半导体物理

合集下载

半导体物理与器件

半导体物理与器件

发光器件
发光原理
半导体中的载流子复合时,以光子的形式释放能量。
发光器件类型
包括发光二极管(LED)、激光器等。
工作原理
发光器件利用半导体中的载流子复合发光原理,将电能转换为光能。在外加电压或电流作用下,半导体 中的载流子获得能量并发生复合,以光子的形式释放能量并发出可见光或其他波段的光。
04
CATALOGUE
氧化物半导体材料
如氧化锌(ZnO)、氧化铟镓(InGaO3)等,具有透明 导电、压电等特性,可用于透明电子器件、传感器等领域 。
有机半导体材料
具有柔韧性好、可大面积制备、低成本等优点,可用于柔 性电子器件、有机发光二极管(OLED)等领域。
二维材料在半导体器件中的应用
石墨烯
具有优异的电学、热学和力学性能,可用于 高速电子器件、柔性电子器件等领域。
品中。
陶瓷封装
使用陶瓷材料作为封装外壳,具有 优异的耐高温、耐湿气和机械强度 等性能,适用于高端电子产品和特 殊应用场合。
金属封装
利用金属材料(如铝、铜等)进行 封装,具有良好的散热性能和机械 强度,适用于大功率半导体器件。
测试技术
直流参数测试
通过测量半导体器件的直 流电压、电流等参数,评 估其性能是否符合设计要 求。
荷区,即PN结。
二极管的结构
由P型半导体、N型半导体以 及PN结组成,具有单向导电
性。
二极管的伏安特性
描述二极管两端电压与电流之 间的关系,包括正向特性和反
向特性。
二极管的主要参数
包括最大整流电流、最高反向 工作电压、反向电流等。
双极型晶体管
晶体管的结构
由发射极、基极和集电极组成 ,分为NPN型和PNP型两种。

第一章 半导体物理基础解析

第一章 半导体物理基础解析
• 态密度
– 在能带中,能量E附近单位能量间隔内的量子 态数
g(E) dZ/dE
在量子力学中,微观粒子的运动状态称为量子态
费米-狄拉克统计分布规律
• 温度为T(绝对温度)的热平衡态下,半导体中电子占据能量为E
的量子态的几率是
f (E)
1
exp( E EF ) 1
kT
– k是玻尔兹曼常数,EF是一个与掺杂有关的常数,称为费米能级。 – 当E-EF>>kT时,f(E)=0,说明高于EF几个kT以上的能级都是空的;而当E-EF<<kT
• 平均自由时间愈长,或者说单位时间内遭受散射的次数愈少, 载流子的迁 移率愈高;电子和空穴的迁移率是不同的,因为它们的平均自由时间和有 效质量不同。
Hall效应
• 当有一方向与电流垂直的磁场作用于一有限半导体时, 则在半导体的两侧产生一横向电势差,其方向同时垂直 于电流和磁场,这种现象称为半导体的Hall效应。
简化能带图
1.3 半导体中的载流子
• 导带中的电子和价带中的空穴统称为载流子, 是在电场作用下能作定向运动的带电粒子。
满带
E
当电子从原来状态转移 到另一状态时,另一电子 必作相反的转移。没有额 外的定向运动。满带中电 子不能形成电流。
半(不)满带
E
半满带的电子可在外 场作用下跃迁到高一 级的能级形成电流。
能带结构:
(“施主能级”)
空带 施主能级 施主能级与上
空带下能级的
Eg
能级间隔称“
ED 施主杂质电离
满带
能”( ED )
导电机制:
空带
Eg
满带
施主能级
这种杂质可提 供导电电子故
ED 称为施主杂质

