3a+2b=2m,求的最小值.19.(14分)已知函数f(x)=+lg.(1)判断并证明函数f(x)的单调性;(2)解关于x的不等式f(x(3﹣x))﹣1﹣lg3>0.20.(14分)已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.21.(14分)已知函数f(x)=﹣x2+2|x﹣a|.(1)若a=,求函数y=f(x)的单调增区间;(2)当a>0时,解不等式f(x)>﹣ax;(3)当a>0时,若对任意的x∈[0,+∞),不等式f(x﹣1)≥2f(x)恒成立,求实数a 的取值范围.参考答案一、单选题1.B2.D3.A4.D5.B6.C7.C8.A9.B 10.D 11.C 12.B二、填空题13.814.1.6.15.(2,+∞).三、解答题17.解:(1)设x<0,则﹣x>0,由x>0时,可知,,又f(x)为奇函数,故,∴函数f(x)在R上的解析式为;(2)证明:设,则=,∵,∴,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴函数f(x)在区间上是增函数,得证.18.解:(1),∴f(x)≥2等价于或或,∴x≤﹣1或﹣1<x≤0或,∴不等式的解集为;(2)由可知,∴3a+2b=3,∵a>0,b>0,∴,∴当且仅当时取得最小值为8.19.解:(1)f(x)的定义域为(0,4),f(x)在(0,4)上单调递减,证明如下:设0<x1<x2<4,则:=,∵0<x1<x2<4,∴x2﹣x1>0,x1x2>0,4﹣x1>4﹣x2>0,,∴,,,∴f(x1)>f(x2),∴f(x)在(0,4)上单调递减;(2)∵f(1)=1+lg3,由得,,∵f(x)在(0,4)上单调递减,∴,解得0<x<1或2<x<3,∴原不等式的解集为(0,1)∪(2,3).20.解:(1)由f(0)=7,即1﹣a=7,可得a=﹣6,那么3x+6•3﹣x=5,∴(3x﹣2)(3x﹣3)=0,解得x=1或x=log32.(2)由f(﹣x)=﹣a•3x+3﹣x,当a=﹣1时,可得f(﹣x)=f(x)此时f(x)是偶函数,当a=1时,f(﹣x)=﹣f(x)此时f(x)是奇函数,当a≠±1时,f(x)是非奇非偶函数.21.解:(1)若a=,则f(x)=﹣x2+2|x﹣|=,当x<时,y=﹣(x+1)2+2,可得增区间为(﹣∞,﹣1);当x≥时,y=﹣(x﹣1)2,可得增区间为(,1),综上可得,函数f(x)的增区间为(﹣∞,﹣1)和(,1);(2)不等式f(x)>﹣ax即为2|x﹣a|>x2﹣ax(a>0),可得2x﹣2a>x2﹣ax或2x﹣2a<ax﹣x2,即为(x﹣2)(x﹣a)<0或(x+2)(x﹣a)<0,当a>2时,﹣2<x<a;当0<a<2时,﹣2<x<a或a<x<2;当a=2时,﹣2<x<2,综上可得,当a≥2时,不等式的解集为(﹣2,a];当0<a<2时,不等式的解集为(﹣2,a)∪(a,2);(3)f(x﹣1)≥2f(x)⇒﹣(x﹣1)2+2|x﹣1﹣a|≥﹣2x2+4|x﹣a|⇒4|x﹣a|﹣2|x﹣(a+1)|≤x2+2x﹣1对x≥0恒成立,由a>0,可分如下几种情况讨论:①0≤x≤a时,﹣4(x﹣a)+2[x﹣(a+1)]≤x2+2x﹣1即x2+4x+1﹣2a≥0对x∈[0,a]恒成立,由g(x)=x2+4x+1﹣2a在[0,a]上递增,则g(0)取得最小值,所以只需g(0)≥0,可得a≤,又a>0,则0<a≤;②a<x≤a+1时,4(x﹣a)+2[x﹣(a+1]≤x2+2x﹣1,可得x2﹣4x+1+6a≥0对x∈[a,a+1]恒成立,由①可得h(x)=x2﹣4x=1+6a在[a,a+1]递减,所以只需h(a+1)≥0即a2+4a﹣2≥0,可得a≥﹣2或a≤﹣2﹣,由﹣2<,由①可得﹣2≤a≤;③x>a+1时,4(x﹣a)﹣2[x﹣(a+1)]≤x2+2x﹣1即x2+2a﹣3≥0对x∈(a+1,+∞)恒成立,由函数k(x)=x2+2a﹣3在(a+1,+∞)递增,所以只需k(a+1)≥0,即a2+4a﹣2≥0,解得a≥﹣2+或a≤﹣2﹣,由②可得﹣2≤a≤;综上可得,a的范围是[﹣2,].。

高一数学必修一必修二综合测试卷(有答案)

高一数学必修一必修二综合测试卷(有答案)