半导体物理的基础知识

半导体物理的基础知识

半导体物理的基础知识半导体物理是研究半导体材料及其电子行为的一门学科。

半导体是介于导体和绝缘体之间的材料,具有独特的电子特性。

本文将介绍半导体物理的基础知识,包括半导体材料的结构、能带理论、杂质掺杂以及PN结等内容。

一、半导体材料的结构半导体材料是由单晶、多晶或非晶三种形态构成。

单晶是指晶体结构完整、无缺陷的材料,拥有良好的导电性能。

多晶是由多个晶粒组成,晶界存在缺陷,导电性能较差。

非晶的特点是结构无序,导电性能较差。

半导体材料的基本结构由共价键和离散缺陷构成。

共价键是指半导体材料中相邻原子之间的化学键,它保持了材料的稳定性。

离散缺陷是指晶体中出现的缺陷,如杂质、空穴等。

这些离散缺陷的存在对半导体材料的导电性能有重要影响。

二、能带理论能带理论是解释物质的导电性能的基础理论。

根据这一理论,半导体材料的电子行为与能带结构有密切关系。

能带是电子能量的分布区域,分为价带和导带两部分。

价带中的电子具有固定位置,不能自由移动;而导带中的电子能够自由移动。

在纯净的半导体中,价带带满,导带没有电子。

半导体的导电性能是通过在半导体中掺入适量的杂质来改变的。

杂质的掺入会导致新的能带形成,同时增加或减少可自由移动的电子数量。

掺杂过程中形成的能带被称为禁带,其能量介于价带和导带之间。

三、杂质掺杂杂质掺杂是一种通过引入少量外来原子来改变半导体材料导电性能的方法。

根据杂质掺入的原子种类不同,可以分为n型和p型两种半导体。

n型半导体是通过掺入五价元素,如磷(P)或砷(As),在半导体中形成额外的自由电子,增加导电性能。

这些自由电子会填满主导带,并进入导带,从而形成导电能力。

n型半导体表现为电子富余。

p型半导体是通过掺入三价元素,如硼(B)或铋(Bi),在半导体中形成额外的空穴,增强导电性能。

空穴是一种电子缺失的状态,它通过与晶格中的自由电子结合来传导电荷。

p型半导体表现为电子贫缺。

四、PN结PN结是将p型半导体和n型半导体通过一定方法连接而成的结构。

半导体物理学

半导体物理学

半导体物理学半导体物理学是研究半导体材料及其物性的学科领域。

半导体材料是一种将电流在导电和绝缘体之间进行调控的材料,具有在一定条件下可变的电导特性。

在现代电子技术中,半导体器件如晶体管、二极管和集成电路等起着重要作用。

本文将介绍半导体物理学的基本概念、理论与应用。

一、半导体的基本概念半导体是介于导体和绝缘体之间的一类材料。

与导体相比,半导体的电导率较低;而与绝缘体相比,半导体在一定条件下可以导电。

半导体材料通常由硅、锗和化合物半导体等组成。

半导体中主要存在两种载流子:电子和空穴。

电子是带负电荷的粒子,而空穴则可以被视为缺少一个电子的位置。

在半导体中,电子和空穴的行为决定了它的导电特性。

二、半导体的能带结构半导体的能带结构与其导电特性密切相关。

能带是描述材料中电子能量和允许电子处于的状态的能级。

常用的能带有价带和导带。

在绝缘体和绝缘态半导体中,价带和导带之间存在能隙,电子需要克服能隙才能跃迁到导带中形成电流。

而在半导体中,能隙相对较小,室温下部分电子已经跃迁到导带,因此半导体材料具有较好的导电性。

三、半导体的掺杂掺杂是通过向半导体材料中引入杂质来改变其电导特性。

掺杂分为n型和p型两种类型。

n型半导体是通过掺入五价杂质(如磷或砷)来引入额外的自由电子,从而增加半导体的导电性能。

而p型半导体则是通过掺入三价杂质(如硼或铝)来引入额外的空穴,从而增加半导体的导电性能。

四、半导体器件半导体物理学的应用主要体现在各种半导体器件的研制和应用上。

晶体管是最重要的半导体器件之一。

晶体管的基本原理是通过控制电流在半导体材料中的流动来放大和开关信号。

晶体管的发明极大地改变了电子技术的发展,并推动了计算机、通信和各种电子设备的进步。

二极管是另一种常见的半导体器件,它是由一个p型半导体和一个n型半导体组成。

二极管具有只允许单向电流通过的特性,可以用于整流、光电探测和电压调节等应用。

集成电路是一种将多个晶体管、二极管和其他电子元件集成在一起的半导体器件。

半导体物理SemiconductorPhysics

半导体物理SemiconductorPhysics


对同一周期元素,由左至右电负性逐渐增大;对同一 族元素,由上至下电负性逐渐减小。电负性小的元素 易给出电子,通常以金属形式存在;电负性较大的元 素,通常以共价键结合,具有半导体或绝缘体性质 就化合物而言,由电负性很强和电负性很弱的两种元 素形成的晶体是典型的离子晶体;电负性相近的两种 元素倾向于形成共价键

半导体物理 Semiconductor Physics
闪锌矿结构晶胞
闪锌矿结构与金刚石结
构类似,不同在于其晶

格由两种不同原子各自
组成的面心立方晶格沿
空间对角线彼此位移四
分之一长度套构而成。
半导体物理 Semiconductor Physics
纤锌矿结构Байду номын сангаас
Wurtzite structure

纤锌矿结构和闪锌矿结 构相接近,它也是以正 四面体结构为基础构成 的,但是它具有六方对 称性,而不是立方对称 性。 硫化锌ZnS、硒化锌 ZnSe、硫化镉CdS、硒 化镉CdSe等可以闪锌矿 和纤锌矿两种方式结晶。


半导体通常以共价结合为基础,但是在化合物半导体 中通常含有不同程度的离子结合成分
半导体物理 Semiconductor Physics
共价四面体结构

原子在化合成分子的过程中,根据原子的成键要求,在周围 原子影响下,将原有的原子轨道进一步线性组合成新的原子 轨道。这种在一个原子中不同原子轨道的线性组合,称为原 子轨道的杂化。杂化后的原子轨道称为杂化轨道。杂化时, 轨道的数目不变,轨道在空间的分布方向和分布情况发生改 变。 在四面体结构的共价晶体中,以Si、Ge为例,最外面的价电 子壳层有1个s态轨道和3个p态轨道。处在p态中的电子形成的 共价键应是互相垂直的,但实际形成的4个共价键之间具有 相同的夹角109°28′。这是因为四个共价键实际上是以s态和 p态波函数的线性组合为基础,发生了所谓的轨道杂化。以 上述sp3杂化轨道为基础形成共价键。

(完整word版)半导体物理知识点梳理

(完整word版)半导体物理知识点梳理

半导体物理考点归纳一·1.金刚石1) 结构特点:a. 由同类原子组成的复式晶格。

其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成b. 属面心晶系,具立方对称性,共价键结合四面体。

c. 配位数为4,较低,较稳定。

(配位数:最近邻原子数)d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。

2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。

2.闪锌矿1) 结构特点:a. 共价性占优势,立方对称性;b. 晶胞结构类似于金刚石结构,但为双原子复式晶格;c. 属共价键晶体,但有不同的离子性。

2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。

3.电子共有化运动:原子结合为晶体时,轨道交叠。

外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。

4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数,5.布里渊区:禁带出现在k=n/2a 处,即在布里渊区边界上;允带出现在以下几个区: 第一布里渊区:-1/2a<k<1/2a (简约布里渊区)第二布里渊区:-1/a<k<-1/2a,1/2a<k<1/aE(k)也是k 的周期函数,周期为1/a,即E(k)=E(k+n/a),能带愈宽,共有化运动就更强烈。

6.施主杂质:V 族杂质在硅,锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n 型杂质7.施主能级:将施主杂质束缚的电子的能量状态称为施主能级,记为ED 。

施主能级离导带很近。

8.受主杂质:III 族杂质在硅,锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或P 型杂质。

9.受主能级:把被受主杂质所束缚的空穴的能量状态称为受主能级,记为EA 。

受主能级离价带很近。

半导体物理

半导体物理

半导体物理考点归纳第一章 半导体中的电子状态一.名词解释1.电子的共有化运动:(P10)原子组成晶体后,由于电子壳的交叠,电子不再局限于某一个原子上,可以由一个原子转移到相邻的原子上去。

因而,电子可以在整个晶体中运动。

这种运动称为电子的共有化运动。

2.单电子近似:(P11)单电子近似方法认为,晶体中德电子是在周期性排列且固定不动的原子核势场,以及其他大量电子的平均势场中运动,这个势场是周期性变化的,且其周期与晶格周期相同。

3.有效质量:(P19)有效质量2*22n h m d Edk =,它直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括。