高一数学试题四(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列说法正确的是( )A . 经过三点确定一个平面B . 经过一条直线和一个点确定一个平面C . 四边形确定一个平面D . 两两相交且不共点的三条直线确定一个平面2. 下列哪个函数的定义域与函数()15xf x ⎛⎫= ⎪⎝⎭的值域相同( )A . 2y x x =+B . ln 2y x x =-C . 1y x =D . 1y x x=+3. 已知集合12|log 1A x x ⎧⎫=>-⎨⎬⎩⎭,{}|22xB x =>,则A B =( )A . 1,22⎛⎫ ⎪⎝⎭B . 1,2⎛⎫+∞⎪⎝⎭C . ()0,+∞D . ()0,24. 已知圆锥的侧面展开图是一个半圆,则其母线与底面半径之比为( ) A . 1B .2C .3D . 25. 已知函数()2f x x x a =++在区间()0,1上有零点,则实数a 的取值范围是( ) A . 1,4⎛⎤-∞ ⎥⎝⎦B . 1,4⎛⎫-∞ ⎪⎝⎭C . ()2,0-D . []2,0-6. 函数()()10,1x f x a a a -=>≠的图象恒过点A ,则下列函数中图象不经过点A 的是( )A . 1y x =-B . 2y x =-C . 21xy =-D . ()2log 2y x =7. 正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( ) A .6π B .4π C . 3π D . 2π8. 已知函数()212log 3y x ax a =-+在[)2,+∞上为减函数,则实数a 的取值范围是( )A . 4a ≤B . 4a ≥C . 4a <-或4a ≥D . 44a -<≤9. 某几何体的三视图如图所示,该几何体表面上的点P 与点Q 在正视图与侧视图上的对应点分别为A ,B ,则在该几何体表面上,从点P 到点Q 的路径中,最短路径的长度为( ) A .5B .6 C . 22D .1010. 已知函数()ln 1f x x =-,()223g x x x =-++,用{}min ,m n 表示m ,n 中最小值,设()()(){}min ,h x f x g x =,则函数()h x 的零点个数为( )A . 1B . 2C . 3D . 411. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2x g x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( )A .315-B . 35-C . 1D . -1 12. 无论x ,y ,z 同为三条不同的直线还是同为三个不同的平面,给出下列说法:①若//x y ,//x z ,则//y z ;②若x y ⊥,x z ⊥,则y z ⊥;③若x y ⊥,//y z ,则x z ⊥;④若x 与y 无公共点,y 与z 无公共点,则x 与z 无公共点; ⑤若x ,y ,z 两两相交,则交点可以有一个,三个或无数个.其中说法正确的序号为( ) A . ①③B . ①③⑤C . ①③④⑤D . ①④⑤二、填空题(本大题共4小题,每小题5分,共20分) 13. 设函数()()xxf x e aea R -=+∈,若()f x 为奇函数,则a =______.14. 一个正四棱锥的侧棱长与底面边长相等,体积为423,则它的侧面积为______. 15. 已知函数()f x 为定义在[]2,3a -上的偶函数,在[]0,3上单调递减,并且()22522a f m m f m ⎛⎫-- ⎪⎝⎭>-+-,则m 的取值范围是______.16. 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 如图所示,在正方体1111ABCD A B C D -中,E 、F 分别是AB 和1AA 的中点.求证:CE ,1D F ,DA 交于一点.18. 已知函数()21x ax b f x x +=++是定义域为R 的奇函数. (1)求实数a 和b 的值,判断并证明函数()f x 在()1,+∞上的单调性;(2)已知0k <,且不等式()()22310f t t f k -++-<对任意的t R ∈恒成立,求实数k 的取值范围.19. 食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足8042P a =+,11204Q a =+.设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为()f x (单位:万元). (1)求()50f 的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益()f x 最大?20. 已知幂函数()()3*p N x x f p -=∈的图象关于y 轴对称,且在()0,+∞上为增函数. (1)求不等式()()22132pp x x +<-的解集;(2)设()()()log 0,1a f x ax g x a a =->≠⎡⎤⎣⎦,是否存在实数a ,使()g x 在区间[]2,3上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.21. 