二.判断题1.金刚石和闪锌矿结构的结晶学原胞都是双原子复式格子,而纤锌矿结构与闪锌矿结构型类似,以立方对称的正四面体结构为基础。

(X )金刚石型结构为单原子复式格子,纤锌矿型是六方对称的。

2.硅晶体属于金刚石结构。

(√)3.Ge 的晶格是单式格子。

(X ) (复式)4.有效质量都是正的。

(X ) (有正有负)5.能带越窄,有效质量越小。

(X )(2*22n h m d Edk =,能带越窄,二次微商越小,有效质量越大) 6.硅锗都是直接带隙半导体。

(X ) (间接)7.Ge 和Si 的价带极大值均位于布里渊区的中心,价带中空穴主要分布在极大值附近,对应同一个k 值,()E k 可以有两个值。

8.实际晶体的每个能带都同孤立原子的某个能级相当,实际晶体的能带完全对应于孤立原子的能带。

(X ) (不相当,不完全对应)三.填空题1.晶格可以分为7大晶系,14种布拉菲格子,按照每个格子所包含的各点数,可分为原始格子,体心,面心,底心。

2.如今热门的发光材料LED 是直接带隙半导体,该种材料的能带结构特点是当k=0时的能谷的极值小。

3.Ge 、Si 是间接带隙半导体,InSb 、GaAs 是直接带隙半导体。

4.回旋共振实验中能测出明显的共振吸收峰,就要求样品纯度高,而且要在低温下进行。

半导体物理基础理论

半导体物理基础理论
载流子浓度
在半导体中,载流子浓度取决于材料的种类和温 度。
3
载流子分布
在绝对零度以上,载流子分布遵循费米-狄拉克 分布。
载流子的产生与复合
热产生
在高温下,电子和空穴通过热激发产生。
光产生
当半导体受到光照时,电子和空穴可以通过光电效应 产生。
载流子复合
当电子和空穴相遇时,它们可以复合并释放出能量。
载流子的迁移率与扩散
量子通信
利用半导体的量子态传输和存储,可以实现 量子密钥分发和量子隐形传态等量子通信技
术,提高通信的安全性和保密性。
半导体物理在新能源领域的应用前景
要点一
太阳能电池
要点二
热电转换
利用半导体的光电效应,可以将太阳能转化为电能,为可 再生能源的发展提供技术支持。
利用半导体的热电效应,可以将热能转化为电能,为新能 源领域的发展提供新的思路。
迁移率
载流子的迁移率描述了载流子在电场作用下的移动速度。
扩散系数
载流子的扩散系数描述了载流子在浓度梯度作用下的扩散速度。
漂移速度
在电场作用下,载流子的平均漂移速度与电场强度成正比。
04
半导体中的热传导与热电效应
热传导的机制与模型
热传导机制
热传导是热量在物质内部由高温区域向低温区域传递的过程 。在半导体中,热传导主要通过晶格振动和自由电子/空穴的 碰撞来实现。
THANKS
感谢观看
半导体的导电机制
总结词
半导体的导电机制
详细描述
半导体的导电机制主要包括电子和空穴两种载流子。在半导体中,电子在价带中运动,当受到外界能量激 发时,电子会跃迁到导带,形成电流。空穴则是在价带中形成“空位”,也可以参与导电。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理思考题第一章半导体中的电子状态1、为什么内壳层电子能带窄,外层电子能带宽?答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。

(原子的内层电子受到原子核的束缚较大,与外层电子相比,它们的势垒强度较大。

)2、为什么点阵间隔越小,能带越宽?答:点阵间隔越小,电子共有化运动能力越强,能带也就越宽。

3、简述半导体的导电机构答:导带中的电子和价带中的空穴都参与导电。

4、什么是本征半导体、n型半导体、p型半导体?答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p型半导体。

5、什么是空穴?电子和空穴的异同之处是什么?答:(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。

(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致(成对出现)。

不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。

6、为什么发光器件多半采用直接带隙半导体来制作?答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。

7、半导体的五大基本特性答:(1)负电阻温度效应:温度升高,电阻减小。

(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。

(3)整流效应:加正向电压时,导通;加反向电压时,不导通。

(4)光生伏特效应:半导体和金属接触时,在光照射下产生电动势。

(5)霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。

第二章半导体中杂质和缺陷能级1、简述实际半导体中杂质与缺陷来源。

答:①原材料纯度不够;②制造过程中引入;③人为控制掺杂。

2、什么是点缺陷、线缺陷、面缺陷?答:(1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷;(2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。