已知函数()11439x xm f x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.(1)当2m =-时,求函数()f x 在(),0-∞上的值域;(2)若对任意[)0,x ∈+∞,总有()6f x ≤成立,求实数m 的取值范围.22. 在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1-5:DBCDC6-10:ABDCC11-12:AB1.【解析】A 选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B 选项如果点在直线上,则该直线和这个点不能确定一个平面;C 选项中的四边形有可能是空间四边形,故选D .2.【解析】函数()15xf x ⎛⎫= ⎪⎝⎭的值域为()0,+∞,函数2y x x =+的定义域为R ,函数ln 2y x x =-的定义域为()0,+∞;函数1y x x=+的定义域为()(),00,-∞+∞,函数1y x=的定义域为()(),00,-∞+∞,故选B .3.【解析】由{}12|log 1|02A x x x x ⎧⎫=>-=<<⎨⎬⎩⎭,{}1|22|2xx x x B =⎧⎫>=>⎨⎬⎩⎭,则()0,A B =+∞,故选C .4.【解析】由已知可得2r l ππ=,所以2l r =,故2lr=.故选D . 5.【解析】函数()2f x x x a =++的图象的对称轴为12x =-,故函数在区间()0,1上单调递增,再根据函数()f x 在()0,1上有零点,可得()()00120f a f a =<⎧⎪⎨=+>⎪⎩,解20a -<<,故选C .6.【解析】函数()()10,1x f y ax a a -=>≠=的图象恒过点A ,即10x -=,可得1x =,那么1y =.∴恒过点()1,1A .把1x =,1y =带入各选项,只有A 没有经过A 点.故选A . 7.【解析】略8.【解析】()23g x x ax a =-+,则()230x a a g x x =-+>在[)2,+∞恒成立,且()23g x x ax a =-+在[)2,+∞上为增函数,所以22a≤且()240g a =+>,所以44a -<≤.故选D .9.【解析】由题,几何体如图所示(1)前面和右面组成一面此时222222PQ =+=.(2)前面和上面在一个平面此时223110PQ =+=,2210<,故选C . 10.【解析】作出函数()f x 和()g x 的图象如图,两个图象的下面部分图象,由()2230g x x x =-++=,得1x =-,或3x =,由()ln 10f x x =-=,得x e =或1x e=,∵()0g e >,∴当0x >时,函数()h x 的零点个数为3个,故选C .11.【解析】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()222x xg x -+=,()222x x h x --=.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ----≤==-+++,∵2141x y =-+为增函数,∴max 231415x ⎛⎫+= ⎪+⎝⎭,故选A . 12.【解析】由平行于同一直线的两直线平行,平行于同一平面的两平面平行,可得①正确;由垂直于同一直线的两直线平行、相交或异面;垂直于同一平面的两平面相交或平行,可得②错误;由垂直于两平行直线中的一条,也垂直于另一条;垂直于两平行平面中的一个,也垂直于另一个,可得③正确;若一条直线与另两条直线无公共点,可得另两条直线可以相交;若一个平面与另两个平面无公共点,可得另两个平面无公共点;可得④错误.若三条直线两两相交,则交点可以有一个或三个,若三个平面两两相交,则交点有无数个.故选B . 二、填空题(本大题共4小题,每小题5分,共20分)13. -1 14. 43 15. 1122m -≤< 16. 4π13.【解析】若函数()x x f x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-. 14.【解析】设正四棱锥的侧棱长与底面边长相等为2a ,则24ABCD S a =,2222422h PB BO a a a =-=-=,则31442233V a =⨯=,则1a =,则 22142242BC PF a a a S ⎛⎫=⨯⨯⨯=⨯⨯- ⎪⎝⎭侧24343a ==.15.【解析】由题设可得230a -+=,即5a =,故()()22122f m f m m -->-+-可化()()22122f m f m m +>-+,又2113m ≤+≤,21223m m ≤-+≤,故2211222m m m m +<-+⇒<,且12m ≥-.故应填答案1122m -≤<.16.【解析】将四面体ABCD 放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD 的外接球,∵正四面体ABCD 的棱长为4,∴正方体的棱长为22, 可得外接球半径R 满足()22322R =⨯,解得6R =.E 为棱BC 的中点,过E 作其外接球的截面,当截面到球心O 的距离最大时,截面圆的面积达最小值,此时球心O 到截面的距离等于正方体棱长的一半,可得截面圆的半径为222r R =-=,得到截面圆的面积最小值为24S r ππ==.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】证明:如图所示,连接1CD 、EF 、1A B ,因为E 、F 分别是AB 和1AA 的中点, 所以1//EF A B 且112EF A B =.即:1//EF CD ,且112EF CD =, 所以四边形1CD FE 是梯形,所以CE 与1D F 必相交,设交点为P ,则P CE ∈,且1P D F ∈,又CE ⊂平面ABCD , 且1D F ⊂平面11A ADD ,所以P ∈平面ABCD ,且P ∈平面11A ADD , 又平面ABCD平面11A ADD AD =,所以P AD ∈,所以CE 、1D F 、DA 三线交于一点.18.【解析】(1)因为()()f x f x -=-,所以2211x a x ax bx x bx -+--=-+++, ∴0a b ==,()21xf x x =+, 任取()12,1,x x ∈+∞,且12x x <,()()1212221211x xf x f x x x -=-++()()()()21122212111x x x x x x --=++, ∵210x x ->,1210x x ->,()()2212110x x ++>,∴()f x 在()1,+∞单调递减.(2)()()2231f t t f k -+<--,()()2231f t t f k -+<-, ∵2232t t -+≥,11k ->,∴2231t t k -+>-, 即()211k t >---, ∵t R ∈≤,∴()1,0k ∈-. 19.【解析】(1)由题可知:甲大棚投入50万元,则乙大棚投入150万元, 所以()1804250150120277.5450f =+⨯+⨯+=. (2)依题意得202018020020x x x ≥⎧⇒≤≤⎨-≥⎩.故()()142250201804x x f x x =-++≤≤. 令25,65t x ⎡⎤=∈⎣⎦,则()()2211422508228244f x t t t =-++=--+,当82t =,即128x =时,()max 282f x =,所以投入甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元. 20.【解析】(1)由已知得30p ->且*p N ∈,所以1p =或2p =, 当2p =时,()3p f x x -=为奇函数,不合题意, 当1p =时,()2f x x =.所以不等式()()22132pp x x +<-变为()()1122132x x +<-, 则0132x x ≤+<-,解得213x -≤<. 所以不等式()()22132p p x x +<-的解集为21,3⎡⎫-⎪⎢⎣⎭.(2)()()2log a a g x x x =-,令()2h x x ax =-,由()0h x >得()(),0,x a ∈-∞+∞,因为()g x 在[]2,3上有定义,所以02a <<且1a ≠, 所以()2h x x ax =-在[]2,3上为增函数,当12a <<时,()()()max 3log 932a g x g a ==-=, 即2390a a +-=,∴3352a -±=,又12a <<, ∴3352a -+=. 当01a <<时,()()()max 2log 422a g x g a ==-=,即2240a a +-=,∴15a =-±,此时解不成立.综上:3352a -+=. 21.【解析】(1)当2m =-时,设13xt ⎛⎫= ⎪⎝⎭,∵(),0x ∈-∞,∴()1,t ∈+∞,∴()()222413t t t y g t -+=-=+=,对称轴1t =,图像开口向上,∴()g t 在()1,t ∈+∞为增函数, ∴()3g t >,∴()f x 的值域为()3,+∞.(2)由题意知,()6f x ≤在[)0,+∞上恒成立,即11239xxm ⎛⎫⎛⎫⋅≤- ⎪ ⎪⎝⎭⎝⎭,∴1233xx m ≤⋅-在[)0,x ∈+∞恒成立,则只需当[)0,x ∈+∞时,min 1233x x m ⎛⎫≤⋅- ⎪⎝⎭,设3xt =,()12h t t t=-,由[)0,x ∈+∞得1t ≥,设121t t ≤<,则()()()()12121212210t t t t h t h t t t -+-=<,所以()h t 在[)1,+∞上递增,()h t 在[)1,+∞上的最小值为()11h =,所以实数m 的取值范围为(],1-∞. 