3、点缺陷类型有哪些?答:①空位;②基质原子的填隙;③杂质原子的填隙与替位。

4、简述肖特基缺陷和弗伦克尔缺陷的异同之处。

答:(1)共同点:都是热缺陷(本征缺陷)。

(2)不同点:弗伦克尔缺陷是空位和间隙质点成对缺陷,晶体体积不发生改变;肖特基缺陷:正离子和负离子空位是成比例出现,伴随体积的增加。

5、元素半导体掺杂工艺有哪些?答:①外延;②离子注入;③热扩散。

6、什么是施主杂质?什么是受主杂质?以Si为例说明。

答:Ⅴ族元素在硅中电离时能够释放电子而产生导电电子并形成正电中心,称此类杂质为施主杂质;Ⅲ族元素在硅中电离时能够接受电子而产生导电空穴并形成负电中心,称此类杂质为受主杂质。

7、什么是本征激发?什么是本征半导体?本征半导体的特征是什么?答: (1)电子从价带直接向导带激发,成为导带电子的过程就是本征激发。

(2)纯净晶体结构的半导体称为本征半导体。

(3)电子浓度等于空穴浓度,载流子少,导电性差,温度稳定性差。

8、在半导体中掺入杂质的作用是什么?答:半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生杂质能级,从而改变半导体的导电性和决定半导体的导电类型。

9、浅能级杂质和深能级杂质对半导体性质的影响是什么?答:(1)浅能级:改变半导体的导电性和决定半导体的导电类型。

(2)深能级:同11题。

10、为什么在半导体掺杂中,杂质会产生多个能级?答:因为杂质能级与杂质原子的电子壳层结构、杂质原子的大小、杂质在半导体晶格中的位置等因素有关,各种因素的不同影响使得杂质产生多个能级。

11、阐述深能级杂质的特点。

答:(1)不容易电离,对载流子浓度影响不大;(2)一般会产生多重能级,甚至既产生施主能级,也产生受主能级;(3)能起到复合中心作用,使少数载流子寿命降低。

12、元素半导体中的缺陷、原子空位起什么作用?间隙起什么作用?答:(1)缺陷、原子空位起受主作用;(2)间隙起施主作用。

13、什么是杂质半导体?答:掺入杂质的本征半导体称为杂质半导体。

第三章半导体中载流子的统计分布1、热平衡时载流子浓度由哪些因素决定?答:①能量状态密度;②电子分布函数2、什么是能量状态密度?答:能带中能量E附近单位能量间隔内的量子态数。

3、解释费米能级及其物理意义。

答:(1)费米能级是半导体中大量电子构成的热力学系统的化学势。

(2)费米能级的意义:在各种温度下,在该能级上的一个状态被电子占据的几率正好是1/2。

代表了电子的填充能级高低。

(当系统处于热平衡状态,也不对外界做功的情况下,系统增加一个电子所引起的系统自由能的变化,等于系统的化学能。

)4、阐述影响本征半导体载流子浓度的主要因素。

答:①能带结构:在一定温度下,禁带宽度越窄的半导体,本征载流子浓度越大;②温度:对于给定的半导体材料,其本征载流子浓度随温度升高而迅速增加。

5、为什么器件正常工作大多在饱和电离区?答:温度太低或太高,器件都无法正常工作。

而在饱和电离区,半导体的载流子浓度基本与温度无关,此时可以正常工作。

6、为什么能带能级可以允许两个电子占据而杂质能级最多容纳一个电子?答:当一个电子被杂质或缺陷的缺陷中心的束缚态俘获后,该束缚态或陷阱能级就消失了。

也就是说,对于第二个电子看来这些能级是不存在的,所以第二个电子不可能被俘获。

7、解释下面不同温度下载流子的统计分布规律与温度的关系。

(图片题)------略第四章半导体的导电性1、一般半导体电导率的表达形式是什么?答:σ=σn+σp=nqμn+ pqμp2、为什么在半导体中空穴迁移率一般比电子迁移率低?答:首先迁移率指的是单位电场强度下所产生的载流子平均漂移速度。