22.【解析】(1)取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, ∴//PR EF ,//QR BD ,又∵//EF AC ,∴//PR 平面ABCD ,//QR 平面ABCD ,又∵PR QR R =,∴平面//PQR 平面ABCD ,又∵PQ ⊂平面PQR , ∴//PQ 平面ABCD .(2)连接AC ,设AC ,BD 交于点O , ∴BD AC ⊥,又∵平面AFEC ⊥平面ABCD , 平面AFEC平面ABCD AC =,∴BD ⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -, 菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,23BD =,12ACEF ==, 设梯形EFAC 的面积为()133244EFAC BD EF AC S =+⋅=, 1332ABCDFE EFAC V S BD =⋅⋅=.。

高一数学必修一综合试卷及答案

高一数学必修一综合试卷及答案

高一数学必修一综合试卷及答案【导语】高一阶段是学习高中数学的关键时期。

对于高一新生而言,在高一学好数学,不仅能为高考打好基础,同时也有助于物理、化学等学科的学习,这篇是由无忧考网-高一频道为大家整理的《高一数学必修一综合试卷及答案》希望对你有所帮助!一、选择题:(本大题共10题,每小题5分,共50分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则(C)2.如果函数f(x)=x+2(a?1)x+2在区间(?∞,4]上是减函数,那么实数a的取值范围2A.U=A∪BB.U=(CUA)∪BCU=A∪(CUB)D.U=(CUA)∪(CUB)B、a≥?3C、a≤5是(A)A、a≤?3A.4x+2y=5D、a≥53.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(B)B.4x?2y=5C.x+2y=5D.x?2y=54.设f(x)是(?∞,+∞)上的奇函数,且f(x+2)=?f(x),当0≤x≤1时,f(x)=x,则f( 7.5)等于(B)A.0.5yB.?0.5yC.1.5D.?1.55.下列图像表示函数图像的是(Cy)yxxxxABCD6.在棱长均为2的正四面体A?BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是(C).A.3C.2(B).A.m⊥α,m⊥β,则α//βC.m⊥α,m//β,则α⊥β22ADBC题中不正确的是...B.263D.227.设m、n表示直线,α、β表示平面,则下列命B.m//α,αIβ=n,则m//nD.m//n,m⊥α,则n⊥αD.2?28.圆:x+y?2x?2y?2=0上的点到直线x?y=2的距离最小值是(A).A.0B.1+2C.22?29.如果函数f(x)=ax2+ax+1的定义域为全体实数集R,那么实数a的取值范围是(A).A.[0,4]B.[0,4)C.[4,+∞)D.(0,4)10.a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的(.?A.充分非必要条件?B.必要非充分条件??C.充要条件?D.既非充分也非必要条件?二、填空题:(本大题共有5小题,每小题4分,满分20分)。

高中数学必修一试卷

高中数学必修一试卷

高中数学必修一试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2-3x + 2 = 0},B={xx^2-ax + a - 1 = 0},若A∪ B = A,则实数a的值为()A. 2B. 3C. 2或3D. 1或2或32. 函数y=√(x^2)-1的定义域为()A. (-∞,-1]∪[1,+∞)B. [-1,1]C. (-∞,-1)∪(1,+∞)D. (-1,1)3. 已知函数f(x)=log_a(x + 1)(a>0且a≠1)在区间[1,7]上的最大值比最小值大(1)/(2),则a的值为()A. (1)/(2)或(7)/(2)B. (2)/(3)或(3)/(2)C. (1)/(2)或(3)/(2)D. (2)/(3)或(7)/(2)4. 若函数y = f(x)是函数y = a^x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=()A. log_2xB. (1)/(2^x)C. log_(1)/(2)xD. 2^x - 25. 