因为空穴运动比电子困难,所以空穴的平均漂移速度小于电子。

3、半导体中载流子的散射机构有哪几种?答:①电离杂质散射;②晶格散射;③其他散射。

4、简述电离杂质散射的散射几率与温度、杂质浓度的关系。

答:P i∝N i T-3/2。

杂质浓度N i越大,载流子遭受散射的机会越多,即散射几率大。

温度越高,载流子热运动的平均速度越大,可以较快地掠过杂质离子,偏转就小,所以散射几率小。

5、简述半导体的迁移率与杂质浓度、温度的关系。

答:(1)杂质浓度N i的影响:①杂质浓度低,少子与多子迁移率相同;②杂质浓度变大,迁移率降低;③杂质浓度高,少子迁移率大于多子迁移率,随浓度增大差别加大。

(2)①高温时,主要是晶格散射,温度升高,迁移率减小;②低温时,主要是电离杂质散射,温度升高,迁移率增大。

6、简述含有一定杂质浓度的半导体中电阻率与温度的关系(以Si为例,说明ρ-T关系)。

答:Si的电阻率与温度的变化关系可以分为三个阶段:(1)温度很低时,电阻率随温度升高而降低。

因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。

(2)温度进一步增加(含室温),电阻率随温度升高而升高。

在这一温度范围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。

对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。

(3)温度再进一步增加,电阻率随温度升高而降低。

这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。

当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。

7、什么是迁移率?影响迁移率的主要因素有哪些?答:(1)迁移率是指单位电场强度下所产生的载流子平均漂移速度;(2)主要受材料内部的散射因素影响,还与单位载流子的电荷量、载流子的平均自由时间和载流子有效质量有关。

第五章非平衡载流子1、非平衡下能否用费米能级作为载流子浓度的标准?答:不能。

当热平衡状态受到外界影响,遭到破坏,使半导体处于非平衡状态,不再存在统一的费米能级,因为费米能级和统计分布函数都是指热平衡状态下。

而分别就价带和导带中的电子来说,它们各自基本上处于平衡状态,导带和价带之间处于不平衡状态,准费米能级是不重合的。

2、如何设计一个电路研究光照对半导体中非子浓度的影响?答:3、简述准费米能级的概念。

答:统一的费米能级是热平衡状态的标志。

当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。

但是可以认为,分别就导带和价带中的电子讲,他们各自基本上处于平衡状态,导带与价带之间处于不平衡状态。

因为费米能级和统计分布函数对导带和价带各自仍是适用的,可以引入导带费米能级和价带费米能级,它们都是局部的费米能级,称为“准费米能级”。

4、简述能级杂质在半导体复合中所起的作用。

答:(1)浅能级杂质在半导体中起施主或受主的作用;(2)深能级杂质在半导体中起复合中心或缺陷的作用。

5、影响表面复合的因素有哪些?答:①表面粗糙度;②表面积与总体积的比例;③表面清洁度、化学氛围。

6、什么是陷阱效应?答:陷阱效应是指非平衡载流子落入位于禁带中的杂质或缺陷能级E t中,使在E t上的电子或空穴的填充情况比热平衡时有较大的变化,从而引起△n=△p。

7、计算题:对于n型硅,N D=1016/cm3,光注入非子△n=△p=1014/cm3,计算有无光照时得电导率,其中:μn=1200cm2/V·S,μp=400cm2/V·S。

解:无光照时:σ0=nqμn=N D qμn=1016×1.602×10-19×1200≈1.92(S/cm)有光照时:△n=△p=1014cm-3<<N D,为小注入σ=(n0+△n)qμn+(p0+△p)qμp=[(1016+1014)×1200+1014×400]×1.602×10-19=1.945(S/cm)第六章元素半导体材料1、氧化硅层在半导体器件中起什么作用?答:①对杂质扩散起掩蔽作用;②对器件的表面起保护好钝化作用;③用于器件的绝缘隔离层;④用作MOS器件的绝缘栅材料。

2、简述O、C、H对硅材料有哪些危害?答:(1)O的危害:热处理过程中,过饱和间隙氧会在晶体中偏聚、沉淀而形成氧施主、氧沉淀和二次缺陷等。

氧沉淀过大会导致硅片翘曲,并引入二次缺陷。

(2)C的危害:①C会降低击穿电压,增加漏电流;②C会促进氧沉淀和新施主的形成;③C会抑制热施主的形成。

(3)H的作用:①H在硅中处于间隙位置,可以形成正负离子两种状态;②H在硅中形成H-O复合体;③H能促进氧的扩散和热施主的形成;④H会钝化杂质和缺陷的电活性;⑤H能钝化晶体的表面和界面,提高器件的性能。

相关文档
最新文档