函数y = x^2+2x - 3在区间[-3,0]上的值域为()A. [-4, - 3]B. [-4,0]C. [-3,0]D. [0,1]6. 下列函数中,在(0,+∞)上为增函数的是()A. y=<=ft((1)/(2))^xB. y = x^-2C. y=log_(1)/(2)xD. y=ln x7. 设a = log_32,b=log_52,c=log_23,则()A. a>c>bB. b>c>aC. c>b>aD. c>a>b8. 已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2-2x,则f(x)在R上的表达式为()A. f(x)=x(x - 2)B. f(x)=<=ft{begin{array}{ll}x(x - 2),x>0 0,x = 0 -x(x + 2),x<0end{array}right.C. f(x)=<=ft{begin{array}{ll}x(x - 2),x≥slant0 -x(x + 2),x<0end{array}right.D. f(x)=x(x2)9. 若函数f(x)=a^x-x - a(a>0且a≠1)有两个零点,则实数a的取值范围是()A. (0,1)B. (1,+∞)C. (0,+∞)D. (0,1)∪(1,+∞)10. 已知y = f(x)是偶函数,当x>0时,f(x)=x+(4)/(x),且当x∈[-3,-1]时,n≤slant f(x)≤slant m恒成立,则m - n的最小值是()A. (1)/(3)B. (2)/(3)C. 1D. (4)/(3)11. 函数y = f(x)的图象与函数y = log_3x(x>0)的图象关于直线y = x对称,则f(x)=()A. 3^x(x∈ R)B. 3^x(x>0)C. <=ft((1)/(3))^x(x∈ R)D. <=ft((1)/(3))^x(x>0)12. 设函数f(x)=<=ft{begin{array}{ll}2^x,x≤slant0 log_2x,x>0end{array}right.,若f(a)=(1)/(2),则a=()A. -1或√(2)B. -1或(1)/(2)C. -1D. (1)/(2)二、填空题(每题5分,共20分)13. 计算:log_2√(2)+log_927=_ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求 ,
(2)若A∩C ,求a的取值范围.
19.已知函数
(1)求函数 的零点;
(2)当 时,求函数 的值域
20.已知二次函数 满足
(1)求函数 的解析式
(2)在区间 上, 图象恒在 图象上方,求实数 的取值范围
21.已知函数 为定义在 上的偶函数,且当 时, .
(1)求当 时, 解析式;
(2)在网格中绘制 的图像;
高一数学周测卷
一、选择题
1.设全集 ,集合 , ,则 ( )
A. B. C. D.
2.设函数f(x)= 则f(f(3))=( )
A. B.3C. D.
3. 函数 的定义域为( )
A. B. C. D.
4.下列函数中在区间 上是增函数的是( )
A. B. C. D.
5.已知幂函数 的图象过点 ,则 的值为
A. B. C. D.
11.已知函数 为定义在 上的奇函数, ,且 在 上单调递增,则 的解Leabharlann 为( )A. B. C. D.
12.若 是偶函数,且对任意 ∈ 且 ,都有 ,则下列关系式中成立的是( )
A. B.
C. D.
二、填空题:每题5分,共25分,请将答案填写在答题卡相应位置.
13. 若指数函数 在区间 上的最大值和最小值之和为 ,则 的值为____________.
14. 已知函数 ( 且 )恒过定点____________.
15.已知 且函数 的图象过点 ,则 的值为____________.
16.已知函数 ,若 在 上是增函数,则实数a的取值范围是____________.
三、解答题:每题10分,共5题,要求写出必要的解题过程.
17.计算:
(1)
(2)
.
18.已知集合A={x|2≤x<7},B={x|3<x<10},C={x| }.
(3)若方程 有四个根,求 的取值范围.
22.已知函数
(1)若 的零点为2,求 ;
(2)若 在 上单调递减,求 最小值;
(3)若对于任意的 都有 ,求 的取值范围.
A. B.2C.4D.
6. 已知 是定义在 上的奇函数,当 时, ,则 ( )
A. B. C. D.
7. 定义在 上的偶函数 满足 ,若 则 ( )
8.函数y= 的单调增区间是( )
A. B. C. D.
9. 已知函数 ,则函数 零点所在的区间为( )
A. B. C. D.
10. 已知 , , ,则 , , 的大小关系正确的是( )
相关文档
最新文档